aacps.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/mathematics.h"
  24. #include "avcodec.h"
  25. #include "get_bits.h"
  26. #include "aacps.h"
  27. #include "aacps_tablegen.h"
  28. #include "aacpsdata.c"
  29. #define PS_BASELINE 0 //< Operate in Baseline PS mode
  30. //< Baseline implies 10 or 20 stereo bands,
  31. //< mixing mode A, and no ipd/opd
  32. #define numQMFSlots 32 //numTimeSlots * RATE
  33. static const int8_t num_env_tab[2][4] = {
  34. { 0, 1, 2, 4, },
  35. { 1, 2, 3, 4, },
  36. };
  37. static const int8_t nr_iidicc_par_tab[] = {
  38. 10, 20, 34, 10, 20, 34,
  39. };
  40. static const int8_t nr_iidopd_par_tab[] = {
  41. 5, 11, 17, 5, 11, 17,
  42. };
  43. enum {
  44. huff_iid_df1,
  45. huff_iid_dt1,
  46. huff_iid_df0,
  47. huff_iid_dt0,
  48. huff_icc_df,
  49. huff_icc_dt,
  50. huff_ipd_df,
  51. huff_ipd_dt,
  52. huff_opd_df,
  53. huff_opd_dt,
  54. };
  55. static const int huff_iid[] = {
  56. huff_iid_df0,
  57. huff_iid_df1,
  58. huff_iid_dt0,
  59. huff_iid_dt1,
  60. };
  61. static VLC vlc_ps[10];
  62. /**
  63. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/
  64. * Inter-channel Phase Difference/Overall Phase Difference parameters from the
  65. * bitstream.
  66. *
  67. * @param avctx contains the current codec context
  68. * @param gb pointer to the input bitstream
  69. * @param ps pointer to the Parametric Stereo context
  70. * @param par pointer to the parameter to be read
  71. * @param e envelope to decode
  72. * @param dt 1: time delta-coded, 0: frequency delta-coded
  73. */
  74. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  75. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  76. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  77. { \
  78. int b, num = ps->nr_ ## PAR ## _par; \
  79. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  80. if (dt) { \
  81. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  82. e_prev = FFMAX(e_prev, 0); \
  83. for (b = 0; b < num; b++) { \
  84. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  85. if (MASK) val &= MASK; \
  86. PAR[e][b] = val; \
  87. if (ERR_CONDITION) \
  88. goto err; \
  89. } \
  90. } else { \
  91. int val = 0; \
  92. for (b = 0; b < num; b++) { \
  93. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  94. if (MASK) val &= MASK; \
  95. PAR[e][b] = val; \
  96. if (ERR_CONDITION) \
  97. goto err; \
  98. } \
  99. } \
  100. return 0; \
  101. err: \
  102. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  103. return -1; \
  104. }
  105. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  106. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  107. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  108. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  109. {
  110. int e;
  111. int count = get_bits_count(gb);
  112. if (ps_extension_id)
  113. return 0;
  114. ps->enable_ipdopd = get_bits1(gb);
  115. if (ps->enable_ipdopd) {
  116. for (e = 0; e < ps->num_env; e++) {
  117. int dt = get_bits1(gb);
  118. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  119. dt = get_bits1(gb);
  120. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  121. }
  122. }
  123. skip_bits1(gb); //reserved_ps
  124. return get_bits_count(gb) - count;
  125. }
  126. static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
  127. {
  128. int i;
  129. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  130. opd_hist[i] = 0;
  131. ipd_hist[i] = 0;
  132. }
  133. }
  134. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  135. {
  136. int e;
  137. int bit_count_start = get_bits_count(gb_host);
  138. int header;
  139. int bits_consumed;
  140. GetBitContext gbc = *gb_host, *gb = &gbc;
  141. header = get_bits1(gb);
  142. if (header) { //enable_ps_header
  143. ps->enable_iid = get_bits1(gb);
  144. if (ps->enable_iid) {
  145. int iid_mode = get_bits(gb, 3);
  146. if (iid_mode > 5) {
  147. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  148. iid_mode);
  149. goto err;
  150. }
  151. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  152. ps->iid_quant = iid_mode > 2;
  153. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  154. }
  155. ps->enable_icc = get_bits1(gb);
  156. if (ps->enable_icc) {
  157. ps->icc_mode = get_bits(gb, 3);
  158. if (ps->icc_mode > 5) {
  159. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  160. ps->icc_mode);
  161. goto err;
  162. }
  163. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  164. }
  165. ps->enable_ext = get_bits1(gb);
  166. }
  167. ps->frame_class = get_bits1(gb);
  168. ps->num_env_old = ps->num_env;
  169. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  170. ps->border_position[0] = -1;
  171. if (ps->frame_class) {
  172. for (e = 1; e <= ps->num_env; e++)
  173. ps->border_position[e] = get_bits(gb, 5);
  174. } else
  175. for (e = 1; e <= ps->num_env; e++)
  176. ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  177. if (ps->enable_iid) {
  178. for (e = 0; e < ps->num_env; e++) {
  179. int dt = get_bits1(gb);
  180. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  181. goto err;
  182. }
  183. } else
  184. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  185. if (ps->enable_icc)
  186. for (e = 0; e < ps->num_env; e++) {
  187. int dt = get_bits1(gb);
  188. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  189. goto err;
  190. }
  191. else
  192. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  193. if (ps->enable_ext) {
  194. int cnt = get_bits(gb, 4);
  195. if (cnt == 15) {
  196. cnt += get_bits(gb, 8);
  197. }
  198. cnt *= 8;
  199. while (cnt > 7) {
  200. int ps_extension_id = get_bits(gb, 2);
  201. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  202. }
  203. if (cnt < 0) {
  204. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
  205. goto err;
  206. }
  207. skip_bits(gb, cnt);
  208. }
  209. ps->enable_ipdopd &= !PS_BASELINE;
  210. //Fix up envelopes
  211. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  212. //Create a fake envelope
  213. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  214. if (source >= 0 && source != ps->num_env) {
  215. if (ps->enable_iid) {
  216. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  217. }
  218. if (ps->enable_icc) {
  219. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  220. }
  221. if (ps->enable_ipdopd) {
  222. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  223. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  224. }
  225. }
  226. ps->num_env++;
  227. ps->border_position[ps->num_env] = numQMFSlots - 1;
  228. }
  229. ps->is34bands_old = ps->is34bands;
  230. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  231. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  232. (ps->enable_icc && ps->nr_icc_par == 34);
  233. //Baseline
  234. if (!ps->enable_ipdopd) {
  235. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  236. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  237. }
  238. if (header)
  239. ps->start = 1;
  240. bits_consumed = get_bits_count(gb) - bit_count_start;
  241. if (bits_consumed <= bits_left) {
  242. skip_bits_long(gb_host, bits_consumed);
  243. return bits_consumed;
  244. }
  245. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  246. err:
  247. ps->start = 0;
  248. skip_bits_long(gb_host, bits_left);
  249. return bits_left;
  250. }
  251. /** Split one subband into 2 subsubbands with a symmetric real filter.
  252. * The filter must have its non-center even coefficients equal to zero. */
  253. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
  254. {
  255. int i, j;
  256. for (i = 0; i < len; i++, in++) {
  257. float re_in = filter[6] * in[6][0]; //real inphase
  258. float re_op = 0.0f; //real out of phase
  259. float im_in = filter[6] * in[6][1]; //imag inphase
  260. float im_op = 0.0f; //imag out of phase
  261. for (j = 0; j < 6; j += 2) {
  262. re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  263. im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  264. }
  265. out[ reverse][i][0] = re_in + re_op;
  266. out[ reverse][i][1] = im_in + im_op;
  267. out[!reverse][i][0] = re_in - re_op;
  268. out[!reverse][i][1] = im_in - im_op;
  269. }
  270. }
  271. /** Split one subband into 6 subsubbands with a complex filter */
  272. static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
  273. {
  274. int i, j, ssb;
  275. int N = 8;
  276. float temp[8][2];
  277. for (i = 0; i < len; i++, in++) {
  278. for (ssb = 0; ssb < N; ssb++) {
  279. float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
  280. for (j = 0; j < 6; j++) {
  281. float in0_re = in[j][0];
  282. float in0_im = in[j][1];
  283. float in1_re = in[12-j][0];
  284. float in1_im = in[12-j][1];
  285. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  286. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  287. }
  288. temp[ssb][0] = sum_re;
  289. temp[ssb][1] = sum_im;
  290. }
  291. out[0][i][0] = temp[6][0];
  292. out[0][i][1] = temp[6][1];
  293. out[1][i][0] = temp[7][0];
  294. out[1][i][1] = temp[7][1];
  295. out[2][i][0] = temp[0][0];
  296. out[2][i][1] = temp[0][1];
  297. out[3][i][0] = temp[1][0];
  298. out[3][i][1] = temp[1][1];
  299. out[4][i][0] = temp[2][0] + temp[5][0];
  300. out[4][i][1] = temp[2][1] + temp[5][1];
  301. out[5][i][0] = temp[3][0] + temp[4][0];
  302. out[5][i][1] = temp[3][1] + temp[4][1];
  303. }
  304. }
  305. static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
  306. {
  307. int i, j, ssb;
  308. for (i = 0; i < len; i++, in++) {
  309. for (ssb = 0; ssb < N; ssb++) {
  310. float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
  311. for (j = 0; j < 6; j++) {
  312. float in0_re = in[j][0];
  313. float in0_im = in[j][1];
  314. float in1_re = in[12-j][0];
  315. float in1_im = in[12-j][1];
  316. sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
  317. sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
  318. }
  319. out[ssb][i][0] = sum_re;
  320. out[ssb][i][1] = sum_im;
  321. }
  322. }
  323. }
  324. static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
  325. {
  326. int i, j;
  327. for (i = 0; i < 5; i++) {
  328. for (j = 0; j < 38; j++) {
  329. in[i][j+6][0] = L[0][j][i];
  330. in[i][j+6][1] = L[1][j][i];
  331. }
  332. }
  333. if (is34) {
  334. hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
  335. hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
  336. hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
  337. hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
  338. hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
  339. for (i = 0; i < 59; i++) {
  340. for (j = 0; j < len; j++) {
  341. out[i+32][j][0] = L[0][j][i+5];
  342. out[i+32][j][1] = L[1][j][i+5];
  343. }
  344. }
  345. } else {
  346. hybrid6_cx(in[0], out, f20_0_8, len);
  347. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  348. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  349. for (i = 0; i < 61; i++) {
  350. for (j = 0; j < len; j++) {
  351. out[i+10][j][0] = L[0][j][i+3];
  352. out[i+10][j][1] = L[1][j][i+3];
  353. }
  354. }
  355. }
  356. //update in_buf
  357. for (i = 0; i < 5; i++) {
  358. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  359. }
  360. }
  361. static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
  362. {
  363. int i, n;
  364. if (is34) {
  365. for (n = 0; n < len; n++) {
  366. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  367. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  368. for (i = 0; i < 12; i++) {
  369. out[0][n][0] += in[ i][n][0];
  370. out[1][n][0] += in[ i][n][1];
  371. }
  372. for (i = 0; i < 8; i++) {
  373. out[0][n][1] += in[12+i][n][0];
  374. out[1][n][1] += in[12+i][n][1];
  375. }
  376. for (i = 0; i < 4; i++) {
  377. out[0][n][2] += in[20+i][n][0];
  378. out[1][n][2] += in[20+i][n][1];
  379. out[0][n][3] += in[24+i][n][0];
  380. out[1][n][3] += in[24+i][n][1];
  381. out[0][n][4] += in[28+i][n][0];
  382. out[1][n][4] += in[28+i][n][1];
  383. }
  384. }
  385. for (i = 0; i < 59; i++) {
  386. for (n = 0; n < len; n++) {
  387. out[0][n][i+5] = in[i+32][n][0];
  388. out[1][n][i+5] = in[i+32][n][1];
  389. }
  390. }
  391. } else {
  392. for (n = 0; n < len; n++) {
  393. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  394. in[3][n][0] + in[4][n][0] + in[5][n][0];
  395. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  396. in[3][n][1] + in[4][n][1] + in[5][n][1];
  397. out[0][n][1] = in[6][n][0] + in[7][n][0];
  398. out[1][n][1] = in[6][n][1] + in[7][n][1];
  399. out[0][n][2] = in[8][n][0] + in[9][n][0];
  400. out[1][n][2] = in[8][n][1] + in[9][n][1];
  401. }
  402. for (i = 0; i < 61; i++) {
  403. for (n = 0; n < len; n++) {
  404. out[0][n][i+3] = in[i+10][n][0];
  405. out[1][n][i+3] = in[i+10][n][1];
  406. }
  407. }
  408. }
  409. }
  410. /// All-pass filter decay slope
  411. #define DECAY_SLOPE 0.05f
  412. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  413. static const int NR_PAR_BANDS[] = { 20, 34 };
  414. /// Number of frequency bands that can be addressed by the sub subband index, k
  415. static const int NR_BANDS[] = { 71, 91 };
  416. /// Start frequency band for the all-pass filter decay slope
  417. static const int DECAY_CUTOFF[] = { 10, 32 };
  418. /// Number of all-pass filer bands
  419. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  420. /// First stereo band using the short one sample delay
  421. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  422. /** Table 8.46 */
  423. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  424. {
  425. int b;
  426. if (full)
  427. b = 9;
  428. else {
  429. b = 4;
  430. par_mapped[10] = 0;
  431. }
  432. for (; b >= 0; b--) {
  433. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  434. }
  435. }
  436. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  437. {
  438. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  439. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  440. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  441. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  442. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  443. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  444. par_mapped[ 6] = par[10];
  445. par_mapped[ 7] = par[11];
  446. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  447. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  448. par_mapped[10] = par[16];
  449. if (full) {
  450. par_mapped[11] = par[17];
  451. par_mapped[12] = par[18];
  452. par_mapped[13] = par[19];
  453. par_mapped[14] = ( par[20] + par[21]) / 2;
  454. par_mapped[15] = ( par[22] + par[23]) / 2;
  455. par_mapped[16] = ( par[24] + par[25]) / 2;
  456. par_mapped[17] = ( par[26] + par[27]) / 2;
  457. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  458. par_mapped[19] = ( par[32] + par[33]) / 2;
  459. }
  460. }
  461. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  462. {
  463. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  464. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  465. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  466. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  467. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  468. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  469. par[ 6] = par[10];
  470. par[ 7] = par[11];
  471. par[ 8] = ( par[12] + par[13]) * 0.5f;
  472. par[ 9] = ( par[14] + par[15]) * 0.5f;
  473. par[10] = par[16];
  474. par[11] = par[17];
  475. par[12] = par[18];
  476. par[13] = par[19];
  477. par[14] = ( par[20] + par[21]) * 0.5f;
  478. par[15] = ( par[22] + par[23]) * 0.5f;
  479. par[16] = ( par[24] + par[25]) * 0.5f;
  480. par[17] = ( par[26] + par[27]) * 0.5f;
  481. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  482. par[19] = ( par[32] + par[33]) * 0.5f;
  483. }
  484. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  485. {
  486. if (full) {
  487. par_mapped[33] = par[9];
  488. par_mapped[32] = par[9];
  489. par_mapped[31] = par[9];
  490. par_mapped[30] = par[9];
  491. par_mapped[29] = par[9];
  492. par_mapped[28] = par[9];
  493. par_mapped[27] = par[8];
  494. par_mapped[26] = par[8];
  495. par_mapped[25] = par[8];
  496. par_mapped[24] = par[8];
  497. par_mapped[23] = par[7];
  498. par_mapped[22] = par[7];
  499. par_mapped[21] = par[7];
  500. par_mapped[20] = par[7];
  501. par_mapped[19] = par[6];
  502. par_mapped[18] = par[6];
  503. par_mapped[17] = par[5];
  504. par_mapped[16] = par[5];
  505. } else {
  506. par_mapped[16] = 0;
  507. }
  508. par_mapped[15] = par[4];
  509. par_mapped[14] = par[4];
  510. par_mapped[13] = par[4];
  511. par_mapped[12] = par[4];
  512. par_mapped[11] = par[3];
  513. par_mapped[10] = par[3];
  514. par_mapped[ 9] = par[2];
  515. par_mapped[ 8] = par[2];
  516. par_mapped[ 7] = par[2];
  517. par_mapped[ 6] = par[2];
  518. par_mapped[ 5] = par[1];
  519. par_mapped[ 4] = par[1];
  520. par_mapped[ 3] = par[1];
  521. par_mapped[ 2] = par[0];
  522. par_mapped[ 1] = par[0];
  523. par_mapped[ 0] = par[0];
  524. }
  525. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  526. {
  527. if (full) {
  528. par_mapped[33] = par[19];
  529. par_mapped[32] = par[19];
  530. par_mapped[31] = par[18];
  531. par_mapped[30] = par[18];
  532. par_mapped[29] = par[18];
  533. par_mapped[28] = par[18];
  534. par_mapped[27] = par[17];
  535. par_mapped[26] = par[17];
  536. par_mapped[25] = par[16];
  537. par_mapped[24] = par[16];
  538. par_mapped[23] = par[15];
  539. par_mapped[22] = par[15];
  540. par_mapped[21] = par[14];
  541. par_mapped[20] = par[14];
  542. par_mapped[19] = par[13];
  543. par_mapped[18] = par[12];
  544. par_mapped[17] = par[11];
  545. }
  546. par_mapped[16] = par[10];
  547. par_mapped[15] = par[ 9];
  548. par_mapped[14] = par[ 9];
  549. par_mapped[13] = par[ 8];
  550. par_mapped[12] = par[ 8];
  551. par_mapped[11] = par[ 7];
  552. par_mapped[10] = par[ 6];
  553. par_mapped[ 9] = par[ 5];
  554. par_mapped[ 8] = par[ 5];
  555. par_mapped[ 7] = par[ 4];
  556. par_mapped[ 6] = par[ 4];
  557. par_mapped[ 5] = par[ 3];
  558. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  559. par_mapped[ 3] = par[ 2];
  560. par_mapped[ 2] = par[ 1];
  561. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  562. par_mapped[ 0] = par[ 0];
  563. }
  564. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  565. {
  566. par[33] = par[19];
  567. par[32] = par[19];
  568. par[31] = par[18];
  569. par[30] = par[18];
  570. par[29] = par[18];
  571. par[28] = par[18];
  572. par[27] = par[17];
  573. par[26] = par[17];
  574. par[25] = par[16];
  575. par[24] = par[16];
  576. par[23] = par[15];
  577. par[22] = par[15];
  578. par[21] = par[14];
  579. par[20] = par[14];
  580. par[19] = par[13];
  581. par[18] = par[12];
  582. par[17] = par[11];
  583. par[16] = par[10];
  584. par[15] = par[ 9];
  585. par[14] = par[ 9];
  586. par[13] = par[ 8];
  587. par[12] = par[ 8];
  588. par[11] = par[ 7];
  589. par[10] = par[ 6];
  590. par[ 9] = par[ 5];
  591. par[ 8] = par[ 5];
  592. par[ 7] = par[ 4];
  593. par[ 6] = par[ 4];
  594. par[ 5] = par[ 3];
  595. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  596. par[ 3] = par[ 2];
  597. par[ 2] = par[ 1];
  598. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  599. par[ 0] = par[ 0];
  600. }
  601. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  602. {
  603. float power[34][PS_QMF_TIME_SLOTS] = {{0}};
  604. float transient_gain[34][PS_QMF_TIME_SLOTS];
  605. float *peak_decay_nrg = ps->peak_decay_nrg;
  606. float *power_smooth = ps->power_smooth;
  607. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  608. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  609. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  610. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  611. const float peak_decay_factor = 0.76592833836465f;
  612. const float transient_impact = 1.5f;
  613. const float a_smooth = 0.25f; //< Smoothing coefficient
  614. int i, k, m, n;
  615. int n0 = 0, nL = 32;
  616. static const int link_delay[] = { 3, 4, 5 };
  617. static const float a[] = { 0.65143905753106f,
  618. 0.56471812200776f,
  619. 0.48954165955695f };
  620. if (is34 != ps->is34bands_old) {
  621. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  622. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  623. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  624. memset(ps->delay, 0, sizeof(ps->delay));
  625. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  626. }
  627. for (n = n0; n < nL; n++) {
  628. for (k = 0; k < NR_BANDS[is34]; k++) {
  629. int i = k_to_i[k];
  630. power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
  631. }
  632. }
  633. //Transient detection
  634. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  635. for (n = n0; n < nL; n++) {
  636. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  637. float denom;
  638. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  639. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  640. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  641. denom = transient_impact * peak_decay_diff_smooth[i];
  642. transient_gain[i][n] = (denom > power_smooth[i]) ?
  643. power_smooth[i] / denom : 1.0f;
  644. }
  645. }
  646. //Decorrelation and transient reduction
  647. // PS_AP_LINKS - 1
  648. // -----
  649. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  650. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  651. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  652. // m = 0
  653. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  654. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  655. int b = k_to_i[k];
  656. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  657. float ag[PS_AP_LINKS];
  658. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  659. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  660. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  661. for (m = 0; m < PS_AP_LINKS; m++) {
  662. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  663. ag[m] = a[m] * g_decay_slope;
  664. }
  665. for (n = n0; n < nL; n++) {
  666. float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
  667. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
  668. float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
  669. delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
  670. for (m = 0; m < PS_AP_LINKS; m++) {
  671. float a_re = ag[m] * in_re;
  672. float a_im = ag[m] * in_im;
  673. float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
  674. float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
  675. float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
  676. float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
  677. ap_delay[k][m][n+5][0] = in_re;
  678. ap_delay[k][m][n+5][1] = in_im;
  679. in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
  680. in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
  681. ap_delay[k][m][n+5][0] += ag[m] * in_re;
  682. ap_delay[k][m][n+5][1] += ag[m] * in_im;
  683. }
  684. out[k][n][0] = transient_gain[b][n] * in_re;
  685. out[k][n][1] = transient_gain[b][n] * in_im;
  686. }
  687. }
  688. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  689. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  690. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  691. for (n = n0; n < nL; n++) {
  692. //H = delay 14
  693. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
  694. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
  695. }
  696. }
  697. for (; k < NR_BANDS[is34]; k++) {
  698. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  699. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  700. for (n = n0; n < nL; n++) {
  701. //H = delay 1
  702. out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
  703. out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
  704. }
  705. }
  706. }
  707. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  708. int8_t (*par)[PS_MAX_NR_IIDICC],
  709. int num_par, int num_env, int full)
  710. {
  711. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  712. int e;
  713. if (num_par == 20 || num_par == 11) {
  714. for (e = 0; e < num_env; e++) {
  715. map_idx_20_to_34(par_mapped[e], par[e], full);
  716. }
  717. } else if (num_par == 10 || num_par == 5) {
  718. for (e = 0; e < num_env; e++) {
  719. map_idx_10_to_34(par_mapped[e], par[e], full);
  720. }
  721. } else {
  722. *p_par_mapped = par;
  723. }
  724. }
  725. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  726. int8_t (*par)[PS_MAX_NR_IIDICC],
  727. int num_par, int num_env, int full)
  728. {
  729. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  730. int e;
  731. if (num_par == 34 || num_par == 17) {
  732. for (e = 0; e < num_env; e++) {
  733. map_idx_34_to_20(par_mapped[e], par[e], full);
  734. }
  735. } else if (num_par == 10 || num_par == 5) {
  736. for (e = 0; e < num_env; e++) {
  737. map_idx_10_to_20(par_mapped[e], par[e], full);
  738. }
  739. } else {
  740. *p_par_mapped = par;
  741. }
  742. }
  743. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  744. {
  745. int e, b, k, n;
  746. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  747. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  748. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  749. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  750. int8_t *opd_hist = ps->opd_hist;
  751. int8_t *ipd_hist = ps->ipd_hist;
  752. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  753. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  754. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  755. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  756. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  757. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  758. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  759. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  760. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  761. const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  762. //Remapping
  763. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  764. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  765. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  766. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  767. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  768. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  769. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  770. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  771. if (is34) {
  772. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  773. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  774. if (ps->enable_ipdopd) {
  775. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  776. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  777. }
  778. if (!ps->is34bands_old) {
  779. map_val_20_to_34(H11[0][0]);
  780. map_val_20_to_34(H11[1][0]);
  781. map_val_20_to_34(H12[0][0]);
  782. map_val_20_to_34(H12[1][0]);
  783. map_val_20_to_34(H21[0][0]);
  784. map_val_20_to_34(H21[1][0]);
  785. map_val_20_to_34(H22[0][0]);
  786. map_val_20_to_34(H22[1][0]);
  787. ipdopd_reset(ipd_hist, opd_hist);
  788. }
  789. } else {
  790. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  791. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  792. if (ps->enable_ipdopd) {
  793. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  794. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  795. }
  796. if (ps->is34bands_old) {
  797. map_val_34_to_20(H11[0][0]);
  798. map_val_34_to_20(H11[1][0]);
  799. map_val_34_to_20(H12[0][0]);
  800. map_val_34_to_20(H12[1][0]);
  801. map_val_34_to_20(H21[0][0]);
  802. map_val_34_to_20(H21[1][0]);
  803. map_val_34_to_20(H22[0][0]);
  804. map_val_34_to_20(H22[1][0]);
  805. ipdopd_reset(ipd_hist, opd_hist);
  806. }
  807. }
  808. //Mixing
  809. for (e = 0; e < ps->num_env; e++) {
  810. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  811. float h11, h12, h21, h22;
  812. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  813. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  814. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  815. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  816. if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
  817. //The spec say says to only run this smoother when enable_ipdopd
  818. //is set but the reference decoder appears to run it constantly
  819. float h11i, h12i, h21i, h22i;
  820. float ipd_adj_re, ipd_adj_im;
  821. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  822. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  823. float opd_re = pd_re_smooth[opd_idx];
  824. float opd_im = pd_im_smooth[opd_idx];
  825. float ipd_re = pd_re_smooth[ipd_idx];
  826. float ipd_im = pd_im_smooth[ipd_idx];
  827. opd_hist[b] = opd_idx & 0x3F;
  828. ipd_hist[b] = ipd_idx & 0x3F;
  829. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  830. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  831. h11i = h11 * opd_im;
  832. h11 = h11 * opd_re;
  833. h12i = h12 * ipd_adj_im;
  834. h12 = h12 * ipd_adj_re;
  835. h21i = h21 * opd_im;
  836. h21 = h21 * opd_re;
  837. h22i = h22 * ipd_adj_im;
  838. h22 = h22 * ipd_adj_re;
  839. H11[1][e+1][b] = h11i;
  840. H12[1][e+1][b] = h12i;
  841. H21[1][e+1][b] = h21i;
  842. H22[1][e+1][b] = h22i;
  843. }
  844. H11[0][e+1][b] = h11;
  845. H12[0][e+1][b] = h12;
  846. H21[0][e+1][b] = h21;
  847. H22[0][e+1][b] = h22;
  848. }
  849. for (k = 0; k < NR_BANDS[is34]; k++) {
  850. float h11r, h12r, h21r, h22r;
  851. float h11i, h12i, h21i, h22i;
  852. float h11r_step, h12r_step, h21r_step, h22r_step;
  853. float h11i_step, h12i_step, h21i_step, h22i_step;
  854. int start = ps->border_position[e];
  855. int stop = ps->border_position[e+1];
  856. float width = 1.f / (stop - start);
  857. b = k_to_i[k];
  858. h11r = H11[0][e][b];
  859. h12r = H12[0][e][b];
  860. h21r = H21[0][e][b];
  861. h22r = H22[0][e][b];
  862. if (!PS_BASELINE && ps->enable_ipdopd) {
  863. //Is this necessary? ps_04_new seems unchanged
  864. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  865. h11i = -H11[1][e][b];
  866. h12i = -H12[1][e][b];
  867. h21i = -H21[1][e][b];
  868. h22i = -H22[1][e][b];
  869. } else {
  870. h11i = H11[1][e][b];
  871. h12i = H12[1][e][b];
  872. h21i = H21[1][e][b];
  873. h22i = H22[1][e][b];
  874. }
  875. }
  876. //Interpolation
  877. h11r_step = (H11[0][e+1][b] - h11r) * width;
  878. h12r_step = (H12[0][e+1][b] - h12r) * width;
  879. h21r_step = (H21[0][e+1][b] - h21r) * width;
  880. h22r_step = (H22[0][e+1][b] - h22r) * width;
  881. if (!PS_BASELINE && ps->enable_ipdopd) {
  882. h11i_step = (H11[1][e+1][b] - h11i) * width;
  883. h12i_step = (H12[1][e+1][b] - h12i) * width;
  884. h21i_step = (H21[1][e+1][b] - h21i) * width;
  885. h22i_step = (H22[1][e+1][b] - h22i) * width;
  886. }
  887. for (n = start + 1; n <= stop; n++) {
  888. //l is s, r is d
  889. float l_re = l[k][n][0];
  890. float l_im = l[k][n][1];
  891. float r_re = r[k][n][0];
  892. float r_im = r[k][n][1];
  893. h11r += h11r_step;
  894. h12r += h12r_step;
  895. h21r += h21r_step;
  896. h22r += h22r_step;
  897. if (!PS_BASELINE && ps->enable_ipdopd) {
  898. h11i += h11i_step;
  899. h12i += h12i_step;
  900. h21i += h21i_step;
  901. h22i += h22i_step;
  902. l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
  903. l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
  904. r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
  905. r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
  906. } else {
  907. l[k][n][0] = h11r*l_re + h21r*r_re;
  908. l[k][n][1] = h11r*l_im + h21r*r_im;
  909. r[k][n][0] = h12r*l_re + h22r*r_re;
  910. r[k][n][1] = h12r*l_im + h22r*r_im;
  911. }
  912. }
  913. }
  914. }
  915. }
  916. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  917. {
  918. float Lbuf[91][32][2];
  919. float Rbuf[91][32][2];
  920. const int len = 32;
  921. int is34 = ps->is34bands;
  922. top += NR_BANDS[is34] - 64;
  923. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  924. if (top < NR_ALLPASS_BANDS[is34])
  925. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  926. hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
  927. decorrelation(ps, Rbuf, Lbuf, is34);
  928. stereo_processing(ps, Lbuf, Rbuf, is34);
  929. hybrid_synthesis(L, Lbuf, is34, len);
  930. hybrid_synthesis(R, Rbuf, is34, len);
  931. return 0;
  932. }
  933. #define PS_INIT_VLC_STATIC(num, size) \
  934. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  935. ps_tmp[num].ps_bits, 1, 1, \
  936. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  937. size);
  938. #define PS_VLC_ROW(name) \
  939. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  940. av_cold void ff_ps_init(void) {
  941. // Syntax initialization
  942. static const struct {
  943. const void *ps_codes, *ps_bits;
  944. const unsigned int table_size, elem_size;
  945. } ps_tmp[] = {
  946. PS_VLC_ROW(huff_iid_df1),
  947. PS_VLC_ROW(huff_iid_dt1),
  948. PS_VLC_ROW(huff_iid_df0),
  949. PS_VLC_ROW(huff_iid_dt0),
  950. PS_VLC_ROW(huff_icc_df),
  951. PS_VLC_ROW(huff_icc_dt),
  952. PS_VLC_ROW(huff_ipd_df),
  953. PS_VLC_ROW(huff_ipd_dt),
  954. PS_VLC_ROW(huff_opd_df),
  955. PS_VLC_ROW(huff_opd_dt),
  956. };
  957. PS_INIT_VLC_STATIC(0, 1544);
  958. PS_INIT_VLC_STATIC(1, 832);
  959. PS_INIT_VLC_STATIC(2, 1024);
  960. PS_INIT_VLC_STATIC(3, 1036);
  961. PS_INIT_VLC_STATIC(4, 544);
  962. PS_INIT_VLC_STATIC(5, 544);
  963. PS_INIT_VLC_STATIC(6, 512);
  964. PS_INIT_VLC_STATIC(7, 512);
  965. PS_INIT_VLC_STATIC(8, 512);
  966. PS_INIT_VLC_STATIC(9, 512);
  967. ps_tableinit();
  968. }
  969. av_cold void ff_ps_ctx_init(PSContext *ps)
  970. {
  971. }