mpegaudioenc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "put_bits.h"
  27. #undef CONFIG_MPEGAUDIO_HP
  28. #define CONFIG_MPEGAUDIO_HP 0
  29. #include "mpegaudio.h"
  30. /* currently, cannot change these constants (need to modify
  31. quantization stage) */
  32. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  33. #define SAMPLES_BUF_SIZE 4096
  34. typedef struct MpegAudioContext {
  35. PutBitContext pb;
  36. int nb_channels;
  37. int lsf; /* 1 if mpeg2 low bitrate selected */
  38. int bitrate_index; /* bit rate */
  39. int freq_index;
  40. int frame_size; /* frame size, in bits, without padding */
  41. /* padding computation */
  42. int frame_frac, frame_frac_incr, do_padding;
  43. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  44. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  45. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  46. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  47. /* code to group 3 scale factors */
  48. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  49. int sblimit; /* number of used subbands */
  50. const unsigned char *alloc_table;
  51. } MpegAudioContext;
  52. /* define it to use floats in quantization (I don't like floats !) */
  53. #define USE_FLOATS
  54. #include "mpegaudiodata.h"
  55. #include "mpegaudiotab.h"
  56. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  57. {
  58. MpegAudioContext *s = avctx->priv_data;
  59. int freq = avctx->sample_rate;
  60. int bitrate = avctx->bit_rate;
  61. int channels = avctx->channels;
  62. int i, v, table;
  63. float a;
  64. if (channels <= 0 || channels > 2){
  65. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  66. return -1;
  67. }
  68. bitrate = bitrate / 1000;
  69. s->nb_channels = channels;
  70. avctx->frame_size = MPA_FRAME_SIZE;
  71. /* encoding freq */
  72. s->lsf = 0;
  73. for(i=0;i<3;i++) {
  74. if (ff_mpa_freq_tab[i] == freq)
  75. break;
  76. if ((ff_mpa_freq_tab[i] / 2) == freq) {
  77. s->lsf = 1;
  78. break;
  79. }
  80. }
  81. if (i == 3){
  82. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  83. return -1;
  84. }
  85. s->freq_index = i;
  86. /* encoding bitrate & frequency */
  87. for(i=0;i<15;i++) {
  88. if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  89. break;
  90. }
  91. if (i == 15){
  92. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  93. return -1;
  94. }
  95. s->bitrate_index = i;
  96. /* compute total header size & pad bit */
  97. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  98. s->frame_size = ((int)a) * 8;
  99. /* frame fractional size to compute padding */
  100. s->frame_frac = 0;
  101. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  102. /* select the right allocation table */
  103. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  104. /* number of used subbands */
  105. s->sblimit = ff_mpa_sblimit_table[table];
  106. s->alloc_table = ff_mpa_alloc_tables[table];
  107. dprintf(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  108. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  109. for(i=0;i<s->nb_channels;i++)
  110. s->samples_offset[i] = 0;
  111. for(i=0;i<257;i++) {
  112. int v;
  113. v = ff_mpa_enwindow[i];
  114. #if WFRAC_BITS != 16
  115. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  116. #endif
  117. filter_bank[i] = v;
  118. if ((i & 63) != 0)
  119. v = -v;
  120. if (i != 0)
  121. filter_bank[512 - i] = v;
  122. }
  123. for(i=0;i<64;i++) {
  124. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  125. if (v <= 0)
  126. v = 1;
  127. scale_factor_table[i] = v;
  128. #ifdef USE_FLOATS
  129. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  130. #else
  131. #define P 15
  132. scale_factor_shift[i] = 21 - P - (i / 3);
  133. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  134. #endif
  135. }
  136. for(i=0;i<128;i++) {
  137. v = i - 64;
  138. if (v <= -3)
  139. v = 0;
  140. else if (v < 0)
  141. v = 1;
  142. else if (v == 0)
  143. v = 2;
  144. else if (v < 3)
  145. v = 3;
  146. else
  147. v = 4;
  148. scale_diff_table[i] = v;
  149. }
  150. for(i=0;i<17;i++) {
  151. v = ff_mpa_quant_bits[i];
  152. if (v < 0)
  153. v = -v;
  154. else
  155. v = v * 3;
  156. total_quant_bits[i] = 12 * v;
  157. }
  158. avctx->coded_frame= avcodec_alloc_frame();
  159. avctx->coded_frame->key_frame= 1;
  160. return 0;
  161. }
  162. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  163. static void idct32(int *out, int *tab)
  164. {
  165. int i, j;
  166. int *t, *t1, xr;
  167. const int *xp = costab32;
  168. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  169. t = tab + 30;
  170. t1 = tab + 2;
  171. do {
  172. t[0] += t[-4];
  173. t[1] += t[1 - 4];
  174. t -= 4;
  175. } while (t != t1);
  176. t = tab + 28;
  177. t1 = tab + 4;
  178. do {
  179. t[0] += t[-8];
  180. t[1] += t[1-8];
  181. t[2] += t[2-8];
  182. t[3] += t[3-8];
  183. t -= 8;
  184. } while (t != t1);
  185. t = tab;
  186. t1 = tab + 32;
  187. do {
  188. t[ 3] = -t[ 3];
  189. t[ 6] = -t[ 6];
  190. t[11] = -t[11];
  191. t[12] = -t[12];
  192. t[13] = -t[13];
  193. t[15] = -t[15];
  194. t += 16;
  195. } while (t != t1);
  196. t = tab;
  197. t1 = tab + 8;
  198. do {
  199. int x1, x2, x3, x4;
  200. x3 = MUL(t[16], FIX(SQRT2*0.5));
  201. x4 = t[0] - x3;
  202. x3 = t[0] + x3;
  203. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  204. x1 = MUL((t[8] - x2), xp[0]);
  205. x2 = MUL((t[8] + x2), xp[1]);
  206. t[ 0] = x3 + x1;
  207. t[ 8] = x4 - x2;
  208. t[16] = x4 + x2;
  209. t[24] = x3 - x1;
  210. t++;
  211. } while (t != t1);
  212. xp += 2;
  213. t = tab;
  214. t1 = tab + 4;
  215. do {
  216. xr = MUL(t[28],xp[0]);
  217. t[28] = (t[0] - xr);
  218. t[0] = (t[0] + xr);
  219. xr = MUL(t[4],xp[1]);
  220. t[ 4] = (t[24] - xr);
  221. t[24] = (t[24] + xr);
  222. xr = MUL(t[20],xp[2]);
  223. t[20] = (t[8] - xr);
  224. t[ 8] = (t[8] + xr);
  225. xr = MUL(t[12],xp[3]);
  226. t[12] = (t[16] - xr);
  227. t[16] = (t[16] + xr);
  228. t++;
  229. } while (t != t1);
  230. xp += 4;
  231. for (i = 0; i < 4; i++) {
  232. xr = MUL(tab[30-i*4],xp[0]);
  233. tab[30-i*4] = (tab[i*4] - xr);
  234. tab[ i*4] = (tab[i*4] + xr);
  235. xr = MUL(tab[ 2+i*4],xp[1]);
  236. tab[ 2+i*4] = (tab[28-i*4] - xr);
  237. tab[28-i*4] = (tab[28-i*4] + xr);
  238. xr = MUL(tab[31-i*4],xp[0]);
  239. tab[31-i*4] = (tab[1+i*4] - xr);
  240. tab[ 1+i*4] = (tab[1+i*4] + xr);
  241. xr = MUL(tab[ 3+i*4],xp[1]);
  242. tab[ 3+i*4] = (tab[29-i*4] - xr);
  243. tab[29-i*4] = (tab[29-i*4] + xr);
  244. xp += 2;
  245. }
  246. t = tab + 30;
  247. t1 = tab + 1;
  248. do {
  249. xr = MUL(t1[0], *xp);
  250. t1[0] = (t[0] - xr);
  251. t[0] = (t[0] + xr);
  252. t -= 2;
  253. t1 += 2;
  254. xp++;
  255. } while (t >= tab);
  256. for(i=0;i<32;i++) {
  257. out[i] = tab[bitinv32[i]];
  258. }
  259. }
  260. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  261. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  262. {
  263. short *p, *q;
  264. int sum, offset, i, j;
  265. int tmp[64];
  266. int tmp1[32];
  267. int *out;
  268. // print_pow1(samples, 1152);
  269. offset = s->samples_offset[ch];
  270. out = &s->sb_samples[ch][0][0][0];
  271. for(j=0;j<36;j++) {
  272. /* 32 samples at once */
  273. for(i=0;i<32;i++) {
  274. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  275. samples += incr;
  276. }
  277. /* filter */
  278. p = s->samples_buf[ch] + offset;
  279. q = filter_bank;
  280. /* maxsum = 23169 */
  281. for(i=0;i<64;i++) {
  282. sum = p[0*64] * q[0*64];
  283. sum += p[1*64] * q[1*64];
  284. sum += p[2*64] * q[2*64];
  285. sum += p[3*64] * q[3*64];
  286. sum += p[4*64] * q[4*64];
  287. sum += p[5*64] * q[5*64];
  288. sum += p[6*64] * q[6*64];
  289. sum += p[7*64] * q[7*64];
  290. tmp[i] = sum;
  291. p++;
  292. q++;
  293. }
  294. tmp1[0] = tmp[16] >> WSHIFT;
  295. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  296. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  297. idct32(out, tmp1);
  298. /* advance of 32 samples */
  299. offset -= 32;
  300. out += 32;
  301. /* handle the wrap around */
  302. if (offset < 0) {
  303. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  304. s->samples_buf[ch], (512 - 32) * 2);
  305. offset = SAMPLES_BUF_SIZE - 512;
  306. }
  307. }
  308. s->samples_offset[ch] = offset;
  309. // print_pow(s->sb_samples, 1152);
  310. }
  311. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  312. unsigned char scale_factors[SBLIMIT][3],
  313. int sb_samples[3][12][SBLIMIT],
  314. int sblimit)
  315. {
  316. int *p, vmax, v, n, i, j, k, code;
  317. int index, d1, d2;
  318. unsigned char *sf = &scale_factors[0][0];
  319. for(j=0;j<sblimit;j++) {
  320. for(i=0;i<3;i++) {
  321. /* find the max absolute value */
  322. p = &sb_samples[i][0][j];
  323. vmax = abs(*p);
  324. for(k=1;k<12;k++) {
  325. p += SBLIMIT;
  326. v = abs(*p);
  327. if (v > vmax)
  328. vmax = v;
  329. }
  330. /* compute the scale factor index using log 2 computations */
  331. if (vmax > 1) {
  332. n = av_log2(vmax);
  333. /* n is the position of the MSB of vmax. now
  334. use at most 2 compares to find the index */
  335. index = (21 - n) * 3 - 3;
  336. if (index >= 0) {
  337. while (vmax <= scale_factor_table[index+1])
  338. index++;
  339. } else {
  340. index = 0; /* very unlikely case of overflow */
  341. }
  342. } else {
  343. index = 62; /* value 63 is not allowed */
  344. }
  345. #if 0
  346. printf("%2d:%d in=%x %x %d\n",
  347. j, i, vmax, scale_factor_table[index], index);
  348. #endif
  349. /* store the scale factor */
  350. assert(index >=0 && index <= 63);
  351. sf[i] = index;
  352. }
  353. /* compute the transmission factor : look if the scale factors
  354. are close enough to each other */
  355. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  356. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  357. /* handle the 25 cases */
  358. switch(d1 * 5 + d2) {
  359. case 0*5+0:
  360. case 0*5+4:
  361. case 3*5+4:
  362. case 4*5+0:
  363. case 4*5+4:
  364. code = 0;
  365. break;
  366. case 0*5+1:
  367. case 0*5+2:
  368. case 4*5+1:
  369. case 4*5+2:
  370. code = 3;
  371. sf[2] = sf[1];
  372. break;
  373. case 0*5+3:
  374. case 4*5+3:
  375. code = 3;
  376. sf[1] = sf[2];
  377. break;
  378. case 1*5+0:
  379. case 1*5+4:
  380. case 2*5+4:
  381. code = 1;
  382. sf[1] = sf[0];
  383. break;
  384. case 1*5+1:
  385. case 1*5+2:
  386. case 2*5+0:
  387. case 2*5+1:
  388. case 2*5+2:
  389. code = 2;
  390. sf[1] = sf[2] = sf[0];
  391. break;
  392. case 2*5+3:
  393. case 3*5+3:
  394. code = 2;
  395. sf[0] = sf[1] = sf[2];
  396. break;
  397. case 3*5+0:
  398. case 3*5+1:
  399. case 3*5+2:
  400. code = 2;
  401. sf[0] = sf[2] = sf[1];
  402. break;
  403. case 1*5+3:
  404. code = 2;
  405. if (sf[0] > sf[2])
  406. sf[0] = sf[2];
  407. sf[1] = sf[2] = sf[0];
  408. break;
  409. default:
  410. assert(0); //cannot happen
  411. code = 0; /* kill warning */
  412. }
  413. #if 0
  414. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  415. sf[0], sf[1], sf[2], d1, d2, code);
  416. #endif
  417. scale_code[j] = code;
  418. sf += 3;
  419. }
  420. }
  421. /* The most important function : psycho acoustic module. In this
  422. encoder there is basically none, so this is the worst you can do,
  423. but also this is the simpler. */
  424. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  425. {
  426. int i;
  427. for(i=0;i<s->sblimit;i++) {
  428. smr[i] = (int)(fixed_smr[i] * 10);
  429. }
  430. }
  431. #define SB_NOTALLOCATED 0
  432. #define SB_ALLOCATED 1
  433. #define SB_NOMORE 2
  434. /* Try to maximize the smr while using a number of bits inferior to
  435. the frame size. I tried to make the code simpler, faster and
  436. smaller than other encoders :-) */
  437. static void compute_bit_allocation(MpegAudioContext *s,
  438. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  439. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  440. int *padding)
  441. {
  442. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  443. int incr;
  444. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  445. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  446. const unsigned char *alloc;
  447. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  448. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  449. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  450. /* compute frame size and padding */
  451. max_frame_size = s->frame_size;
  452. s->frame_frac += s->frame_frac_incr;
  453. if (s->frame_frac >= 65536) {
  454. s->frame_frac -= 65536;
  455. s->do_padding = 1;
  456. max_frame_size += 8;
  457. } else {
  458. s->do_padding = 0;
  459. }
  460. /* compute the header + bit alloc size */
  461. current_frame_size = 32;
  462. alloc = s->alloc_table;
  463. for(i=0;i<s->sblimit;i++) {
  464. incr = alloc[0];
  465. current_frame_size += incr * s->nb_channels;
  466. alloc += 1 << incr;
  467. }
  468. for(;;) {
  469. /* look for the subband with the largest signal to mask ratio */
  470. max_sb = -1;
  471. max_ch = -1;
  472. max_smr = INT_MIN;
  473. for(ch=0;ch<s->nb_channels;ch++) {
  474. for(i=0;i<s->sblimit;i++) {
  475. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  476. max_smr = smr[ch][i];
  477. max_sb = i;
  478. max_ch = ch;
  479. }
  480. }
  481. }
  482. #if 0
  483. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  484. current_frame_size, max_frame_size, max_sb,
  485. bit_alloc[max_sb]);
  486. #endif
  487. if (max_sb < 0)
  488. break;
  489. /* find alloc table entry (XXX: not optimal, should use
  490. pointer table) */
  491. alloc = s->alloc_table;
  492. for(i=0;i<max_sb;i++) {
  493. alloc += 1 << alloc[0];
  494. }
  495. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  496. /* nothing was coded for this band: add the necessary bits */
  497. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  498. incr += total_quant_bits[alloc[1]];
  499. } else {
  500. /* increments bit allocation */
  501. b = bit_alloc[max_ch][max_sb];
  502. incr = total_quant_bits[alloc[b + 1]] -
  503. total_quant_bits[alloc[b]];
  504. }
  505. if (current_frame_size + incr <= max_frame_size) {
  506. /* can increase size */
  507. b = ++bit_alloc[max_ch][max_sb];
  508. current_frame_size += incr;
  509. /* decrease smr by the resolution we added */
  510. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  511. /* max allocation size reached ? */
  512. if (b == ((1 << alloc[0]) - 1))
  513. subband_status[max_ch][max_sb] = SB_NOMORE;
  514. else
  515. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  516. } else {
  517. /* cannot increase the size of this subband */
  518. subband_status[max_ch][max_sb] = SB_NOMORE;
  519. }
  520. }
  521. *padding = max_frame_size - current_frame_size;
  522. assert(*padding >= 0);
  523. #if 0
  524. for(i=0;i<s->sblimit;i++) {
  525. printf("%d ", bit_alloc[i]);
  526. }
  527. printf("\n");
  528. #endif
  529. }
  530. /*
  531. * Output the mpeg audio layer 2 frame. Note how the code is small
  532. * compared to other encoders :-)
  533. */
  534. static void encode_frame(MpegAudioContext *s,
  535. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  536. int padding)
  537. {
  538. int i, j, k, l, bit_alloc_bits, b, ch;
  539. unsigned char *sf;
  540. int q[3];
  541. PutBitContext *p = &s->pb;
  542. /* header */
  543. put_bits(p, 12, 0xfff);
  544. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  545. put_bits(p, 2, 4-2); /* layer 2 */
  546. put_bits(p, 1, 1); /* no error protection */
  547. put_bits(p, 4, s->bitrate_index);
  548. put_bits(p, 2, s->freq_index);
  549. put_bits(p, 1, s->do_padding); /* use padding */
  550. put_bits(p, 1, 0); /* private_bit */
  551. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  552. put_bits(p, 2, 0); /* mode_ext */
  553. put_bits(p, 1, 0); /* no copyright */
  554. put_bits(p, 1, 1); /* original */
  555. put_bits(p, 2, 0); /* no emphasis */
  556. /* bit allocation */
  557. j = 0;
  558. for(i=0;i<s->sblimit;i++) {
  559. bit_alloc_bits = s->alloc_table[j];
  560. for(ch=0;ch<s->nb_channels;ch++) {
  561. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  562. }
  563. j += 1 << bit_alloc_bits;
  564. }
  565. /* scale codes */
  566. for(i=0;i<s->sblimit;i++) {
  567. for(ch=0;ch<s->nb_channels;ch++) {
  568. if (bit_alloc[ch][i])
  569. put_bits(p, 2, s->scale_code[ch][i]);
  570. }
  571. }
  572. /* scale factors */
  573. for(i=0;i<s->sblimit;i++) {
  574. for(ch=0;ch<s->nb_channels;ch++) {
  575. if (bit_alloc[ch][i]) {
  576. sf = &s->scale_factors[ch][i][0];
  577. switch(s->scale_code[ch][i]) {
  578. case 0:
  579. put_bits(p, 6, sf[0]);
  580. put_bits(p, 6, sf[1]);
  581. put_bits(p, 6, sf[2]);
  582. break;
  583. case 3:
  584. case 1:
  585. put_bits(p, 6, sf[0]);
  586. put_bits(p, 6, sf[2]);
  587. break;
  588. case 2:
  589. put_bits(p, 6, sf[0]);
  590. break;
  591. }
  592. }
  593. }
  594. }
  595. /* quantization & write sub band samples */
  596. for(k=0;k<3;k++) {
  597. for(l=0;l<12;l+=3) {
  598. j = 0;
  599. for(i=0;i<s->sblimit;i++) {
  600. bit_alloc_bits = s->alloc_table[j];
  601. for(ch=0;ch<s->nb_channels;ch++) {
  602. b = bit_alloc[ch][i];
  603. if (b) {
  604. int qindex, steps, m, sample, bits;
  605. /* we encode 3 sub band samples of the same sub band at a time */
  606. qindex = s->alloc_table[j+b];
  607. steps = ff_mpa_quant_steps[qindex];
  608. for(m=0;m<3;m++) {
  609. sample = s->sb_samples[ch][k][l + m][i];
  610. /* divide by scale factor */
  611. #ifdef USE_FLOATS
  612. {
  613. float a;
  614. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  615. q[m] = (int)((a + 1.0) * steps * 0.5);
  616. }
  617. #else
  618. {
  619. int q1, e, shift, mult;
  620. e = s->scale_factors[ch][i][k];
  621. shift = scale_factor_shift[e];
  622. mult = scale_factor_mult[e];
  623. /* normalize to P bits */
  624. if (shift < 0)
  625. q1 = sample << (-shift);
  626. else
  627. q1 = sample >> shift;
  628. q1 = (q1 * mult) >> P;
  629. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  630. }
  631. #endif
  632. if (q[m] >= steps)
  633. q[m] = steps - 1;
  634. assert(q[m] >= 0 && q[m] < steps);
  635. }
  636. bits = ff_mpa_quant_bits[qindex];
  637. if (bits < 0) {
  638. /* group the 3 values to save bits */
  639. put_bits(p, -bits,
  640. q[0] + steps * (q[1] + steps * q[2]));
  641. #if 0
  642. printf("%d: gr1 %d\n",
  643. i, q[0] + steps * (q[1] + steps * q[2]));
  644. #endif
  645. } else {
  646. #if 0
  647. printf("%d: gr3 %d %d %d\n",
  648. i, q[0], q[1], q[2]);
  649. #endif
  650. put_bits(p, bits, q[0]);
  651. put_bits(p, bits, q[1]);
  652. put_bits(p, bits, q[2]);
  653. }
  654. }
  655. }
  656. /* next subband in alloc table */
  657. j += 1 << bit_alloc_bits;
  658. }
  659. }
  660. }
  661. /* padding */
  662. for(i=0;i<padding;i++)
  663. put_bits(p, 1, 0);
  664. /* flush */
  665. flush_put_bits(p);
  666. }
  667. static int MPA_encode_frame(AVCodecContext *avctx,
  668. unsigned char *frame, int buf_size, void *data)
  669. {
  670. MpegAudioContext *s = avctx->priv_data;
  671. const short *samples = data;
  672. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  673. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  674. int padding, i;
  675. for(i=0;i<s->nb_channels;i++) {
  676. filter(s, i, samples + i, s->nb_channels);
  677. }
  678. for(i=0;i<s->nb_channels;i++) {
  679. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  680. s->sb_samples[i], s->sblimit);
  681. }
  682. for(i=0;i<s->nb_channels;i++) {
  683. psycho_acoustic_model(s, smr[i]);
  684. }
  685. compute_bit_allocation(s, smr, bit_alloc, &padding);
  686. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  687. encode_frame(s, bit_alloc, padding);
  688. return put_bits_ptr(&s->pb) - s->pb.buf;
  689. }
  690. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  691. {
  692. av_freep(&avctx->coded_frame);
  693. return 0;
  694. }
  695. AVCodec mp2_encoder = {
  696. "mp2",
  697. AVMEDIA_TYPE_AUDIO,
  698. CODEC_ID_MP2,
  699. sizeof(MpegAudioContext),
  700. MPA_encode_init,
  701. MPA_encode_frame,
  702. MPA_encode_close,
  703. NULL,
  704. .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  705. .supported_samplerates= (const int[]){44100, 48000, 32000, 22050, 24000, 16000, 0},
  706. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  707. };
  708. #undef FIX