dnxhdenc.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. *
  5. * VC-3 encoder funded by the British Broadcasting Corporation
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. //#define DEBUG
  24. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  25. #include "libavutil/opt.h"
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "mpegvideo.h"
  29. #include "dnxhdenc.h"
  30. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  31. static const AVOption options[]={
  32. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), FF_OPT_TYPE_INT, 0, 0, 1, VE},
  33. {NULL}
  34. };
  35. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  36. int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
  37. #define LAMBDA_FRAC_BITS 10
  38. static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  39. {
  40. int i;
  41. for (i = 0; i < 4; i++) {
  42. block[0] = pixels[0]; block[1] = pixels[1];
  43. block[2] = pixels[2]; block[3] = pixels[3];
  44. block[4] = pixels[4]; block[5] = pixels[5];
  45. block[6] = pixels[6]; block[7] = pixels[7];
  46. pixels += line_size;
  47. block += 8;
  48. }
  49. memcpy(block , block- 8, sizeof(*block)*8);
  50. memcpy(block+ 8, block-16, sizeof(*block)*8);
  51. memcpy(block+16, block-24, sizeof(*block)*8);
  52. memcpy(block+24, block-32, sizeof(*block)*8);
  53. }
  54. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  55. {
  56. int i, j, level, run;
  57. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  58. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  59. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits , max_level*4*sizeof(*ctx->vlc_bits ), fail);
  60. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2 , fail);
  61. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits , 63 , fail);
  62. ctx->vlc_codes += max_level*2;
  63. ctx->vlc_bits += max_level*2;
  64. for (level = -max_level; level < max_level; level++) {
  65. for (run = 0; run < 2; run++) {
  66. int index = (level<<1)|run;
  67. int sign, offset = 0, alevel = level;
  68. MASK_ABS(sign, alevel);
  69. if (alevel > 64) {
  70. offset = (alevel-1)>>6;
  71. alevel -= offset<<6;
  72. }
  73. for (j = 0; j < 257; j++) {
  74. if (ctx->cid_table->ac_level[j] == alevel &&
  75. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  76. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  77. assert(!ctx->vlc_codes[index]);
  78. if (alevel) {
  79. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  80. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  81. } else {
  82. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  83. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  84. }
  85. break;
  86. }
  87. }
  88. assert(!alevel || j < 257);
  89. if (offset) {
  90. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  91. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  92. }
  93. }
  94. }
  95. for (i = 0; i < 62; i++) {
  96. int run = ctx->cid_table->run[i];
  97. assert(run < 63);
  98. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  99. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  100. }
  101. return 0;
  102. fail:
  103. return -1;
  104. }
  105. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  106. {
  107. // init first elem to 1 to avoid div by 0 in convert_matrix
  108. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  109. int qscale, i;
  110. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
  111. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
  112. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  113. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  114. for (i = 1; i < 64; i++) {
  115. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  116. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  117. }
  118. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  119. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  120. for (i = 1; i < 64; i++) {
  121. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  122. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  123. }
  124. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  125. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  126. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  127. for (i = 0; i < 64; i++) {
  128. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  129. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  130. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  131. }
  132. }
  133. return 0;
  134. fail:
  135. return -1;
  136. }
  137. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  138. {
  139. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  140. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  141. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  142. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  143. ctx->qscale = 1;
  144. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  145. return 0;
  146. fail:
  147. return -1;
  148. }
  149. static int dnxhd_encode_init(AVCodecContext *avctx)
  150. {
  151. DNXHDEncContext *ctx = avctx->priv_data;
  152. int i, index;
  153. ctx->cid = ff_dnxhd_find_cid(avctx);
  154. if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) {
  155. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  156. return -1;
  157. }
  158. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  159. index = ff_dnxhd_get_cid_table(ctx->cid);
  160. ctx->cid_table = &ff_dnxhd_cid_table[index];
  161. ctx->m.avctx = avctx;
  162. ctx->m.mb_intra = 1;
  163. ctx->m.h263_aic = 1;
  164. ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4;
  165. dsputil_init(&ctx->m.dsp, avctx);
  166. ff_dct_common_init(&ctx->m);
  167. #if HAVE_MMX
  168. ff_dnxhd_init_mmx(ctx);
  169. #endif
  170. if (!ctx->m.dct_quantize)
  171. ctx->m.dct_quantize = dct_quantize_c;
  172. ctx->m.mb_height = (avctx->height + 15) / 16;
  173. ctx->m.mb_width = (avctx->width + 15) / 16;
  174. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  175. ctx->interlaced = 1;
  176. ctx->m.mb_height /= 2;
  177. }
  178. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  179. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  180. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  181. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  182. return -1;
  183. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  184. if (ctx->nitris_compat)
  185. ctx->min_padding = 1600;
  186. if (dnxhd_init_vlc(ctx) < 0)
  187. return -1;
  188. if (dnxhd_init_rc(ctx) < 0)
  189. return -1;
  190. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  191. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  192. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  193. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t) , fail);
  194. ctx->frame.key_frame = 1;
  195. ctx->frame.pict_type = FF_I_TYPE;
  196. ctx->m.avctx->coded_frame = &ctx->frame;
  197. if (avctx->thread_count > MAX_THREADS) {
  198. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  199. return -1;
  200. }
  201. ctx->thread[0] = ctx;
  202. for (i = 1; i < avctx->thread_count; i++) {
  203. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  204. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  205. }
  206. return 0;
  207. fail: //for FF_ALLOCZ_OR_GOTO
  208. return -1;
  209. }
  210. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  211. {
  212. DNXHDEncContext *ctx = avctx->priv_data;
  213. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  214. memset(buf, 0, 640);
  215. memcpy(buf, header_prefix, 5);
  216. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  217. buf[6] = 0x80; // crc flag off
  218. buf[7] = 0xa0; // reserved
  219. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  220. AV_WB16(buf + 0x1a, avctx->width); // SPL
  221. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  222. buf[0x21] = 0x38; // FIXME 8 bit per comp
  223. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  224. AV_WB32(buf + 0x28, ctx->cid); // CID
  225. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  226. buf[0x5f] = 0x01; // UDL
  227. buf[0x167] = 0x02; // reserved
  228. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  229. buf[0x16d] = ctx->m.mb_height; // Ns
  230. buf[0x16f] = 0x10; // reserved
  231. ctx->msip = buf + 0x170;
  232. return 0;
  233. }
  234. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  235. {
  236. int nbits;
  237. if (diff < 0) {
  238. nbits = av_log2_16bit(-2*diff);
  239. diff--;
  240. } else {
  241. nbits = av_log2_16bit(2*diff);
  242. }
  243. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  244. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  245. }
  246. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  247. {
  248. int last_non_zero = 0;
  249. int slevel, i, j;
  250. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  251. ctx->m.last_dc[n] = block[0];
  252. for (i = 1; i <= last_index; i++) {
  253. j = ctx->m.intra_scantable.permutated[i];
  254. slevel = block[j];
  255. if (slevel) {
  256. int run_level = i - last_non_zero - 1;
  257. int rlevel = (slevel<<1)|!!run_level;
  258. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  259. if (run_level)
  260. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  261. last_non_zero = i;
  262. }
  263. }
  264. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  265. }
  266. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  267. {
  268. const uint8_t *weight_matrix;
  269. int level;
  270. int i;
  271. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  272. for (i = 1; i <= last_index; i++) {
  273. int j = ctx->m.intra_scantable.permutated[i];
  274. level = block[j];
  275. if (level) {
  276. if (level < 0) {
  277. level = (1-2*level) * qscale * weight_matrix[i];
  278. if (weight_matrix[i] != 32)
  279. level += 32;
  280. level >>= 6;
  281. level = -level;
  282. } else {
  283. level = (2*level+1) * qscale * weight_matrix[i];
  284. if (weight_matrix[i] != 32)
  285. level += 32;
  286. level >>= 6;
  287. }
  288. block[j] = level;
  289. }
  290. }
  291. }
  292. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  293. {
  294. int score = 0;
  295. int i;
  296. for (i = 0; i < 64; i++)
  297. score += (block[i]-qblock[i])*(block[i]-qblock[i]);
  298. return score;
  299. }
  300. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  301. {
  302. int last_non_zero = 0;
  303. int bits = 0;
  304. int i, j, level;
  305. for (i = 1; i <= last_index; i++) {
  306. j = ctx->m.intra_scantable.permutated[i];
  307. level = block[j];
  308. if (level) {
  309. int run_level = i - last_non_zero - 1;
  310. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  311. last_non_zero = i;
  312. }
  313. }
  314. return bits;
  315. }
  316. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  317. {
  318. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
  319. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  320. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  321. DSPContext *dsp = &ctx->m.dsp;
  322. dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize);
  323. dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
  324. dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize);
  325. dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize);
  326. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  327. if (ctx->interlaced) {
  328. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  329. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  330. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  331. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  332. } else {
  333. dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]);
  334. dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]);
  335. }
  336. } else {
  337. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  338. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  339. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  340. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  341. }
  342. }
  343. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  344. {
  345. if (i&2) {
  346. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  347. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  348. return 1 + (i&1);
  349. } else {
  350. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  351. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  352. return 0;
  353. }
  354. }
  355. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  356. {
  357. DNXHDEncContext *ctx = avctx->priv_data;
  358. int mb_y = jobnr, mb_x;
  359. int qscale = ctx->qscale;
  360. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  361. ctx = ctx->thread[threadnr];
  362. ctx->m.last_dc[0] =
  363. ctx->m.last_dc[1] =
  364. ctx->m.last_dc[2] = 1024;
  365. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  366. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  367. int ssd = 0;
  368. int ac_bits = 0;
  369. int dc_bits = 0;
  370. int i;
  371. dnxhd_get_blocks(ctx, mb_x, mb_y);
  372. for (i = 0; i < 8; i++) {
  373. DCTELEM *src_block = ctx->blocks[i];
  374. int overflow, nbits, diff, last_index;
  375. int n = dnxhd_switch_matrix(ctx, i);
  376. memcpy(block, src_block, 64*sizeof(*block));
  377. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  378. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  379. diff = block[0] - ctx->m.last_dc[n];
  380. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  381. else nbits = av_log2_16bit( 2*diff);
  382. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  383. ctx->m.last_dc[n] = block[0];
  384. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  385. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  386. ctx->m.dsp.idct(block);
  387. ssd += dnxhd_ssd_block(block, src_block);
  388. }
  389. }
  390. ctx->mb_rc[qscale][mb].ssd = ssd;
  391. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  392. }
  393. return 0;
  394. }
  395. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  396. {
  397. DNXHDEncContext *ctx = avctx->priv_data;
  398. int mb_y = jobnr, mb_x;
  399. ctx = ctx->thread[threadnr];
  400. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  401. ctx->m.last_dc[0] =
  402. ctx->m.last_dc[1] =
  403. ctx->m.last_dc[2] = 1024;
  404. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  405. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  406. int qscale = ctx->mb_qscale[mb];
  407. int i;
  408. put_bits(&ctx->m.pb, 12, qscale<<1);
  409. dnxhd_get_blocks(ctx, mb_x, mb_y);
  410. for (i = 0; i < 8; i++) {
  411. DCTELEM *block = ctx->blocks[i];
  412. int last_index, overflow;
  413. int n = dnxhd_switch_matrix(ctx, i);
  414. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  415. //START_TIMER;
  416. dnxhd_encode_block(ctx, block, last_index, n);
  417. //STOP_TIMER("encode_block");
  418. }
  419. }
  420. if (put_bits_count(&ctx->m.pb)&31)
  421. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  422. flush_put_bits(&ctx->m.pb);
  423. return 0;
  424. }
  425. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  426. {
  427. int mb_y, mb_x;
  428. int offset = 0;
  429. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  430. int thread_size;
  431. ctx->slice_offs[mb_y] = offset;
  432. ctx->slice_size[mb_y] = 0;
  433. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  434. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  435. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  436. }
  437. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  438. ctx->slice_size[mb_y] >>= 3;
  439. thread_size = ctx->slice_size[mb_y];
  440. offset += thread_size;
  441. }
  442. }
  443. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  444. {
  445. DNXHDEncContext *ctx = avctx->priv_data;
  446. int mb_y = jobnr, mb_x;
  447. ctx = ctx->thread[threadnr];
  448. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  449. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  450. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
  451. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  452. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  453. ctx->mb_cmp[mb].value = varc;
  454. ctx->mb_cmp[mb].mb = mb;
  455. }
  456. return 0;
  457. }
  458. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  459. {
  460. int lambda, up_step, down_step;
  461. int last_lower = INT_MAX, last_higher = 0;
  462. int x, y, q;
  463. for (q = 1; q < avctx->qmax; q++) {
  464. ctx->qscale = q;
  465. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  466. }
  467. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  468. lambda = ctx->lambda;
  469. for (;;) {
  470. int bits = 0;
  471. int end = 0;
  472. if (lambda == last_higher) {
  473. lambda++;
  474. end = 1; // need to set final qscales/bits
  475. }
  476. for (y = 0; y < ctx->m.mb_height; y++) {
  477. for (x = 0; x < ctx->m.mb_width; x++) {
  478. unsigned min = UINT_MAX;
  479. int qscale = 1;
  480. int mb = y*ctx->m.mb_width+x;
  481. for (q = 1; q < avctx->qmax; q++) {
  482. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  483. if (score < min) {
  484. min = score;
  485. qscale = q;
  486. }
  487. }
  488. bits += ctx->mb_rc[qscale][mb].bits;
  489. ctx->mb_qscale[mb] = qscale;
  490. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  491. }
  492. bits = (bits+31)&~31; // padding
  493. if (bits > ctx->frame_bits)
  494. break;
  495. }
  496. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  497. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  498. if (end) {
  499. if (bits > ctx->frame_bits)
  500. return -1;
  501. break;
  502. }
  503. if (bits < ctx->frame_bits) {
  504. last_lower = FFMIN(lambda, last_lower);
  505. if (last_higher != 0)
  506. lambda = (lambda+last_higher)>>1;
  507. else
  508. lambda -= down_step;
  509. down_step *= 5; // XXX tune ?
  510. up_step = 1<<LAMBDA_FRAC_BITS;
  511. lambda = FFMAX(1, lambda);
  512. if (lambda == last_lower)
  513. break;
  514. } else {
  515. last_higher = FFMAX(lambda, last_higher);
  516. if (last_lower != INT_MAX)
  517. lambda = (lambda+last_lower)>>1;
  518. else if ((int64_t)lambda + up_step > INT_MAX)
  519. return -1;
  520. else
  521. lambda += up_step;
  522. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  523. down_step = 1<<LAMBDA_FRAC_BITS;
  524. }
  525. }
  526. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  527. ctx->lambda = lambda;
  528. return 0;
  529. }
  530. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  531. {
  532. int bits = 0;
  533. int up_step = 1;
  534. int down_step = 1;
  535. int last_higher = 0;
  536. int last_lower = INT_MAX;
  537. int qscale;
  538. int x, y;
  539. qscale = ctx->qscale;
  540. for (;;) {
  541. bits = 0;
  542. ctx->qscale = qscale;
  543. // XXX avoid recalculating bits
  544. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  545. for (y = 0; y < ctx->m.mb_height; y++) {
  546. for (x = 0; x < ctx->m.mb_width; x++)
  547. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  548. bits = (bits+31)&~31; // padding
  549. if (bits > ctx->frame_bits)
  550. break;
  551. }
  552. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  553. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  554. if (bits < ctx->frame_bits) {
  555. if (qscale == 1)
  556. return 1;
  557. if (last_higher == qscale - 1) {
  558. qscale = last_higher;
  559. break;
  560. }
  561. last_lower = FFMIN(qscale, last_lower);
  562. if (last_higher != 0)
  563. qscale = (qscale+last_higher)>>1;
  564. else
  565. qscale -= down_step++;
  566. if (qscale < 1)
  567. qscale = 1;
  568. up_step = 1;
  569. } else {
  570. if (last_lower == qscale + 1)
  571. break;
  572. last_higher = FFMAX(qscale, last_higher);
  573. if (last_lower != INT_MAX)
  574. qscale = (qscale+last_lower)>>1;
  575. else
  576. qscale += up_step++;
  577. down_step = 1;
  578. if (qscale >= ctx->m.avctx->qmax)
  579. return -1;
  580. }
  581. }
  582. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  583. ctx->qscale = qscale;
  584. return 0;
  585. }
  586. #define BUCKET_BITS 8
  587. #define RADIX_PASSES 4
  588. #define NBUCKETS (1 << BUCKET_BITS)
  589. static inline int get_bucket(int value, int shift)
  590. {
  591. value >>= shift;
  592. value &= NBUCKETS - 1;
  593. return NBUCKETS - 1 - value;
  594. }
  595. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  596. {
  597. int i, j;
  598. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  599. for (i = 0; i < size; i++) {
  600. int v = data[i].value;
  601. for (j = 0; j < RADIX_PASSES; j++) {
  602. buckets[j][get_bucket(v, 0)]++;
  603. v >>= BUCKET_BITS;
  604. }
  605. assert(!v);
  606. }
  607. for (j = 0; j < RADIX_PASSES; j++) {
  608. int offset = size;
  609. for (i = NBUCKETS - 1; i >= 0; i--)
  610. buckets[j][i] = offset -= buckets[j][i];
  611. assert(!buckets[j][0]);
  612. }
  613. }
  614. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  615. {
  616. int shift = pass * BUCKET_BITS;
  617. int i;
  618. for (i = 0; i < size; i++) {
  619. int v = get_bucket(data[i].value, shift);
  620. int pos = buckets[v]++;
  621. dst[pos] = data[i];
  622. }
  623. }
  624. static void radix_sort(RCCMPEntry *data, int size)
  625. {
  626. int buckets[RADIX_PASSES][NBUCKETS];
  627. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  628. radix_count(data, size, buckets);
  629. radix_sort_pass(tmp, data, size, buckets[0], 0);
  630. radix_sort_pass(data, tmp, size, buckets[1], 1);
  631. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  632. radix_sort_pass(tmp, data, size, buckets[2], 2);
  633. radix_sort_pass(data, tmp, size, buckets[3], 3);
  634. }
  635. av_free(tmp);
  636. }
  637. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  638. {
  639. int max_bits = 0;
  640. int ret, x, y;
  641. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  642. return -1;
  643. for (y = 0; y < ctx->m.mb_height; y++) {
  644. for (x = 0; x < ctx->m.mb_width; x++) {
  645. int mb = y*ctx->m.mb_width+x;
  646. int delta_bits;
  647. ctx->mb_qscale[mb] = ctx->qscale;
  648. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  649. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  650. if (!RC_VARIANCE) {
  651. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  652. ctx->mb_cmp[mb].mb = mb;
  653. ctx->mb_cmp[mb].value = delta_bits ?
  654. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  655. : INT_MIN; //avoid increasing qscale
  656. }
  657. }
  658. max_bits += 31; //worst padding
  659. }
  660. if (!ret) {
  661. if (RC_VARIANCE)
  662. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  663. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  664. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  665. int mb = ctx->mb_cmp[x].mb;
  666. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  667. ctx->mb_qscale[mb] = ctx->qscale+1;
  668. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  669. }
  670. }
  671. return 0;
  672. }
  673. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  674. {
  675. int i;
  676. for (i = 0; i < 3; i++) {
  677. ctx->frame.data[i] = frame->data[i];
  678. ctx->frame.linesize[i] = frame->linesize[i];
  679. }
  680. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  681. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  682. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  683. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  684. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  685. }
  686. ctx->frame.interlaced_frame = frame->interlaced_frame;
  687. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  688. }
  689. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
  690. {
  691. DNXHDEncContext *ctx = avctx->priv_data;
  692. int first_field = 1;
  693. int offset, i, ret;
  694. if (buf_size < ctx->cid_table->frame_size) {
  695. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  696. return -1;
  697. }
  698. dnxhd_load_picture(ctx, data);
  699. encode_coding_unit:
  700. for (i = 0; i < 3; i++) {
  701. ctx->src[i] = ctx->frame.data[i];
  702. if (ctx->interlaced && ctx->cur_field)
  703. ctx->src[i] += ctx->frame.linesize[i];
  704. }
  705. dnxhd_write_header(avctx, buf);
  706. if (avctx->mb_decision == FF_MB_DECISION_RD)
  707. ret = dnxhd_encode_rdo(avctx, ctx);
  708. else
  709. ret = dnxhd_encode_fast(avctx, ctx);
  710. if (ret < 0) {
  711. av_log(avctx, AV_LOG_ERROR,
  712. "picture could not fit ratecontrol constraints, increase qmax\n");
  713. return -1;
  714. }
  715. dnxhd_setup_threads_slices(ctx);
  716. offset = 0;
  717. for (i = 0; i < ctx->m.mb_height; i++) {
  718. AV_WB32(ctx->msip + i * 4, offset);
  719. offset += ctx->slice_size[i];
  720. assert(!(ctx->slice_size[i] & 3));
  721. }
  722. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  723. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  724. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  725. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  726. if (ctx->interlaced && first_field) {
  727. first_field = 0;
  728. ctx->cur_field ^= 1;
  729. buf += ctx->cid_table->coding_unit_size;
  730. buf_size -= ctx->cid_table->coding_unit_size;
  731. goto encode_coding_unit;
  732. }
  733. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  734. return ctx->cid_table->frame_size;
  735. }
  736. static int dnxhd_encode_end(AVCodecContext *avctx)
  737. {
  738. DNXHDEncContext *ctx = avctx->priv_data;
  739. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  740. int i;
  741. av_free(ctx->vlc_codes-max_level*2);
  742. av_free(ctx->vlc_bits -max_level*2);
  743. av_freep(&ctx->run_codes);
  744. av_freep(&ctx->run_bits);
  745. av_freep(&ctx->mb_bits);
  746. av_freep(&ctx->mb_qscale);
  747. av_freep(&ctx->mb_rc);
  748. av_freep(&ctx->mb_cmp);
  749. av_freep(&ctx->slice_size);
  750. av_freep(&ctx->slice_offs);
  751. av_freep(&ctx->qmatrix_c);
  752. av_freep(&ctx->qmatrix_l);
  753. av_freep(&ctx->qmatrix_c16);
  754. av_freep(&ctx->qmatrix_l16);
  755. for (i = 1; i < avctx->thread_count; i++)
  756. av_freep(&ctx->thread[i]);
  757. return 0;
  758. }
  759. AVCodec ff_dnxhd_encoder = {
  760. "dnxhd",
  761. AVMEDIA_TYPE_VIDEO,
  762. CODEC_ID_DNXHD,
  763. sizeof(DNXHDEncContext),
  764. dnxhd_encode_init,
  765. dnxhd_encode_picture,
  766. dnxhd_encode_end,
  767. .capabilities = CODEC_CAP_SLICE_THREADS,
  768. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE},
  769. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  770. .priv_class = &class,
  771. };