mpegaudiodec.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298
  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder.
  24. */
  25. #include "libavutil/audioconvert.h"
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "dsputil.h"
  29. #include "mathops.h"
  30. /*
  31. * TODO:
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. #include "mpegaudio.h"
  35. #include "mpegaudiodecheader.h"
  36. #if CONFIG_FLOAT
  37. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  38. # define compute_antialias compute_antialias_float
  39. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  40. # define FIXR(x) ((float)(x))
  41. # define FIXHR(x) ((float)(x))
  42. # define MULH3(x, y, s) ((s)*(y)*(x))
  43. # define MULLx(x, y, s) ((y)*(x))
  44. # define RENAME(a) a ## _float
  45. # define OUT_FMT AV_SAMPLE_FMT_FLT
  46. #else
  47. # define SHR(a,b) ((a)>>(b))
  48. # define compute_antialias compute_antialias_integer
  49. /* WARNING: only correct for posititive numbers */
  50. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  51. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  52. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  53. # define MULH3(x, y, s) MULH((s)*(x), y)
  54. # define MULLx(x, y, s) MULL(x,y,s)
  55. # define RENAME(a) a
  56. # define OUT_FMT AV_SAMPLE_FMT_S16
  57. #endif
  58. /****************/
  59. #define HEADER_SIZE 4
  60. #include "mpegaudiodata.h"
  61. #include "mpegaudiodectab.h"
  62. #if CONFIG_FLOAT
  63. # include "fft.h"
  64. #else
  65. # include "dct32.c"
  66. #endif
  67. static void compute_antialias(MPADecodeContext *s, GranuleDef *g);
  68. static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
  69. int *dither_state, OUT_INT *samples, int incr);
  70. /* vlc structure for decoding layer 3 huffman tables */
  71. static VLC huff_vlc[16];
  72. static VLC_TYPE huff_vlc_tables[
  73. 0+128+128+128+130+128+154+166+
  74. 142+204+190+170+542+460+662+414
  75. ][2];
  76. static const int huff_vlc_tables_sizes[16] = {
  77. 0, 128, 128, 128, 130, 128, 154, 166,
  78. 142, 204, 190, 170, 542, 460, 662, 414
  79. };
  80. static VLC huff_quad_vlc[2];
  81. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  82. static const int huff_quad_vlc_tables_sizes[2] = {
  83. 128, 16
  84. };
  85. /* computed from band_size_long */
  86. static uint16_t band_index_long[9][23];
  87. #include "mpegaudio_tablegen.h"
  88. /* intensity stereo coef table */
  89. static INTFLOAT is_table[2][16];
  90. static INTFLOAT is_table_lsf[2][2][16];
  91. static int32_t csa_table[8][4];
  92. static float csa_table_float[8][4];
  93. static INTFLOAT mdct_win[8][36];
  94. static int16_t division_tab3[1<<6 ];
  95. static int16_t division_tab5[1<<8 ];
  96. static int16_t division_tab9[1<<11];
  97. static int16_t * const division_tabs[4] = {
  98. division_tab3, division_tab5, NULL, division_tab9
  99. };
  100. /* lower 2 bits: modulo 3, higher bits: shift */
  101. static uint16_t scale_factor_modshift[64];
  102. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  103. static int32_t scale_factor_mult[15][3];
  104. /* mult table for layer 2 group quantization */
  105. #define SCALE_GEN(v) \
  106. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  107. static const int32_t scale_factor_mult2[3][3] = {
  108. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  109. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  110. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  111. };
  112. DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
  113. /**
  114. * Convert region offsets to region sizes and truncate
  115. * size to big_values.
  116. */
  117. static void ff_region_offset2size(GranuleDef *g){
  118. int i, k, j=0;
  119. g->region_size[2] = (576 / 2);
  120. for(i=0;i<3;i++) {
  121. k = FFMIN(g->region_size[i], g->big_values);
  122. g->region_size[i] = k - j;
  123. j = k;
  124. }
  125. }
  126. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  127. if (g->block_type == 2)
  128. g->region_size[0] = (36 / 2);
  129. else {
  130. if (s->sample_rate_index <= 2)
  131. g->region_size[0] = (36 / 2);
  132. else if (s->sample_rate_index != 8)
  133. g->region_size[0] = (54 / 2);
  134. else
  135. g->region_size[0] = (108 / 2);
  136. }
  137. g->region_size[1] = (576 / 2);
  138. }
  139. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  140. int l;
  141. g->region_size[0] =
  142. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  143. /* should not overflow */
  144. l = FFMIN(ra1 + ra2 + 2, 22);
  145. g->region_size[1] =
  146. band_index_long[s->sample_rate_index][l] >> 1;
  147. }
  148. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  149. if (g->block_type == 2) {
  150. if (g->switch_point) {
  151. /* if switched mode, we handle the 36 first samples as
  152. long blocks. For 8000Hz, we handle the 48 first
  153. exponents as long blocks (XXX: check this!) */
  154. if (s->sample_rate_index <= 2)
  155. g->long_end = 8;
  156. else if (s->sample_rate_index != 8)
  157. g->long_end = 6;
  158. else
  159. g->long_end = 4; /* 8000 Hz */
  160. g->short_start = 2 + (s->sample_rate_index != 8);
  161. } else {
  162. g->long_end = 0;
  163. g->short_start = 0;
  164. }
  165. } else {
  166. g->short_start = 13;
  167. g->long_end = 22;
  168. }
  169. }
  170. /* layer 1 unscaling */
  171. /* n = number of bits of the mantissa minus 1 */
  172. static inline int l1_unscale(int n, int mant, int scale_factor)
  173. {
  174. int shift, mod;
  175. int64_t val;
  176. shift = scale_factor_modshift[scale_factor];
  177. mod = shift & 3;
  178. shift >>= 2;
  179. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  180. shift += n;
  181. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  182. return (int)((val + (1LL << (shift - 1))) >> shift);
  183. }
  184. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  185. {
  186. int shift, mod, val;
  187. shift = scale_factor_modshift[scale_factor];
  188. mod = shift & 3;
  189. shift >>= 2;
  190. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  191. /* NOTE: at this point, 0 <= shift <= 21 */
  192. if (shift > 0)
  193. val = (val + (1 << (shift - 1))) >> shift;
  194. return val;
  195. }
  196. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  197. static inline int l3_unscale(int value, int exponent)
  198. {
  199. unsigned int m;
  200. int e;
  201. e = table_4_3_exp [4*value + (exponent&3)];
  202. m = table_4_3_value[4*value + (exponent&3)];
  203. e -= (exponent >> 2);
  204. assert(e>=1);
  205. if (e > 31)
  206. return 0;
  207. m = (m + (1 << (e-1))) >> e;
  208. return m;
  209. }
  210. /* all integer n^(4/3) computation code */
  211. #define DEV_ORDER 13
  212. #define POW_FRAC_BITS 24
  213. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  214. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  215. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  216. static int dev_4_3_coefs[DEV_ORDER];
  217. static av_cold void int_pow_init(void)
  218. {
  219. int i, a;
  220. a = POW_FIX(1.0);
  221. for(i=0;i<DEV_ORDER;i++) {
  222. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  223. dev_4_3_coefs[i] = a;
  224. }
  225. }
  226. static av_cold int decode_init(AVCodecContext * avctx)
  227. {
  228. MPADecodeContext *s = avctx->priv_data;
  229. static int init=0;
  230. int i, j, k;
  231. s->avctx = avctx;
  232. s->apply_window_mp3 = apply_window_mp3_c;
  233. #if HAVE_MMX && CONFIG_FLOAT
  234. ff_mpegaudiodec_init_mmx(s);
  235. #endif
  236. #if CONFIG_FLOAT
  237. ff_dct_init(&s->dct, 5, DCT_II);
  238. #endif
  239. if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);
  240. avctx->sample_fmt= OUT_FMT;
  241. s->error_recognition= avctx->error_recognition;
  242. if (!init && !avctx->parse_only) {
  243. int offset;
  244. /* scale factors table for layer 1/2 */
  245. for(i=0;i<64;i++) {
  246. int shift, mod;
  247. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  248. shift = (i / 3);
  249. mod = i % 3;
  250. scale_factor_modshift[i] = mod | (shift << 2);
  251. }
  252. /* scale factor multiply for layer 1 */
  253. for(i=0;i<15;i++) {
  254. int n, norm;
  255. n = i + 2;
  256. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  257. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  258. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  259. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  260. av_dlog(avctx, "%d: norm=%x s=%x %x %x\n",
  261. i, norm,
  262. scale_factor_mult[i][0],
  263. scale_factor_mult[i][1],
  264. scale_factor_mult[i][2]);
  265. }
  266. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  267. /* huffman decode tables */
  268. offset = 0;
  269. for(i=1;i<16;i++) {
  270. const HuffTable *h = &mpa_huff_tables[i];
  271. int xsize, x, y;
  272. uint8_t tmp_bits [512];
  273. uint16_t tmp_codes[512];
  274. memset(tmp_bits , 0, sizeof(tmp_bits ));
  275. memset(tmp_codes, 0, sizeof(tmp_codes));
  276. xsize = h->xsize;
  277. j = 0;
  278. for(x=0;x<xsize;x++) {
  279. for(y=0;y<xsize;y++){
  280. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  281. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  282. }
  283. }
  284. /* XXX: fail test */
  285. huff_vlc[i].table = huff_vlc_tables+offset;
  286. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  287. init_vlc(&huff_vlc[i], 7, 512,
  288. tmp_bits, 1, 1, tmp_codes, 2, 2,
  289. INIT_VLC_USE_NEW_STATIC);
  290. offset += huff_vlc_tables_sizes[i];
  291. }
  292. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  293. offset = 0;
  294. for(i=0;i<2;i++) {
  295. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  296. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  297. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  298. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  299. INIT_VLC_USE_NEW_STATIC);
  300. offset += huff_quad_vlc_tables_sizes[i];
  301. }
  302. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  303. for(i=0;i<9;i++) {
  304. k = 0;
  305. for(j=0;j<22;j++) {
  306. band_index_long[i][j] = k;
  307. k += band_size_long[i][j];
  308. }
  309. band_index_long[i][22] = k;
  310. }
  311. /* compute n ^ (4/3) and store it in mantissa/exp format */
  312. int_pow_init();
  313. mpegaudio_tableinit();
  314. for (i = 0; i < 4; i++)
  315. if (ff_mpa_quant_bits[i] < 0)
  316. for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) {
  317. int val1, val2, val3, steps;
  318. int val = j;
  319. steps = ff_mpa_quant_steps[i];
  320. val1 = val % steps;
  321. val /= steps;
  322. val2 = val % steps;
  323. val3 = val / steps;
  324. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  325. }
  326. for(i=0;i<7;i++) {
  327. float f;
  328. INTFLOAT v;
  329. if (i != 6) {
  330. f = tan((double)i * M_PI / 12.0);
  331. v = FIXR(f / (1.0 + f));
  332. } else {
  333. v = FIXR(1.0);
  334. }
  335. is_table[0][i] = v;
  336. is_table[1][6 - i] = v;
  337. }
  338. /* invalid values */
  339. for(i=7;i<16;i++)
  340. is_table[0][i] = is_table[1][i] = 0.0;
  341. for(i=0;i<16;i++) {
  342. double f;
  343. int e, k;
  344. for(j=0;j<2;j++) {
  345. e = -(j + 1) * ((i + 1) >> 1);
  346. f = pow(2.0, e / 4.0);
  347. k = i & 1;
  348. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  349. is_table_lsf[j][k][i] = FIXR(1.0);
  350. av_dlog(avctx, "is_table_lsf %d %d: %x %x\n",
  351. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  352. }
  353. }
  354. for(i=0;i<8;i++) {
  355. float ci, cs, ca;
  356. ci = ci_table[i];
  357. cs = 1.0 / sqrt(1.0 + ci * ci);
  358. ca = cs * ci;
  359. csa_table[i][0] = FIXHR(cs/4);
  360. csa_table[i][1] = FIXHR(ca/4);
  361. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  362. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  363. csa_table_float[i][0] = cs;
  364. csa_table_float[i][1] = ca;
  365. csa_table_float[i][2] = ca + cs;
  366. csa_table_float[i][3] = ca - cs;
  367. }
  368. /* compute mdct windows */
  369. for(i=0;i<36;i++) {
  370. for(j=0; j<4; j++){
  371. double d;
  372. if(j==2 && i%3 != 1)
  373. continue;
  374. d= sin(M_PI * (i + 0.5) / 36.0);
  375. if(j==1){
  376. if (i>=30) d= 0;
  377. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  378. else if(i>=18) d= 1;
  379. }else if(j==3){
  380. if (i< 6) d= 0;
  381. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  382. else if(i< 18) d= 1;
  383. }
  384. //merge last stage of imdct into the window coefficients
  385. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  386. if(j==2)
  387. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  388. else
  389. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  390. }
  391. }
  392. /* NOTE: we do frequency inversion adter the MDCT by changing
  393. the sign of the right window coefs */
  394. for(j=0;j<4;j++) {
  395. for(i=0;i<36;i+=2) {
  396. mdct_win[j + 4][i] = mdct_win[j][i];
  397. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  398. }
  399. }
  400. init = 1;
  401. }
  402. if (avctx->codec_id == CODEC_ID_MP3ADU)
  403. s->adu_mode = 1;
  404. return 0;
  405. }
  406. #if CONFIG_FLOAT
  407. static inline float round_sample(float *sum)
  408. {
  409. float sum1=*sum;
  410. *sum = 0;
  411. return sum1;
  412. }
  413. /* signed 16x16 -> 32 multiply add accumulate */
  414. #define MACS(rt, ra, rb) rt+=(ra)*(rb)
  415. /* signed 16x16 -> 32 multiply */
  416. #define MULS(ra, rb) ((ra)*(rb))
  417. #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
  418. #else
  419. static inline int round_sample(int64_t *sum)
  420. {
  421. int sum1;
  422. sum1 = (int)((*sum) >> OUT_SHIFT);
  423. *sum &= (1<<OUT_SHIFT)-1;
  424. return av_clip_int16(sum1);
  425. }
  426. # define MULS(ra, rb) MUL64(ra, rb)
  427. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  428. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  429. #endif
  430. #define SUM8(op, sum, w, p) \
  431. { \
  432. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  433. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  434. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  435. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  436. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  437. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  438. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  439. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  440. }
  441. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  442. { \
  443. INTFLOAT tmp;\
  444. tmp = p[0 * 64];\
  445. op1(sum1, (w1)[0 * 64], tmp);\
  446. op2(sum2, (w2)[0 * 64], tmp);\
  447. tmp = p[1 * 64];\
  448. op1(sum1, (w1)[1 * 64], tmp);\
  449. op2(sum2, (w2)[1 * 64], tmp);\
  450. tmp = p[2 * 64];\
  451. op1(sum1, (w1)[2 * 64], tmp);\
  452. op2(sum2, (w2)[2 * 64], tmp);\
  453. tmp = p[3 * 64];\
  454. op1(sum1, (w1)[3 * 64], tmp);\
  455. op2(sum2, (w2)[3 * 64], tmp);\
  456. tmp = p[4 * 64];\
  457. op1(sum1, (w1)[4 * 64], tmp);\
  458. op2(sum2, (w2)[4 * 64], tmp);\
  459. tmp = p[5 * 64];\
  460. op1(sum1, (w1)[5 * 64], tmp);\
  461. op2(sum2, (w2)[5 * 64], tmp);\
  462. tmp = p[6 * 64];\
  463. op1(sum1, (w1)[6 * 64], tmp);\
  464. op2(sum2, (w2)[6 * 64], tmp);\
  465. tmp = p[7 * 64];\
  466. op1(sum1, (w1)[7 * 64], tmp);\
  467. op2(sum2, (w2)[7 * 64], tmp);\
  468. }
  469. void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
  470. {
  471. int i, j;
  472. /* max = 18760, max sum over all 16 coefs : 44736 */
  473. for(i=0;i<257;i++) {
  474. INTFLOAT v;
  475. v = ff_mpa_enwindow[i];
  476. #if CONFIG_FLOAT
  477. v *= 1.0 / (1LL<<(16 + FRAC_BITS));
  478. #endif
  479. window[i] = v;
  480. if ((i & 63) != 0)
  481. v = -v;
  482. if (i != 0)
  483. window[512 - i] = v;
  484. }
  485. // Needed for avoiding shuffles in ASM implementations
  486. for(i=0; i < 8; i++)
  487. for(j=0; j < 16; j++)
  488. window[512+16*i+j] = window[64*i+32-j];
  489. for(i=0; i < 8; i++)
  490. for(j=0; j < 16; j++)
  491. window[512+128+16*i+j] = window[64*i+48-j];
  492. }
  493. static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
  494. int *dither_state, OUT_INT *samples, int incr)
  495. {
  496. register const MPA_INT *w, *w2, *p;
  497. int j;
  498. OUT_INT *samples2;
  499. #if CONFIG_FLOAT
  500. float sum, sum2;
  501. #else
  502. int64_t sum, sum2;
  503. #endif
  504. /* copy to avoid wrap */
  505. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
  506. samples2 = samples + 31 * incr;
  507. w = window;
  508. w2 = window + 31;
  509. sum = *dither_state;
  510. p = synth_buf + 16;
  511. SUM8(MACS, sum, w, p);
  512. p = synth_buf + 48;
  513. SUM8(MLSS, sum, w + 32, p);
  514. *samples = round_sample(&sum);
  515. samples += incr;
  516. w++;
  517. /* we calculate two samples at the same time to avoid one memory
  518. access per two sample */
  519. for(j=1;j<16;j++) {
  520. sum2 = 0;
  521. p = synth_buf + 16 + j;
  522. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  523. p = synth_buf + 48 - j;
  524. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  525. *samples = round_sample(&sum);
  526. samples += incr;
  527. sum += sum2;
  528. *samples2 = round_sample(&sum);
  529. samples2 -= incr;
  530. w++;
  531. w2--;
  532. }
  533. p = synth_buf + 32;
  534. SUM8(MLSS, sum, w + 32, p);
  535. *samples = round_sample(&sum);
  536. *dither_state= sum;
  537. }
  538. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  539. 32 samples. */
  540. /* XXX: optimize by avoiding ring buffer usage */
  541. #if !CONFIG_FLOAT
  542. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  543. MPA_INT *window, int *dither_state,
  544. OUT_INT *samples, int incr,
  545. INTFLOAT sb_samples[SBLIMIT])
  546. {
  547. register MPA_INT *synth_buf;
  548. int offset;
  549. offset = *synth_buf_offset;
  550. synth_buf = synth_buf_ptr + offset;
  551. dct32(synth_buf, sb_samples);
  552. apply_window_mp3_c(synth_buf, window, dither_state, samples, incr);
  553. offset = (offset - 32) & 511;
  554. *synth_buf_offset = offset;
  555. }
  556. #endif
  557. #define C3 FIXHR(0.86602540378443864676/2)
  558. /* 0.5 / cos(pi*(2*i+1)/36) */
  559. static const INTFLOAT icos36[9] = {
  560. FIXR(0.50190991877167369479),
  561. FIXR(0.51763809020504152469), //0
  562. FIXR(0.55168895948124587824),
  563. FIXR(0.61038729438072803416),
  564. FIXR(0.70710678118654752439), //1
  565. FIXR(0.87172339781054900991),
  566. FIXR(1.18310079157624925896),
  567. FIXR(1.93185165257813657349), //2
  568. FIXR(5.73685662283492756461),
  569. };
  570. /* 0.5 / cos(pi*(2*i+1)/36) */
  571. static const INTFLOAT icos36h[9] = {
  572. FIXHR(0.50190991877167369479/2),
  573. FIXHR(0.51763809020504152469/2), //0
  574. FIXHR(0.55168895948124587824/2),
  575. FIXHR(0.61038729438072803416/2),
  576. FIXHR(0.70710678118654752439/2), //1
  577. FIXHR(0.87172339781054900991/2),
  578. FIXHR(1.18310079157624925896/4),
  579. FIXHR(1.93185165257813657349/4), //2
  580. // FIXHR(5.73685662283492756461),
  581. };
  582. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  583. cases. */
  584. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  585. {
  586. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  587. in0= in[0*3];
  588. in1= in[1*3] + in[0*3];
  589. in2= in[2*3] + in[1*3];
  590. in3= in[3*3] + in[2*3];
  591. in4= in[4*3] + in[3*3];
  592. in5= in[5*3] + in[4*3];
  593. in5 += in3;
  594. in3 += in1;
  595. in2= MULH3(in2, C3, 2);
  596. in3= MULH3(in3, C3, 4);
  597. t1 = in0 - in4;
  598. t2 = MULH3(in1 - in5, icos36h[4], 2);
  599. out[ 7]=
  600. out[10]= t1 + t2;
  601. out[ 1]=
  602. out[ 4]= t1 - t2;
  603. in0 += SHR(in4, 1);
  604. in4 = in0 + in2;
  605. in5 += 2*in1;
  606. in1 = MULH3(in5 + in3, icos36h[1], 1);
  607. out[ 8]=
  608. out[ 9]= in4 + in1;
  609. out[ 2]=
  610. out[ 3]= in4 - in1;
  611. in0 -= in2;
  612. in5 = MULH3(in5 - in3, icos36h[7], 2);
  613. out[ 0]=
  614. out[ 5]= in0 - in5;
  615. out[ 6]=
  616. out[11]= in0 + in5;
  617. }
  618. /* cos(pi*i/18) */
  619. #define C1 FIXHR(0.98480775301220805936/2)
  620. #define C2 FIXHR(0.93969262078590838405/2)
  621. #define C3 FIXHR(0.86602540378443864676/2)
  622. #define C4 FIXHR(0.76604444311897803520/2)
  623. #define C5 FIXHR(0.64278760968653932632/2)
  624. #define C6 FIXHR(0.5/2)
  625. #define C7 FIXHR(0.34202014332566873304/2)
  626. #define C8 FIXHR(0.17364817766693034885/2)
  627. /* using Lee like decomposition followed by hand coded 9 points DCT */
  628. static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
  629. {
  630. int i, j;
  631. INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
  632. INTFLOAT tmp[18], *tmp1, *in1;
  633. for(i=17;i>=1;i--)
  634. in[i] += in[i-1];
  635. for(i=17;i>=3;i-=2)
  636. in[i] += in[i-2];
  637. for(j=0;j<2;j++) {
  638. tmp1 = tmp + j;
  639. in1 = in + j;
  640. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  641. t3 = in1[2*0] + SHR(in1[2*6],1);
  642. t1 = in1[2*0] - in1[2*6];
  643. tmp1[ 6] = t1 - SHR(t2,1);
  644. tmp1[16] = t1 + t2;
  645. t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
  646. t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
  647. t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
  648. tmp1[10] = t3 - t0 - t2;
  649. tmp1[ 2] = t3 + t0 + t1;
  650. tmp1[14] = t3 + t2 - t1;
  651. tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
  652. t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
  653. t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
  654. t0 = MULH3(in1[2*3], C3, 2);
  655. t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
  656. tmp1[ 0] = t2 + t3 + t0;
  657. tmp1[12] = t2 + t1 - t0;
  658. tmp1[ 8] = t3 - t1 - t0;
  659. }
  660. i = 0;
  661. for(j=0;j<4;j++) {
  662. t0 = tmp[i];
  663. t1 = tmp[i + 2];
  664. s0 = t1 + t0;
  665. s2 = t1 - t0;
  666. t2 = tmp[i + 1];
  667. t3 = tmp[i + 3];
  668. s1 = MULH3(t3 + t2, icos36h[j], 2);
  669. s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
  670. t0 = s0 + s1;
  671. t1 = s0 - s1;
  672. out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
  673. out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
  674. buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
  675. buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
  676. t0 = s2 + s3;
  677. t1 = s2 - s3;
  678. out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
  679. out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
  680. buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
  681. buf[ + j] = MULH3(t0, win[18 + j], 1);
  682. i += 4;
  683. }
  684. s0 = tmp[16];
  685. s1 = MULH3(tmp[17], icos36h[4], 2);
  686. t0 = s0 + s1;
  687. t1 = s0 - s1;
  688. out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
  689. out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
  690. buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
  691. buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
  692. }
  693. /* return the number of decoded frames */
  694. static int mp_decode_layer1(MPADecodeContext *s)
  695. {
  696. int bound, i, v, n, ch, j, mant;
  697. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  698. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  699. if (s->mode == MPA_JSTEREO)
  700. bound = (s->mode_ext + 1) * 4;
  701. else
  702. bound = SBLIMIT;
  703. /* allocation bits */
  704. for(i=0;i<bound;i++) {
  705. for(ch=0;ch<s->nb_channels;ch++) {
  706. allocation[ch][i] = get_bits(&s->gb, 4);
  707. }
  708. }
  709. for(i=bound;i<SBLIMIT;i++) {
  710. allocation[0][i] = get_bits(&s->gb, 4);
  711. }
  712. /* scale factors */
  713. for(i=0;i<bound;i++) {
  714. for(ch=0;ch<s->nb_channels;ch++) {
  715. if (allocation[ch][i])
  716. scale_factors[ch][i] = get_bits(&s->gb, 6);
  717. }
  718. }
  719. for(i=bound;i<SBLIMIT;i++) {
  720. if (allocation[0][i]) {
  721. scale_factors[0][i] = get_bits(&s->gb, 6);
  722. scale_factors[1][i] = get_bits(&s->gb, 6);
  723. }
  724. }
  725. /* compute samples */
  726. for(j=0;j<12;j++) {
  727. for(i=0;i<bound;i++) {
  728. for(ch=0;ch<s->nb_channels;ch++) {
  729. n = allocation[ch][i];
  730. if (n) {
  731. mant = get_bits(&s->gb, n + 1);
  732. v = l1_unscale(n, mant, scale_factors[ch][i]);
  733. } else {
  734. v = 0;
  735. }
  736. s->sb_samples[ch][j][i] = v;
  737. }
  738. }
  739. for(i=bound;i<SBLIMIT;i++) {
  740. n = allocation[0][i];
  741. if (n) {
  742. mant = get_bits(&s->gb, n + 1);
  743. v = l1_unscale(n, mant, scale_factors[0][i]);
  744. s->sb_samples[0][j][i] = v;
  745. v = l1_unscale(n, mant, scale_factors[1][i]);
  746. s->sb_samples[1][j][i] = v;
  747. } else {
  748. s->sb_samples[0][j][i] = 0;
  749. s->sb_samples[1][j][i] = 0;
  750. }
  751. }
  752. }
  753. return 12;
  754. }
  755. static int mp_decode_layer2(MPADecodeContext *s)
  756. {
  757. int sblimit; /* number of used subbands */
  758. const unsigned char *alloc_table;
  759. int table, bit_alloc_bits, i, j, ch, bound, v;
  760. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  761. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  762. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  763. int scale, qindex, bits, steps, k, l, m, b;
  764. /* select decoding table */
  765. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  766. s->sample_rate, s->lsf);
  767. sblimit = ff_mpa_sblimit_table[table];
  768. alloc_table = ff_mpa_alloc_tables[table];
  769. if (s->mode == MPA_JSTEREO)
  770. bound = (s->mode_ext + 1) * 4;
  771. else
  772. bound = sblimit;
  773. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  774. /* sanity check */
  775. if( bound > sblimit ) bound = sblimit;
  776. /* parse bit allocation */
  777. j = 0;
  778. for(i=0;i<bound;i++) {
  779. bit_alloc_bits = alloc_table[j];
  780. for(ch=0;ch<s->nb_channels;ch++) {
  781. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  782. }
  783. j += 1 << bit_alloc_bits;
  784. }
  785. for(i=bound;i<sblimit;i++) {
  786. bit_alloc_bits = alloc_table[j];
  787. v = get_bits(&s->gb, bit_alloc_bits);
  788. bit_alloc[0][i] = v;
  789. bit_alloc[1][i] = v;
  790. j += 1 << bit_alloc_bits;
  791. }
  792. /* scale codes */
  793. for(i=0;i<sblimit;i++) {
  794. for(ch=0;ch<s->nb_channels;ch++) {
  795. if (bit_alloc[ch][i])
  796. scale_code[ch][i] = get_bits(&s->gb, 2);
  797. }
  798. }
  799. /* scale factors */
  800. for(i=0;i<sblimit;i++) {
  801. for(ch=0;ch<s->nb_channels;ch++) {
  802. if (bit_alloc[ch][i]) {
  803. sf = scale_factors[ch][i];
  804. switch(scale_code[ch][i]) {
  805. default:
  806. case 0:
  807. sf[0] = get_bits(&s->gb, 6);
  808. sf[1] = get_bits(&s->gb, 6);
  809. sf[2] = get_bits(&s->gb, 6);
  810. break;
  811. case 2:
  812. sf[0] = get_bits(&s->gb, 6);
  813. sf[1] = sf[0];
  814. sf[2] = sf[0];
  815. break;
  816. case 1:
  817. sf[0] = get_bits(&s->gb, 6);
  818. sf[2] = get_bits(&s->gb, 6);
  819. sf[1] = sf[0];
  820. break;
  821. case 3:
  822. sf[0] = get_bits(&s->gb, 6);
  823. sf[2] = get_bits(&s->gb, 6);
  824. sf[1] = sf[2];
  825. break;
  826. }
  827. }
  828. }
  829. }
  830. /* samples */
  831. for(k=0;k<3;k++) {
  832. for(l=0;l<12;l+=3) {
  833. j = 0;
  834. for(i=0;i<bound;i++) {
  835. bit_alloc_bits = alloc_table[j];
  836. for(ch=0;ch<s->nb_channels;ch++) {
  837. b = bit_alloc[ch][i];
  838. if (b) {
  839. scale = scale_factors[ch][i][k];
  840. qindex = alloc_table[j+b];
  841. bits = ff_mpa_quant_bits[qindex];
  842. if (bits < 0) {
  843. int v2;
  844. /* 3 values at the same time */
  845. v = get_bits(&s->gb, -bits);
  846. v2 = division_tabs[qindex][v];
  847. steps = ff_mpa_quant_steps[qindex];
  848. s->sb_samples[ch][k * 12 + l + 0][i] =
  849. l2_unscale_group(steps, v2 & 15, scale);
  850. s->sb_samples[ch][k * 12 + l + 1][i] =
  851. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  852. s->sb_samples[ch][k * 12 + l + 2][i] =
  853. l2_unscale_group(steps, v2 >> 8 , scale);
  854. } else {
  855. for(m=0;m<3;m++) {
  856. v = get_bits(&s->gb, bits);
  857. v = l1_unscale(bits - 1, v, scale);
  858. s->sb_samples[ch][k * 12 + l + m][i] = v;
  859. }
  860. }
  861. } else {
  862. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  863. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  864. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  865. }
  866. }
  867. /* next subband in alloc table */
  868. j += 1 << bit_alloc_bits;
  869. }
  870. /* XXX: find a way to avoid this duplication of code */
  871. for(i=bound;i<sblimit;i++) {
  872. bit_alloc_bits = alloc_table[j];
  873. b = bit_alloc[0][i];
  874. if (b) {
  875. int mant, scale0, scale1;
  876. scale0 = scale_factors[0][i][k];
  877. scale1 = scale_factors[1][i][k];
  878. qindex = alloc_table[j+b];
  879. bits = ff_mpa_quant_bits[qindex];
  880. if (bits < 0) {
  881. /* 3 values at the same time */
  882. v = get_bits(&s->gb, -bits);
  883. steps = ff_mpa_quant_steps[qindex];
  884. mant = v % steps;
  885. v = v / steps;
  886. s->sb_samples[0][k * 12 + l + 0][i] =
  887. l2_unscale_group(steps, mant, scale0);
  888. s->sb_samples[1][k * 12 + l + 0][i] =
  889. l2_unscale_group(steps, mant, scale1);
  890. mant = v % steps;
  891. v = v / steps;
  892. s->sb_samples[0][k * 12 + l + 1][i] =
  893. l2_unscale_group(steps, mant, scale0);
  894. s->sb_samples[1][k * 12 + l + 1][i] =
  895. l2_unscale_group(steps, mant, scale1);
  896. s->sb_samples[0][k * 12 + l + 2][i] =
  897. l2_unscale_group(steps, v, scale0);
  898. s->sb_samples[1][k * 12 + l + 2][i] =
  899. l2_unscale_group(steps, v, scale1);
  900. } else {
  901. for(m=0;m<3;m++) {
  902. mant = get_bits(&s->gb, bits);
  903. s->sb_samples[0][k * 12 + l + m][i] =
  904. l1_unscale(bits - 1, mant, scale0);
  905. s->sb_samples[1][k * 12 + l + m][i] =
  906. l1_unscale(bits - 1, mant, scale1);
  907. }
  908. }
  909. } else {
  910. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  911. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  912. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  913. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  914. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  915. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  916. }
  917. /* next subband in alloc table */
  918. j += 1 << bit_alloc_bits;
  919. }
  920. /* fill remaining samples to zero */
  921. for(i=sblimit;i<SBLIMIT;i++) {
  922. for(ch=0;ch<s->nb_channels;ch++) {
  923. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  924. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  925. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  926. }
  927. }
  928. }
  929. }
  930. return 3 * 12;
  931. }
  932. #define SPLIT(dst,sf,n)\
  933. if(n==3){\
  934. int m= (sf*171)>>9;\
  935. dst= sf - 3*m;\
  936. sf=m;\
  937. }else if(n==4){\
  938. dst= sf&3;\
  939. sf>>=2;\
  940. }else if(n==5){\
  941. int m= (sf*205)>>10;\
  942. dst= sf - 5*m;\
  943. sf=m;\
  944. }else if(n==6){\
  945. int m= (sf*171)>>10;\
  946. dst= sf - 6*m;\
  947. sf=m;\
  948. }else{\
  949. dst=0;\
  950. }
  951. static av_always_inline void lsf_sf_expand(int *slen,
  952. int sf, int n1, int n2, int n3)
  953. {
  954. SPLIT(slen[3], sf, n3)
  955. SPLIT(slen[2], sf, n2)
  956. SPLIT(slen[1], sf, n1)
  957. slen[0] = sf;
  958. }
  959. static void exponents_from_scale_factors(MPADecodeContext *s,
  960. GranuleDef *g,
  961. int16_t *exponents)
  962. {
  963. const uint8_t *bstab, *pretab;
  964. int len, i, j, k, l, v0, shift, gain, gains[3];
  965. int16_t *exp_ptr;
  966. exp_ptr = exponents;
  967. gain = g->global_gain - 210;
  968. shift = g->scalefac_scale + 1;
  969. bstab = band_size_long[s->sample_rate_index];
  970. pretab = mpa_pretab[g->preflag];
  971. for(i=0;i<g->long_end;i++) {
  972. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  973. len = bstab[i];
  974. for(j=len;j>0;j--)
  975. *exp_ptr++ = v0;
  976. }
  977. if (g->short_start < 13) {
  978. bstab = band_size_short[s->sample_rate_index];
  979. gains[0] = gain - (g->subblock_gain[0] << 3);
  980. gains[1] = gain - (g->subblock_gain[1] << 3);
  981. gains[2] = gain - (g->subblock_gain[2] << 3);
  982. k = g->long_end;
  983. for(i=g->short_start;i<13;i++) {
  984. len = bstab[i];
  985. for(l=0;l<3;l++) {
  986. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  987. for(j=len;j>0;j--)
  988. *exp_ptr++ = v0;
  989. }
  990. }
  991. }
  992. }
  993. /* handle n = 0 too */
  994. static inline int get_bitsz(GetBitContext *s, int n)
  995. {
  996. if (n == 0)
  997. return 0;
  998. else
  999. return get_bits(s, n);
  1000. }
  1001. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1002. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1003. s->gb= s->in_gb;
  1004. s->in_gb.buffer=NULL;
  1005. assert((get_bits_count(&s->gb) & 7) == 0);
  1006. skip_bits_long(&s->gb, *pos - *end_pos);
  1007. *end_pos2=
  1008. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1009. *pos= get_bits_count(&s->gb);
  1010. }
  1011. }
  1012. /* Following is a optimized code for
  1013. INTFLOAT v = *src
  1014. if(get_bits1(&s->gb))
  1015. v = -v;
  1016. *dst = v;
  1017. */
  1018. #if CONFIG_FLOAT
  1019. #define READ_FLIP_SIGN(dst,src)\
  1020. v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
  1021. AV_WN32A(dst, v);
  1022. #else
  1023. #define READ_FLIP_SIGN(dst,src)\
  1024. v= -get_bits1(&s->gb);\
  1025. *(dst) = (*(src) ^ v) - v;
  1026. #endif
  1027. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1028. int16_t *exponents, int end_pos2)
  1029. {
  1030. int s_index;
  1031. int i;
  1032. int last_pos, bits_left;
  1033. VLC *vlc;
  1034. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1035. /* low frequencies (called big values) */
  1036. s_index = 0;
  1037. for(i=0;i<3;i++) {
  1038. int j, k, l, linbits;
  1039. j = g->region_size[i];
  1040. if (j == 0)
  1041. continue;
  1042. /* select vlc table */
  1043. k = g->table_select[i];
  1044. l = mpa_huff_data[k][0];
  1045. linbits = mpa_huff_data[k][1];
  1046. vlc = &huff_vlc[l];
  1047. if(!l){
  1048. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1049. s_index += 2*j;
  1050. continue;
  1051. }
  1052. /* read huffcode and compute each couple */
  1053. for(;j>0;j--) {
  1054. int exponent, x, y;
  1055. int v;
  1056. int pos= get_bits_count(&s->gb);
  1057. if (pos >= end_pos){
  1058. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1059. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1060. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1061. if(pos >= end_pos)
  1062. break;
  1063. }
  1064. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1065. if(!y){
  1066. g->sb_hybrid[s_index ] =
  1067. g->sb_hybrid[s_index+1] = 0;
  1068. s_index += 2;
  1069. continue;
  1070. }
  1071. exponent= exponents[s_index];
  1072. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1073. i, g->region_size[i] - j, x, y, exponent);
  1074. if(y&16){
  1075. x = y >> 5;
  1076. y = y & 0x0f;
  1077. if (x < 15){
  1078. READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
  1079. }else{
  1080. x += get_bitsz(&s->gb, linbits);
  1081. v = l3_unscale(x, exponent);
  1082. if (get_bits1(&s->gb))
  1083. v = -v;
  1084. g->sb_hybrid[s_index] = v;
  1085. }
  1086. if (y < 15){
  1087. READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
  1088. }else{
  1089. y += get_bitsz(&s->gb, linbits);
  1090. v = l3_unscale(y, exponent);
  1091. if (get_bits1(&s->gb))
  1092. v = -v;
  1093. g->sb_hybrid[s_index+1] = v;
  1094. }
  1095. }else{
  1096. x = y >> 5;
  1097. y = y & 0x0f;
  1098. x += y;
  1099. if (x < 15){
  1100. READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
  1101. }else{
  1102. x += get_bitsz(&s->gb, linbits);
  1103. v = l3_unscale(x, exponent);
  1104. if (get_bits1(&s->gb))
  1105. v = -v;
  1106. g->sb_hybrid[s_index+!!y] = v;
  1107. }
  1108. g->sb_hybrid[s_index+ !y] = 0;
  1109. }
  1110. s_index+=2;
  1111. }
  1112. }
  1113. /* high frequencies */
  1114. vlc = &huff_quad_vlc[g->count1table_select];
  1115. last_pos=0;
  1116. while (s_index <= 572) {
  1117. int pos, code;
  1118. pos = get_bits_count(&s->gb);
  1119. if (pos >= end_pos) {
  1120. if (pos > end_pos2 && last_pos){
  1121. /* some encoders generate an incorrect size for this
  1122. part. We must go back into the data */
  1123. s_index -= 4;
  1124. skip_bits_long(&s->gb, last_pos - pos);
  1125. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1126. if(s->error_recognition >= FF_ER_COMPLIANT)
  1127. s_index=0;
  1128. break;
  1129. }
  1130. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1131. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1132. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1133. if(pos >= end_pos)
  1134. break;
  1135. }
  1136. last_pos= pos;
  1137. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1138. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1139. g->sb_hybrid[s_index+0]=
  1140. g->sb_hybrid[s_index+1]=
  1141. g->sb_hybrid[s_index+2]=
  1142. g->sb_hybrid[s_index+3]= 0;
  1143. while(code){
  1144. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1145. int v;
  1146. int pos= s_index+idxtab[code];
  1147. code ^= 8>>idxtab[code];
  1148. READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
  1149. }
  1150. s_index+=4;
  1151. }
  1152. /* skip extension bits */
  1153. bits_left = end_pos2 - get_bits_count(&s->gb);
  1154. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1155. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1156. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1157. s_index=0;
  1158. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1159. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1160. s_index=0;
  1161. }
  1162. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1163. skip_bits_long(&s->gb, bits_left);
  1164. i= get_bits_count(&s->gb);
  1165. switch_buffer(s, &i, &end_pos, &end_pos2);
  1166. return 0;
  1167. }
  1168. /* Reorder short blocks from bitstream order to interleaved order. It
  1169. would be faster to do it in parsing, but the code would be far more
  1170. complicated */
  1171. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1172. {
  1173. int i, j, len;
  1174. INTFLOAT *ptr, *dst, *ptr1;
  1175. INTFLOAT tmp[576];
  1176. if (g->block_type != 2)
  1177. return;
  1178. if (g->switch_point) {
  1179. if (s->sample_rate_index != 8) {
  1180. ptr = g->sb_hybrid + 36;
  1181. } else {
  1182. ptr = g->sb_hybrid + 48;
  1183. }
  1184. } else {
  1185. ptr = g->sb_hybrid;
  1186. }
  1187. for(i=g->short_start;i<13;i++) {
  1188. len = band_size_short[s->sample_rate_index][i];
  1189. ptr1 = ptr;
  1190. dst = tmp;
  1191. for(j=len;j>0;j--) {
  1192. *dst++ = ptr[0*len];
  1193. *dst++ = ptr[1*len];
  1194. *dst++ = ptr[2*len];
  1195. ptr++;
  1196. }
  1197. ptr+=2*len;
  1198. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1199. }
  1200. }
  1201. #define ISQRT2 FIXR(0.70710678118654752440)
  1202. static void compute_stereo(MPADecodeContext *s,
  1203. GranuleDef *g0, GranuleDef *g1)
  1204. {
  1205. int i, j, k, l;
  1206. int sf_max, sf, len, non_zero_found;
  1207. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  1208. int non_zero_found_short[3];
  1209. /* intensity stereo */
  1210. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1211. if (!s->lsf) {
  1212. is_tab = is_table;
  1213. sf_max = 7;
  1214. } else {
  1215. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1216. sf_max = 16;
  1217. }
  1218. tab0 = g0->sb_hybrid + 576;
  1219. tab1 = g1->sb_hybrid + 576;
  1220. non_zero_found_short[0] = 0;
  1221. non_zero_found_short[1] = 0;
  1222. non_zero_found_short[2] = 0;
  1223. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1224. for(i = 12;i >= g1->short_start;i--) {
  1225. /* for last band, use previous scale factor */
  1226. if (i != 11)
  1227. k -= 3;
  1228. len = band_size_short[s->sample_rate_index][i];
  1229. for(l=2;l>=0;l--) {
  1230. tab0 -= len;
  1231. tab1 -= len;
  1232. if (!non_zero_found_short[l]) {
  1233. /* test if non zero band. if so, stop doing i-stereo */
  1234. for(j=0;j<len;j++) {
  1235. if (tab1[j] != 0) {
  1236. non_zero_found_short[l] = 1;
  1237. goto found1;
  1238. }
  1239. }
  1240. sf = g1->scale_factors[k + l];
  1241. if (sf >= sf_max)
  1242. goto found1;
  1243. v1 = is_tab[0][sf];
  1244. v2 = is_tab[1][sf];
  1245. for(j=0;j<len;j++) {
  1246. tmp0 = tab0[j];
  1247. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1248. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1249. }
  1250. } else {
  1251. found1:
  1252. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1253. /* lower part of the spectrum : do ms stereo
  1254. if enabled */
  1255. for(j=0;j<len;j++) {
  1256. tmp0 = tab0[j];
  1257. tmp1 = tab1[j];
  1258. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1259. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1260. }
  1261. }
  1262. }
  1263. }
  1264. }
  1265. non_zero_found = non_zero_found_short[0] |
  1266. non_zero_found_short[1] |
  1267. non_zero_found_short[2];
  1268. for(i = g1->long_end - 1;i >= 0;i--) {
  1269. len = band_size_long[s->sample_rate_index][i];
  1270. tab0 -= len;
  1271. tab1 -= len;
  1272. /* test if non zero band. if so, stop doing i-stereo */
  1273. if (!non_zero_found) {
  1274. for(j=0;j<len;j++) {
  1275. if (tab1[j] != 0) {
  1276. non_zero_found = 1;
  1277. goto found2;
  1278. }
  1279. }
  1280. /* for last band, use previous scale factor */
  1281. k = (i == 21) ? 20 : i;
  1282. sf = g1->scale_factors[k];
  1283. if (sf >= sf_max)
  1284. goto found2;
  1285. v1 = is_tab[0][sf];
  1286. v2 = is_tab[1][sf];
  1287. for(j=0;j<len;j++) {
  1288. tmp0 = tab0[j];
  1289. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1290. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1291. }
  1292. } else {
  1293. found2:
  1294. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1295. /* lower part of the spectrum : do ms stereo
  1296. if enabled */
  1297. for(j=0;j<len;j++) {
  1298. tmp0 = tab0[j];
  1299. tmp1 = tab1[j];
  1300. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1301. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1302. }
  1303. }
  1304. }
  1305. }
  1306. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1307. /* ms stereo ONLY */
  1308. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1309. global gain */
  1310. tab0 = g0->sb_hybrid;
  1311. tab1 = g1->sb_hybrid;
  1312. for(i=0;i<576;i++) {
  1313. tmp0 = tab0[i];
  1314. tmp1 = tab1[i];
  1315. tab0[i] = tmp0 + tmp1;
  1316. tab1[i] = tmp0 - tmp1;
  1317. }
  1318. }
  1319. }
  1320. #if !CONFIG_FLOAT
  1321. static void compute_antialias_integer(MPADecodeContext *s,
  1322. GranuleDef *g)
  1323. {
  1324. int32_t *ptr, *csa;
  1325. int n, i;
  1326. /* we antialias only "long" bands */
  1327. if (g->block_type == 2) {
  1328. if (!g->switch_point)
  1329. return;
  1330. /* XXX: check this for 8000Hz case */
  1331. n = 1;
  1332. } else {
  1333. n = SBLIMIT - 1;
  1334. }
  1335. ptr = g->sb_hybrid + 18;
  1336. for(i = n;i > 0;i--) {
  1337. int tmp0, tmp1, tmp2;
  1338. csa = &csa_table[0][0];
  1339. #define INT_AA(j) \
  1340. tmp0 = ptr[-1-j];\
  1341. tmp1 = ptr[ j];\
  1342. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1343. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1344. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1345. INT_AA(0)
  1346. INT_AA(1)
  1347. INT_AA(2)
  1348. INT_AA(3)
  1349. INT_AA(4)
  1350. INT_AA(5)
  1351. INT_AA(6)
  1352. INT_AA(7)
  1353. ptr += 18;
  1354. }
  1355. }
  1356. #endif
  1357. static void compute_imdct(MPADecodeContext *s,
  1358. GranuleDef *g,
  1359. INTFLOAT *sb_samples,
  1360. INTFLOAT *mdct_buf)
  1361. {
  1362. INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
  1363. INTFLOAT out2[12];
  1364. int i, j, mdct_long_end, sblimit;
  1365. /* find last non zero block */
  1366. ptr = g->sb_hybrid + 576;
  1367. ptr1 = g->sb_hybrid + 2 * 18;
  1368. while (ptr >= ptr1) {
  1369. int32_t *p;
  1370. ptr -= 6;
  1371. p= (int32_t*)ptr;
  1372. if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1373. break;
  1374. }
  1375. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1376. if (g->block_type == 2) {
  1377. /* XXX: check for 8000 Hz */
  1378. if (g->switch_point)
  1379. mdct_long_end = 2;
  1380. else
  1381. mdct_long_end = 0;
  1382. } else {
  1383. mdct_long_end = sblimit;
  1384. }
  1385. buf = mdct_buf;
  1386. ptr = g->sb_hybrid;
  1387. for(j=0;j<mdct_long_end;j++) {
  1388. /* apply window & overlap with previous buffer */
  1389. out_ptr = sb_samples + j;
  1390. /* select window */
  1391. if (g->switch_point && j < 2)
  1392. win1 = mdct_win[0];
  1393. else
  1394. win1 = mdct_win[g->block_type];
  1395. /* select frequency inversion */
  1396. win = win1 + ((4 * 36) & -(j & 1));
  1397. imdct36(out_ptr, buf, ptr, win);
  1398. out_ptr += 18*SBLIMIT;
  1399. ptr += 18;
  1400. buf += 18;
  1401. }
  1402. for(j=mdct_long_end;j<sblimit;j++) {
  1403. /* select frequency inversion */
  1404. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1405. out_ptr = sb_samples + j;
  1406. for(i=0; i<6; i++){
  1407. *out_ptr = buf[i];
  1408. out_ptr += SBLIMIT;
  1409. }
  1410. imdct12(out2, ptr + 0);
  1411. for(i=0;i<6;i++) {
  1412. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
  1413. buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
  1414. out_ptr += SBLIMIT;
  1415. }
  1416. imdct12(out2, ptr + 1);
  1417. for(i=0;i<6;i++) {
  1418. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
  1419. buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
  1420. out_ptr += SBLIMIT;
  1421. }
  1422. imdct12(out2, ptr + 2);
  1423. for(i=0;i<6;i++) {
  1424. buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
  1425. buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
  1426. buf[i + 6*2] = 0;
  1427. }
  1428. ptr += 18;
  1429. buf += 18;
  1430. }
  1431. /* zero bands */
  1432. for(j=sblimit;j<SBLIMIT;j++) {
  1433. /* overlap */
  1434. out_ptr = sb_samples + j;
  1435. for(i=0;i<18;i++) {
  1436. *out_ptr = buf[i];
  1437. buf[i] = 0;
  1438. out_ptr += SBLIMIT;
  1439. }
  1440. buf += 18;
  1441. }
  1442. }
  1443. /* main layer3 decoding function */
  1444. static int mp_decode_layer3(MPADecodeContext *s)
  1445. {
  1446. int nb_granules, main_data_begin, private_bits;
  1447. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1448. GranuleDef *g;
  1449. int16_t exponents[576]; //FIXME try INTFLOAT
  1450. /* read side info */
  1451. if (s->lsf) {
  1452. main_data_begin = get_bits(&s->gb, 8);
  1453. private_bits = get_bits(&s->gb, s->nb_channels);
  1454. nb_granules = 1;
  1455. } else {
  1456. main_data_begin = get_bits(&s->gb, 9);
  1457. if (s->nb_channels == 2)
  1458. private_bits = get_bits(&s->gb, 3);
  1459. else
  1460. private_bits = get_bits(&s->gb, 5);
  1461. nb_granules = 2;
  1462. for(ch=0;ch<s->nb_channels;ch++) {
  1463. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1464. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1465. }
  1466. }
  1467. for(gr=0;gr<nb_granules;gr++) {
  1468. for(ch=0;ch<s->nb_channels;ch++) {
  1469. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1470. g = &s->granules[ch][gr];
  1471. g->part2_3_length = get_bits(&s->gb, 12);
  1472. g->big_values = get_bits(&s->gb, 9);
  1473. if(g->big_values > 288){
  1474. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1475. return -1;
  1476. }
  1477. g->global_gain = get_bits(&s->gb, 8);
  1478. /* if MS stereo only is selected, we precompute the
  1479. 1/sqrt(2) renormalization factor */
  1480. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1481. MODE_EXT_MS_STEREO)
  1482. g->global_gain -= 2;
  1483. if (s->lsf)
  1484. g->scalefac_compress = get_bits(&s->gb, 9);
  1485. else
  1486. g->scalefac_compress = get_bits(&s->gb, 4);
  1487. blocksplit_flag = get_bits1(&s->gb);
  1488. if (blocksplit_flag) {
  1489. g->block_type = get_bits(&s->gb, 2);
  1490. if (g->block_type == 0){
  1491. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1492. return -1;
  1493. }
  1494. g->switch_point = get_bits1(&s->gb);
  1495. for(i=0;i<2;i++)
  1496. g->table_select[i] = get_bits(&s->gb, 5);
  1497. for(i=0;i<3;i++)
  1498. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1499. ff_init_short_region(s, g);
  1500. } else {
  1501. int region_address1, region_address2;
  1502. g->block_type = 0;
  1503. g->switch_point = 0;
  1504. for(i=0;i<3;i++)
  1505. g->table_select[i] = get_bits(&s->gb, 5);
  1506. /* compute huffman coded region sizes */
  1507. region_address1 = get_bits(&s->gb, 4);
  1508. region_address2 = get_bits(&s->gb, 3);
  1509. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1510. region_address1, region_address2);
  1511. ff_init_long_region(s, g, region_address1, region_address2);
  1512. }
  1513. ff_region_offset2size(g);
  1514. ff_compute_band_indexes(s, g);
  1515. g->preflag = 0;
  1516. if (!s->lsf)
  1517. g->preflag = get_bits1(&s->gb);
  1518. g->scalefac_scale = get_bits1(&s->gb);
  1519. g->count1table_select = get_bits1(&s->gb);
  1520. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1521. g->block_type, g->switch_point);
  1522. }
  1523. }
  1524. if (!s->adu_mode) {
  1525. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1526. assert((get_bits_count(&s->gb) & 7) == 0);
  1527. /* now we get bits from the main_data_begin offset */
  1528. av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
  1529. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1530. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1531. s->in_gb= s->gb;
  1532. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1533. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1534. }
  1535. for(gr=0;gr<nb_granules;gr++) {
  1536. for(ch=0;ch<s->nb_channels;ch++) {
  1537. g = &s->granules[ch][gr];
  1538. if(get_bits_count(&s->gb)<0){
  1539. av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1540. main_data_begin, s->last_buf_size, gr);
  1541. skip_bits_long(&s->gb, g->part2_3_length);
  1542. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1543. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1544. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1545. s->gb= s->in_gb;
  1546. s->in_gb.buffer=NULL;
  1547. }
  1548. continue;
  1549. }
  1550. bits_pos = get_bits_count(&s->gb);
  1551. if (!s->lsf) {
  1552. uint8_t *sc;
  1553. int slen, slen1, slen2;
  1554. /* MPEG1 scale factors */
  1555. slen1 = slen_table[0][g->scalefac_compress];
  1556. slen2 = slen_table[1][g->scalefac_compress];
  1557. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1558. if (g->block_type == 2) {
  1559. n = g->switch_point ? 17 : 18;
  1560. j = 0;
  1561. if(slen1){
  1562. for(i=0;i<n;i++)
  1563. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1564. }else{
  1565. for(i=0;i<n;i++)
  1566. g->scale_factors[j++] = 0;
  1567. }
  1568. if(slen2){
  1569. for(i=0;i<18;i++)
  1570. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1571. for(i=0;i<3;i++)
  1572. g->scale_factors[j++] = 0;
  1573. }else{
  1574. for(i=0;i<21;i++)
  1575. g->scale_factors[j++] = 0;
  1576. }
  1577. } else {
  1578. sc = s->granules[ch][0].scale_factors;
  1579. j = 0;
  1580. for(k=0;k<4;k++) {
  1581. n = (k == 0 ? 6 : 5);
  1582. if ((g->scfsi & (0x8 >> k)) == 0) {
  1583. slen = (k < 2) ? slen1 : slen2;
  1584. if(slen){
  1585. for(i=0;i<n;i++)
  1586. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1587. }else{
  1588. for(i=0;i<n;i++)
  1589. g->scale_factors[j++] = 0;
  1590. }
  1591. } else {
  1592. /* simply copy from last granule */
  1593. for(i=0;i<n;i++) {
  1594. g->scale_factors[j] = sc[j];
  1595. j++;
  1596. }
  1597. }
  1598. }
  1599. g->scale_factors[j++] = 0;
  1600. }
  1601. } else {
  1602. int tindex, tindex2, slen[4], sl, sf;
  1603. /* LSF scale factors */
  1604. if (g->block_type == 2) {
  1605. tindex = g->switch_point ? 2 : 1;
  1606. } else {
  1607. tindex = 0;
  1608. }
  1609. sf = g->scalefac_compress;
  1610. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1611. /* intensity stereo case */
  1612. sf >>= 1;
  1613. if (sf < 180) {
  1614. lsf_sf_expand(slen, sf, 6, 6, 0);
  1615. tindex2 = 3;
  1616. } else if (sf < 244) {
  1617. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1618. tindex2 = 4;
  1619. } else {
  1620. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1621. tindex2 = 5;
  1622. }
  1623. } else {
  1624. /* normal case */
  1625. if (sf < 400) {
  1626. lsf_sf_expand(slen, sf, 5, 4, 4);
  1627. tindex2 = 0;
  1628. } else if (sf < 500) {
  1629. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1630. tindex2 = 1;
  1631. } else {
  1632. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1633. tindex2 = 2;
  1634. g->preflag = 1;
  1635. }
  1636. }
  1637. j = 0;
  1638. for(k=0;k<4;k++) {
  1639. n = lsf_nsf_table[tindex2][tindex][k];
  1640. sl = slen[k];
  1641. if(sl){
  1642. for(i=0;i<n;i++)
  1643. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1644. }else{
  1645. for(i=0;i<n;i++)
  1646. g->scale_factors[j++] = 0;
  1647. }
  1648. }
  1649. /* XXX: should compute exact size */
  1650. for(;j<40;j++)
  1651. g->scale_factors[j] = 0;
  1652. }
  1653. exponents_from_scale_factors(s, g, exponents);
  1654. /* read Huffman coded residue */
  1655. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1656. } /* ch */
  1657. if (s->nb_channels == 2)
  1658. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1659. for(ch=0;ch<s->nb_channels;ch++) {
  1660. g = &s->granules[ch][gr];
  1661. reorder_block(s, g);
  1662. compute_antialias(s, g);
  1663. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1664. }
  1665. } /* gr */
  1666. if(get_bits_count(&s->gb)<0)
  1667. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1668. return nb_granules * 18;
  1669. }
  1670. static int mp_decode_frame(MPADecodeContext *s,
  1671. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1672. {
  1673. int i, nb_frames, ch;
  1674. OUT_INT *samples_ptr;
  1675. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1676. /* skip error protection field */
  1677. if (s->error_protection)
  1678. skip_bits(&s->gb, 16);
  1679. switch(s->layer) {
  1680. case 1:
  1681. s->avctx->frame_size = 384;
  1682. nb_frames = mp_decode_layer1(s);
  1683. break;
  1684. case 2:
  1685. s->avctx->frame_size = 1152;
  1686. nb_frames = mp_decode_layer2(s);
  1687. break;
  1688. case 3:
  1689. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1690. default:
  1691. nb_frames = mp_decode_layer3(s);
  1692. s->last_buf_size=0;
  1693. if(s->in_gb.buffer){
  1694. align_get_bits(&s->gb);
  1695. i= get_bits_left(&s->gb)>>3;
  1696. if(i >= 0 && i <= BACKSTEP_SIZE){
  1697. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1698. s->last_buf_size=i;
  1699. }else
  1700. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1701. s->gb= s->in_gb;
  1702. s->in_gb.buffer= NULL;
  1703. }
  1704. align_get_bits(&s->gb);
  1705. assert((get_bits_count(&s->gb) & 7) == 0);
  1706. i= get_bits_left(&s->gb)>>3;
  1707. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1708. if(i<0)
  1709. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1710. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1711. }
  1712. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1713. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1714. s->last_buf_size += i;
  1715. break;
  1716. }
  1717. /* apply the synthesis filter */
  1718. for(ch=0;ch<s->nb_channels;ch++) {
  1719. samples_ptr = samples + ch;
  1720. for(i=0;i<nb_frames;i++) {
  1721. RENAME(ff_mpa_synth_filter)(
  1722. #if CONFIG_FLOAT
  1723. s,
  1724. #endif
  1725. s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  1726. RENAME(ff_mpa_synth_window), &s->dither_state,
  1727. samples_ptr, s->nb_channels,
  1728. s->sb_samples[ch][i]);
  1729. samples_ptr += 32 * s->nb_channels;
  1730. }
  1731. }
  1732. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1733. }
  1734. static int decode_frame(AVCodecContext * avctx,
  1735. void *data, int *data_size,
  1736. AVPacket *avpkt)
  1737. {
  1738. const uint8_t *buf = avpkt->data;
  1739. int buf_size = avpkt->size;
  1740. MPADecodeContext *s = avctx->priv_data;
  1741. uint32_t header;
  1742. int out_size;
  1743. OUT_INT *out_samples = data;
  1744. if(buf_size < HEADER_SIZE)
  1745. return -1;
  1746. header = AV_RB32(buf);
  1747. if(ff_mpa_check_header(header) < 0){
  1748. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1749. return -1;
  1750. }
  1751. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1752. /* free format: prepare to compute frame size */
  1753. s->frame_size = -1;
  1754. return -1;
  1755. }
  1756. /* update codec info */
  1757. avctx->channels = s->nb_channels;
  1758. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1759. if (!avctx->bit_rate)
  1760. avctx->bit_rate = s->bit_rate;
  1761. avctx->sub_id = s->layer;
  1762. if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
  1763. return -1;
  1764. *data_size = 0;
  1765. if(s->frame_size<=0 || s->frame_size > buf_size){
  1766. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1767. return -1;
  1768. }else if(s->frame_size < buf_size){
  1769. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  1770. buf_size= s->frame_size;
  1771. }
  1772. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  1773. if(out_size>=0){
  1774. *data_size = out_size;
  1775. avctx->sample_rate = s->sample_rate;
  1776. //FIXME maybe move the other codec info stuff from above here too
  1777. }else
  1778. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  1779. s->frame_size = 0;
  1780. return buf_size;
  1781. }
  1782. static void flush(AVCodecContext *avctx){
  1783. MPADecodeContext *s = avctx->priv_data;
  1784. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  1785. s->last_buf_size= 0;
  1786. }
  1787. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1788. static int decode_frame_adu(AVCodecContext * avctx,
  1789. void *data, int *data_size,
  1790. AVPacket *avpkt)
  1791. {
  1792. const uint8_t *buf = avpkt->data;
  1793. int buf_size = avpkt->size;
  1794. MPADecodeContext *s = avctx->priv_data;
  1795. uint32_t header;
  1796. int len, out_size;
  1797. OUT_INT *out_samples = data;
  1798. len = buf_size;
  1799. // Discard too short frames
  1800. if (buf_size < HEADER_SIZE) {
  1801. *data_size = 0;
  1802. return buf_size;
  1803. }
  1804. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1805. len = MPA_MAX_CODED_FRAME_SIZE;
  1806. // Get header and restore sync word
  1807. header = AV_RB32(buf) | 0xffe00000;
  1808. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1809. *data_size = 0;
  1810. return buf_size;
  1811. }
  1812. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1813. /* update codec info */
  1814. avctx->sample_rate = s->sample_rate;
  1815. avctx->channels = s->nb_channels;
  1816. if (!avctx->bit_rate)
  1817. avctx->bit_rate = s->bit_rate;
  1818. avctx->sub_id = s->layer;
  1819. s->frame_size = len;
  1820. if (avctx->parse_only) {
  1821. out_size = buf_size;
  1822. } else {
  1823. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  1824. }
  1825. *data_size = out_size;
  1826. return buf_size;
  1827. }
  1828. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1829. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1830. /**
  1831. * Context for MP3On4 decoder
  1832. */
  1833. typedef struct MP3On4DecodeContext {
  1834. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1835. int syncword; ///< syncword patch
  1836. const uint8_t *coff; ///< channels offsets in output buffer
  1837. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1838. } MP3On4DecodeContext;
  1839. #include "mpeg4audio.h"
  1840. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1841. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  1842. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  1843. static const uint8_t chan_offset[8][5] = {
  1844. {0},
  1845. {0}, // C
  1846. {0}, // FLR
  1847. {2,0}, // C FLR
  1848. {2,0,3}, // C FLR BS
  1849. {4,0,2}, // C FLR BLRS
  1850. {4,0,2,5}, // C FLR BLRS LFE
  1851. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  1852. };
  1853. static int decode_init_mp3on4(AVCodecContext * avctx)
  1854. {
  1855. MP3On4DecodeContext *s = avctx->priv_data;
  1856. MPEG4AudioConfig cfg;
  1857. int i;
  1858. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1859. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1860. return -1;
  1861. }
  1862. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  1863. if (!cfg.chan_config || cfg.chan_config > 7) {
  1864. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1865. return -1;
  1866. }
  1867. s->frames = mp3Frames[cfg.chan_config];
  1868. s->coff = chan_offset[cfg.chan_config];
  1869. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1870. if (cfg.sample_rate < 16000)
  1871. s->syncword = 0xffe00000;
  1872. else
  1873. s->syncword = 0xfff00000;
  1874. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1875. * We replace avctx->priv_data with the context of the first decoder so that
  1876. * decode_init() does not have to be changed.
  1877. * Other decoders will be initialized here copying data from the first context
  1878. */
  1879. // Allocate zeroed memory for the first decoder context
  1880. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1881. // Put decoder context in place to make init_decode() happy
  1882. avctx->priv_data = s->mp3decctx[0];
  1883. decode_init(avctx);
  1884. // Restore mp3on4 context pointer
  1885. avctx->priv_data = s;
  1886. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1887. /* Create a separate codec/context for each frame (first is already ok).
  1888. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1889. */
  1890. for (i = 1; i < s->frames; i++) {
  1891. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1892. s->mp3decctx[i]->adu_mode = 1;
  1893. s->mp3decctx[i]->avctx = avctx;
  1894. }
  1895. return 0;
  1896. }
  1897. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1898. {
  1899. MP3On4DecodeContext *s = avctx->priv_data;
  1900. int i;
  1901. for (i = 0; i < s->frames; i++)
  1902. av_free(s->mp3decctx[i]);
  1903. return 0;
  1904. }
  1905. static int decode_frame_mp3on4(AVCodecContext * avctx,
  1906. void *data, int *data_size,
  1907. AVPacket *avpkt)
  1908. {
  1909. const uint8_t *buf = avpkt->data;
  1910. int buf_size = avpkt->size;
  1911. MP3On4DecodeContext *s = avctx->priv_data;
  1912. MPADecodeContext *m;
  1913. int fsize, len = buf_size, out_size = 0;
  1914. uint32_t header;
  1915. OUT_INT *out_samples = data;
  1916. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  1917. OUT_INT *outptr, *bp;
  1918. int fr, j, n;
  1919. if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
  1920. return -1;
  1921. *data_size = 0;
  1922. // Discard too short frames
  1923. if (buf_size < HEADER_SIZE)
  1924. return -1;
  1925. // If only one decoder interleave is not needed
  1926. outptr = s->frames == 1 ? out_samples : decoded_buf;
  1927. avctx->bit_rate = 0;
  1928. for (fr = 0; fr < s->frames; fr++) {
  1929. fsize = AV_RB16(buf) >> 4;
  1930. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1931. m = s->mp3decctx[fr];
  1932. assert (m != NULL);
  1933. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1934. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1935. break;
  1936. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1937. out_size += mp_decode_frame(m, outptr, buf, fsize);
  1938. buf += fsize;
  1939. len -= fsize;
  1940. if(s->frames > 1) {
  1941. n = m->avctx->frame_size*m->nb_channels;
  1942. /* interleave output data */
  1943. bp = out_samples + s->coff[fr];
  1944. if(m->nb_channels == 1) {
  1945. for(j = 0; j < n; j++) {
  1946. *bp = decoded_buf[j];
  1947. bp += avctx->channels;
  1948. }
  1949. } else {
  1950. for(j = 0; j < n; j++) {
  1951. bp[0] = decoded_buf[j++];
  1952. bp[1] = decoded_buf[j];
  1953. bp += avctx->channels;
  1954. }
  1955. }
  1956. }
  1957. avctx->bit_rate += m->bit_rate;
  1958. }
  1959. /* update codec info */
  1960. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1961. *data_size = out_size;
  1962. return buf_size;
  1963. }
  1964. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1965. #if !CONFIG_FLOAT
  1966. #if CONFIG_MP1_DECODER
  1967. AVCodec ff_mp1_decoder =
  1968. {
  1969. "mp1",
  1970. AVMEDIA_TYPE_AUDIO,
  1971. CODEC_ID_MP1,
  1972. sizeof(MPADecodeContext),
  1973. decode_init,
  1974. NULL,
  1975. NULL,
  1976. decode_frame,
  1977. CODEC_CAP_PARSE_ONLY,
  1978. .flush= flush,
  1979. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1980. };
  1981. #endif
  1982. #if CONFIG_MP2_DECODER
  1983. AVCodec ff_mp2_decoder =
  1984. {
  1985. "mp2",
  1986. AVMEDIA_TYPE_AUDIO,
  1987. CODEC_ID_MP2,
  1988. sizeof(MPADecodeContext),
  1989. decode_init,
  1990. NULL,
  1991. NULL,
  1992. decode_frame,
  1993. CODEC_CAP_PARSE_ONLY,
  1994. .flush= flush,
  1995. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1996. };
  1997. #endif
  1998. #if CONFIG_MP3_DECODER
  1999. AVCodec ff_mp3_decoder =
  2000. {
  2001. "mp3",
  2002. AVMEDIA_TYPE_AUDIO,
  2003. CODEC_ID_MP3,
  2004. sizeof(MPADecodeContext),
  2005. decode_init,
  2006. NULL,
  2007. NULL,
  2008. decode_frame,
  2009. CODEC_CAP_PARSE_ONLY,
  2010. .flush= flush,
  2011. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2012. };
  2013. #endif
  2014. #if CONFIG_MP3ADU_DECODER
  2015. AVCodec ff_mp3adu_decoder =
  2016. {
  2017. "mp3adu",
  2018. AVMEDIA_TYPE_AUDIO,
  2019. CODEC_ID_MP3ADU,
  2020. sizeof(MPADecodeContext),
  2021. decode_init,
  2022. NULL,
  2023. NULL,
  2024. decode_frame_adu,
  2025. CODEC_CAP_PARSE_ONLY,
  2026. .flush= flush,
  2027. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2028. };
  2029. #endif
  2030. #if CONFIG_MP3ON4_DECODER
  2031. AVCodec ff_mp3on4_decoder =
  2032. {
  2033. "mp3on4",
  2034. AVMEDIA_TYPE_AUDIO,
  2035. CODEC_ID_MP3ON4,
  2036. sizeof(MP3On4DecodeContext),
  2037. decode_init_mp3on4,
  2038. NULL,
  2039. decode_close_mp3on4,
  2040. decode_frame_mp3on4,
  2041. .flush= flush,
  2042. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2043. };
  2044. #endif
  2045. #endif