resample.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * audio resampling
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/log.h"
  27. #include "swresample_internal.h"
  28. #ifndef CONFIG_RESAMPLE_HP
  29. #define FILTER_SHIFT 15
  30. #define FELEM int16_t
  31. #define FELEM2 int32_t
  32. #define FELEML int64_t
  33. #define FELEM_MAX INT16_MAX
  34. #define FELEM_MIN INT16_MIN
  35. #define WINDOW_TYPE 9
  36. #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
  37. #define FILTER_SHIFT 30
  38. #define FELEM int32_t
  39. #define FELEM2 int64_t
  40. #define FELEML int64_t
  41. #define FELEM_MAX INT32_MAX
  42. #define FELEM_MIN INT32_MIN
  43. #define WINDOW_TYPE 12
  44. #else
  45. #define FILTER_SHIFT 0
  46. #define FELEM double
  47. #define FELEM2 double
  48. #define FELEML double
  49. #define WINDOW_TYPE 24
  50. #endif
  51. typedef struct ResampleContext {
  52. const AVClass *av_class;
  53. FELEM *filter_bank;
  54. int filter_length;
  55. int ideal_dst_incr;
  56. int dst_incr;
  57. int index;
  58. int frac;
  59. int src_incr;
  60. int compensation_distance;
  61. int phase_shift;
  62. int phase_mask;
  63. int linear;
  64. double factor;
  65. } ResampleContext;
  66. /**
  67. * 0th order modified bessel function of the first kind.
  68. */
  69. static double bessel(double x){
  70. double v=1;
  71. double lastv=0;
  72. double t=1;
  73. int i;
  74. static const double inv[100]={
  75. 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
  76. 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
  77. 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
  78. 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
  79. 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
  80. 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
  81. 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
  82. 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
  83. 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
  84. 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
  85. };
  86. x= x*x/4;
  87. for(i=0; v != lastv; i++){
  88. lastv=v;
  89. t *= x*inv[i];
  90. v += t;
  91. }
  92. return v;
  93. }
  94. /**
  95. * builds a polyphase filterbank.
  96. * @param factor resampling factor
  97. * @param scale wanted sum of coefficients for each filter
  98. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
  99. * @return 0 on success, negative on error
  100. */
  101. static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
  102. int ph, i;
  103. double x, y, w;
  104. double *tab = av_malloc(tap_count * sizeof(*tab));
  105. const int center= (tap_count-1)/2;
  106. if (!tab)
  107. return AVERROR(ENOMEM);
  108. /* if upsampling, only need to interpolate, no filter */
  109. if (factor > 1.0)
  110. factor = 1.0;
  111. for(ph=0;ph<phase_count;ph++) {
  112. double norm = 0;
  113. for(i=0;i<tap_count;i++) {
  114. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  115. if (x == 0) y = 1.0;
  116. else y = sin(x) / x;
  117. switch(type){
  118. case 0:{
  119. const float d= -0.5; //first order derivative = -0.5
  120. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  121. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  122. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  123. break;}
  124. case 1:
  125. w = 2.0*x / (factor*tap_count) + M_PI;
  126. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  127. break;
  128. default:
  129. w = 2.0*x / (factor*tap_count*M_PI);
  130. y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
  131. break;
  132. }
  133. tab[i] = y;
  134. norm += y;
  135. }
  136. /* normalize so that an uniform color remains the same */
  137. for(i=0;i<tap_count;i++) {
  138. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  139. filter[ph * tap_count + i] = tab[i] / norm;
  140. #else
  141. filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
  142. #endif
  143. }
  144. }
  145. #if 0
  146. {
  147. #define LEN 1024
  148. int j,k;
  149. double sine[LEN + tap_count];
  150. double filtered[LEN];
  151. double maxff=-2, minff=2, maxsf=-2, minsf=2;
  152. for(i=0; i<LEN; i++){
  153. double ss=0, sf=0, ff=0;
  154. for(j=0; j<LEN+tap_count; j++)
  155. sine[j]= cos(i*j*M_PI/LEN);
  156. for(j=0; j<LEN; j++){
  157. double sum=0;
  158. ph=0;
  159. for(k=0; k<tap_count; k++)
  160. sum += filter[ph * tap_count + k] * sine[k+j];
  161. filtered[j]= sum / (1<<FILTER_SHIFT);
  162. ss+= sine[j + center] * sine[j + center];
  163. ff+= filtered[j] * filtered[j];
  164. sf+= sine[j + center] * filtered[j];
  165. }
  166. ss= sqrt(2*ss/LEN);
  167. ff= sqrt(2*ff/LEN);
  168. sf= 2*sf/LEN;
  169. maxff= FFMAX(maxff, ff);
  170. minff= FFMIN(minff, ff);
  171. maxsf= FFMAX(maxsf, sf);
  172. minsf= FFMIN(minsf, sf);
  173. if(i%11==0){
  174. av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
  175. minff=minsf= 2;
  176. maxff=maxsf= -2;
  177. }
  178. }
  179. }
  180. #endif
  181. av_free(tab);
  182. return 0;
  183. }
  184. ResampleContext *swri_resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
  185. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  186. int phase_count= 1<<phase_shift;
  187. if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
  188. || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1)) {
  189. c = av_mallocz(sizeof(*c));
  190. if (!c)
  191. return NULL;
  192. c->phase_shift = phase_shift;
  193. c->phase_mask = phase_count - 1;
  194. c->linear = linear;
  195. c->factor = factor;
  196. c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
  197. c->filter_bank = av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
  198. if (!c->filter_bank)
  199. goto error;
  200. if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE))
  201. goto error;
  202. memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
  203. c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
  204. }
  205. c->compensation_distance= 0;
  206. if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
  207. goto error;
  208. c->ideal_dst_incr= c->dst_incr;
  209. c->index= -phase_count*((c->filter_length-1)/2);
  210. c->frac= 0;
  211. return c;
  212. error:
  213. av_free(c->filter_bank);
  214. av_free(c);
  215. return NULL;
  216. }
  217. void swri_resample_free(ResampleContext **c){
  218. if(!*c)
  219. return;
  220. av_freep(&(*c)->filter_bank);
  221. av_freep(c);
  222. }
  223. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  224. ResampleContext *c;
  225. int ret;
  226. if (!s || compensation_distance < 0)
  227. return AVERROR(EINVAL);
  228. if (!compensation_distance && sample_delta)
  229. return AVERROR(EINVAL);
  230. if (!s->resample) {
  231. s->flags |= SWR_FLAG_RESAMPLE;
  232. ret = swr_init(s);
  233. if (ret < 0)
  234. return ret;
  235. }
  236. c= s->resample;
  237. c->compensation_distance= compensation_distance;
  238. if (compensation_distance)
  239. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  240. else
  241. c->dst_incr = c->ideal_dst_incr;
  242. return 0;
  243. }
  244. int swri_resample(ResampleContext *c, int16_t *dst, const int16_t *src, int *consumed, int src_size, int dst_size, int update_ctx){
  245. int dst_index, i;
  246. int index= c->index;
  247. int frac= c->frac;
  248. int dst_incr_frac= c->dst_incr % c->src_incr;
  249. int dst_incr= c->dst_incr / c->src_incr;
  250. int compensation_distance= c->compensation_distance;
  251. if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
  252. int64_t index2= ((int64_t)index)<<32;
  253. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  254. dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
  255. for(dst_index=0; dst_index < dst_size; dst_index++){
  256. dst[dst_index] = src[index2>>32];
  257. index2 += incr;
  258. }
  259. index += dst_index * dst_incr;
  260. index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
  261. frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
  262. }else{
  263. for(dst_index=0; dst_index < dst_size; dst_index++){
  264. FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
  265. int sample_index= index >> c->phase_shift;
  266. FELEM2 val=0;
  267. if(sample_index < 0){
  268. for(i=0; i<c->filter_length; i++)
  269. val += src[FFABS(sample_index + i) % src_size] * filter[i];
  270. }else if(sample_index + c->filter_length > src_size){
  271. break;
  272. }else if(c->linear){
  273. FELEM2 v2=0;
  274. for(i=0; i<c->filter_length; i++){
  275. val += src[sample_index + i] * (FELEM2)filter[i];
  276. v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
  277. }
  278. val+=(v2-val)*(FELEML)frac / c->src_incr;
  279. }else{
  280. for(i=0; i<c->filter_length; i++){
  281. val += src[sample_index + i] * (FELEM2)filter[i];
  282. }
  283. }
  284. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  285. dst[dst_index] = av_clip_int16(lrintf(val));
  286. #else
  287. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  288. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  289. #endif
  290. frac += dst_incr_frac;
  291. index += dst_incr;
  292. if(frac >= c->src_incr){
  293. frac -= c->src_incr;
  294. index++;
  295. }
  296. if(dst_index + 1 == compensation_distance){
  297. compensation_distance= 0;
  298. dst_incr_frac= c->ideal_dst_incr % c->src_incr;
  299. dst_incr= c->ideal_dst_incr / c->src_incr;
  300. }
  301. }
  302. }
  303. *consumed= FFMAX(index, 0) >> c->phase_shift;
  304. if(index>=0) index &= c->phase_mask;
  305. if(compensation_distance){
  306. compensation_distance -= dst_index;
  307. assert(compensation_distance > 0);
  308. }
  309. if(update_ctx){
  310. c->frac= frac;
  311. c->index= index;
  312. c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
  313. c->compensation_distance= compensation_distance;
  314. }
  315. #if 0
  316. if(update_ctx && !c->compensation_distance){
  317. #undef rand
  318. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  319. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  320. }
  321. #endif
  322. return dst_index;
  323. }
  324. int swri_multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
  325. int i, ret= -1;
  326. for(i=0; i<dst->ch_count; i++){
  327. ret= swri_resample(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
  328. }
  329. return ret;
  330. }