filters.texi 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your FFmpeg build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section copy
  138. Copy the input source unchanged to the output. Mainly useful for
  139. testing purposes.
  140. @section crop
  141. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  142. The parameters are expressions containing the following constants:
  143. @table @option
  144. @item E, PI, PHI
  145. the corresponding mathematical approximated values for e
  146. (euler number), pi (greek PI), PHI (golden ratio)
  147. @item x, y
  148. the computed values for @var{x} and @var{y}. They are evaluated for
  149. each new frame.
  150. @item in_w, in_h
  151. the input width and heigth
  152. @item iw, ih
  153. same as @var{in_w} and @var{in_h}
  154. @item out_w, out_h
  155. the output (cropped) width and heigth
  156. @item ow, oh
  157. same as @var{out_w} and @var{out_h}
  158. @item n
  159. the number of input frame, starting from 0
  160. @item pos
  161. the position in the file of the input frame, NAN if unknown
  162. @item t
  163. timestamp expressed in seconds, NAN if the input timestamp is unknown
  164. @end table
  165. The @var{out_w} and @var{out_h} parameters specify the expressions for
  166. the width and height of the output (cropped) video. They are
  167. evaluated just at the configuration of the filter.
  168. The default value of @var{out_w} is "in_w", and the default value of
  169. @var{out_h} is "in_h".
  170. The expression for @var{out_w} may depend on the value of @var{out_h},
  171. and the expression for @var{out_h} may depend on @var{out_w}, but they
  172. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  173. evaluated after @var{out_w} and @var{out_h}.
  174. The @var{x} and @var{y} parameters specify the expressions for the
  175. position of the top-left corner of the output (non-cropped) area. They
  176. are evaluated for each frame. If the evaluated value is not valid, it
  177. is approximated to the nearest valid value.
  178. The default value of @var{x} is "(in_w-out_w)/2", and the default
  179. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  180. the center of the input image.
  181. The expression for @var{x} may depend on @var{y}, and the expression
  182. for @var{y} may depend on @var{x}.
  183. Follow some examples:
  184. @example
  185. # crop the central input area with size 100x100
  186. crop=100:100
  187. # crop the central input area with size 2/3 of the input video
  188. "crop=2/3*in_w:2/3*in_h"
  189. # crop the input video central square
  190. crop=in_h
  191. # delimit the rectangle with the top-left corner placed at position
  192. # 100:100 and the right-bottom corner corresponding to the right-bottom
  193. # corner of the input image.
  194. crop=in_w-100:in_h-100:100:100
  195. # crop 10 pixels from the left and right borders, and 20 pixels from
  196. # the top and bottom borders
  197. "crop=in_w-2*10:in_h-2*20"
  198. # keep only the bottom right quarter of the input image
  199. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  200. # crop height for getting Greek harmony
  201. "crop=in_w:1/PHI*in_w"
  202. # trembling effect
  203. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  204. # erratic camera effect depending on timestamp
  205. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  206. # set x depending on the value of y
  207. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  208. @end example
  209. @section cropdetect
  210. Auto-detect crop size.
  211. Calculate necessary cropping parameters and prints the recommended
  212. parameters through the logging system. The detected dimensions
  213. correspond to the non-black area of the input video.
  214. It accepts the syntax:
  215. @example
  216. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  217. @end example
  218. @table @option
  219. @item limit
  220. Threshold, which can be optionally specified from nothing (0) to
  221. everything (255), defaults to 24.
  222. @item round
  223. Value which the width/height should be divisible by, defaults to
  224. 16. The offset is automatically adjusted to center the video. Use 2 to
  225. get only even dimensions (needed for 4:2:2 video). 16 is best when
  226. encoding to most video codecs.
  227. @item reset
  228. Counter that determines after how many frames cropdetect will reset
  229. the previously detected largest video area and start over to detect
  230. the current optimal crop area. Defaults to 0.
  231. This can be useful when channel logos distort the video area. 0
  232. indicates never reset and return the largest area encountered during
  233. playback.
  234. @end table
  235. @section drawbox
  236. Draw a colored box on the input image.
  237. It accepts the syntax:
  238. @example
  239. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  240. @end example
  241. @table @option
  242. @item x, y
  243. Specify the top left corner coordinates of the box. Default to 0.
  244. @item width, height
  245. Specify the width and height of the box, if 0 they are interpreted as
  246. the input width and height. Default to 0.
  247. @item color
  248. Specify the color of the box to write, it can be the name of a color
  249. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  250. @end table
  251. Follow some examples:
  252. @example
  253. # draw a black box around the edge of the input image
  254. drawbox
  255. # draw a box with color red and an opacity of 50%
  256. drawbox=10:20:200:60:red@@0.5"
  257. @end example
  258. @section fifo
  259. Buffer input images and send them when they are requested.
  260. This filter is mainly useful when auto-inserted by the libavfilter
  261. framework.
  262. The filter does not take parameters.
  263. @section format
  264. Convert the input video to one of the specified pixel formats.
  265. Libavfilter will try to pick one that is supported for the input to
  266. the next filter.
  267. The filter accepts a list of pixel format names, separated by ":",
  268. for example "yuv420p:monow:rgb24".
  269. Some examples follow:
  270. @example
  271. # convert the input video to the format "yuv420p"
  272. format=yuv420p
  273. # convert the input video to any of the formats in the list
  274. format=yuv420p:yuv444p:yuv410p
  275. @end example
  276. @anchor{frei0r}
  277. @section frei0r
  278. Apply a frei0r effect to the input video.
  279. To enable compilation of this filter you need to install the frei0r
  280. header and configure FFmpeg with --enable-frei0r.
  281. The filter supports the syntax:
  282. @example
  283. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  284. @end example
  285. @var{filter_name} is the name to the frei0r effect to load. If the
  286. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  287. is searched in each one of the directories specified by the colon
  288. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  289. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  290. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  291. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  292. for the frei0r effect.
  293. A frei0r effect parameter can be a boolean (whose values are specified
  294. with "y" and "n"), a double, a color (specified by the syntax
  295. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  296. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  297. description), a position (specified by the syntax @var{X}/@var{Y},
  298. @var{X} and @var{Y} being float numbers) and a string.
  299. The number and kind of parameters depend on the loaded effect. If an
  300. effect parameter is not specified the default value is set.
  301. Some examples follow:
  302. @example
  303. # apply the distort0r effect, set the first two double parameters
  304. frei0r=distort0r:0.5:0.01
  305. # apply the colordistance effect, takes a color as first parameter
  306. frei0r=colordistance:0.2/0.3/0.4
  307. frei0r=colordistance:violet
  308. frei0r=colordistance:0x112233
  309. # apply the perspective effect, specify the top left and top right
  310. # image positions
  311. frei0r=perspective:0.2/0.2:0.8/0.2
  312. @end example
  313. For more information see:
  314. @url{http://piksel.org/frei0r}
  315. @section gradfun
  316. Fix the banding artifacts that are sometimes introduced into nearly flat
  317. regions by truncation to 8bit colordepth.
  318. Interpolate the gradients that should go where the bands are, and
  319. dither them.
  320. The filter takes two optional parameters, separated by ':':
  321. @var{strength}:@var{radius}
  322. @var{strength} is the maximum amount by which the filter will change
  323. any one pixel. Also the threshold for detecting nearly flat
  324. regions. Acceptable values range from .51 to 255, default value is
  325. 1.2, out-of-range values will be clipped to the valid range.
  326. @var{radius} is the neighborhood to fit the gradient to. A larger
  327. radius makes for smoother gradients, but also prevents the filter from
  328. modifying the pixels near detailed regions. Acceptable values are
  329. 8-32, default value is 16, out-of-range values will be clipped to the
  330. valid range.
  331. @example
  332. # default parameters
  333. gradfun=1.2:16
  334. # omitting radius
  335. gradfun=1.2
  336. @end example
  337. @section hflip
  338. Flip the input video horizontally.
  339. For example to horizontally flip the video in input with
  340. @file{ffmpeg}:
  341. @example
  342. ffmpeg -i in.avi -vf "hflip" out.avi
  343. @end example
  344. @section hqdn3d
  345. High precision/quality 3d denoise filter. This filter aims to reduce
  346. image noise producing smooth images and making still images really
  347. still. It should enhance compressibility.
  348. It accepts the following optional parameters:
  349. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  350. @table @option
  351. @item luma_spatial
  352. a non-negative float number which specifies spatial luma strength,
  353. defaults to 4.0
  354. @item chroma_spatial
  355. a non-negative float number which specifies spatial chroma strength,
  356. defaults to 3.0*@var{luma_spatial}/4.0
  357. @item luma_tmp
  358. a float number which specifies luma temporal strength, defaults to
  359. 6.0*@var{luma_spatial}/4.0
  360. @item chroma_tmp
  361. a float number which specifies chroma temporal strength, defaults to
  362. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  363. @end table
  364. @section noformat
  365. Force libavfilter not to use any of the specified pixel formats for the
  366. input to the next filter.
  367. The filter accepts a list of pixel format names, separated by ":",
  368. for example "yuv420p:monow:rgb24".
  369. Some examples follow:
  370. @example
  371. # force libavfilter to use a format different from "yuv420p" for the
  372. # input to the vflip filter
  373. noformat=yuv420p,vflip
  374. # convert the input video to any of the formats not contained in the list
  375. noformat=yuv420p:yuv444p:yuv410p
  376. @end example
  377. @section null
  378. Pass the video source unchanged to the output.
  379. @section ocv
  380. Apply video transform using libopencv.
  381. To enable this filter install libopencv library and headers and
  382. configure FFmpeg with --enable-libopencv.
  383. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  384. @var{filter_name} is the name of the libopencv filter to apply.
  385. @var{filter_params} specifies the parameters to pass to the libopencv
  386. filter. If not specified the default values are assumed.
  387. Refer to the official libopencv documentation for more precise
  388. informations:
  389. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  390. Follows the list of supported libopencv filters.
  391. @anchor{dilate}
  392. @subsection dilate
  393. Dilate an image by using a specific structuring element.
  394. This filter corresponds to the libopencv function @code{cvDilate}.
  395. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  396. @var{struct_el} represents a structuring element, and has the syntax:
  397. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  398. @var{cols} and @var{rows} represent the number of colums and rows of
  399. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  400. point, and @var{shape} the shape for the structuring element, and
  401. can be one of the values "rect", "cross", "ellipse", "custom".
  402. If the value for @var{shape} is "custom", it must be followed by a
  403. string of the form "=@var{filename}". The file with name
  404. @var{filename} is assumed to represent a binary image, with each
  405. printable character corresponding to a bright pixel. When a custom
  406. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  407. or columns and rows of the read file are assumed instead.
  408. The default value for @var{struct_el} is "3x3+0x0/rect".
  409. @var{nb_iterations} specifies the number of times the transform is
  410. applied to the image, and defaults to 1.
  411. Follow some example:
  412. @example
  413. # use the default values
  414. ocv=dilate
  415. # dilate using a structuring element with a 5x5 cross, iterate two times
  416. ocv=dilate=5x5+2x2/cross:2
  417. # read the shape from the file diamond.shape, iterate two times
  418. # the file diamond.shape may contain a pattern of characters like this:
  419. # *
  420. # ***
  421. # *****
  422. # ***
  423. # *
  424. # the specified cols and rows are ignored (but not the anchor point coordinates)
  425. ocv=0x0+2x2/custom=diamond.shape:2
  426. @end example
  427. @subsection erode
  428. Erode an image by using a specific structuring element.
  429. This filter corresponds to the libopencv function @code{cvErode}.
  430. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  431. with the same meaning and use of those of the dilate filter
  432. (@pxref{dilate}).
  433. @subsection smooth
  434. Smooth the input video.
  435. The filter takes the following parameters:
  436. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  437. @var{type} is the type of smooth filter to apply, and can be one of
  438. the following values: "blur", "blur_no_scale", "median", "gaussian",
  439. "bilateral". The default value is "gaussian".
  440. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  441. parameters whose meanings depend on smooth type. @var{param1} and
  442. @var{param2} accept integer positive values or 0, @var{param3} and
  443. @var{param4} accept float values.
  444. The default value for @var{param1} is 3, the default value for the
  445. other parameters is 0.
  446. These parameters correspond to the parameters assigned to the
  447. libopencv function @code{cvSmooth}.
  448. @section overlay
  449. Overlay one video on top of another.
  450. It takes two inputs and one output, the first input is the "main"
  451. video on which the second input is overlayed.
  452. It accepts the parameters: @var{x}:@var{y}.
  453. @var{x} is the x coordinate of the overlayed video on the main video,
  454. @var{y} is the y coordinate. The parameters are expressions containing
  455. the following parameters:
  456. @table @option
  457. @item main_w, main_h
  458. main input width and height
  459. @item W, H
  460. same as @var{main_w} and @var{main_h}
  461. @item overlay_w, overlay_h
  462. overlay input width and height
  463. @item w, h
  464. same as @var{overlay_w} and @var{overlay_h}
  465. @end table
  466. Be aware that frames are taken from each input video in timestamp
  467. order, hence, if their initial timestamps differ, it is a a good idea
  468. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  469. have them begin in the same zero timestamp, as it does the example for
  470. the @var{movie} filter.
  471. Follow some examples:
  472. @example
  473. # draw the overlay at 10 pixels from the bottom right
  474. # corner of the main video.
  475. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  476. # insert a transparent PNG logo in the bottom left corner of the input
  477. movie=0:png:logo.png [logo];
  478. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  479. # insert 2 different transparent PNG logos (second logo on bottom
  480. # right corner):
  481. movie=0:png:logo1.png [logo1];
  482. movie=0:png:logo2.png [logo2];
  483. [in][logo1] overlay=10:H-h-10 [in+logo1];
  484. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  485. # add a transparent color layer on top of the main video,
  486. # WxH specifies the size of the main input to the overlay filter
  487. color=red@.3:WxH [over]; [in][over] overlay [out]
  488. @end example
  489. You can chain togheter more overlays but the efficiency of such
  490. approach is yet to be tested.
  491. @section pad
  492. Add paddings to the input image, and places the original input at the
  493. given coordinates @var{x}, @var{y}.
  494. It accepts the following parameters:
  495. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  496. Follows the description of the accepted parameters.
  497. @table @option
  498. @item width, height
  499. Specify the size of the output image with the paddings added. If the
  500. value for @var{width} or @var{height} is 0, the corresponding input size
  501. is used for the output.
  502. The default value of @var{width} and @var{height} is 0.
  503. @item x, y
  504. Specify the offsets where to place the input image in the padded area
  505. with respect to the top/left border of the output image.
  506. The default value of @var{x} and @var{y} is 0.
  507. @item color
  508. Specify the color of the padded area, it can be the name of a color
  509. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  510. The default value of @var{color} is "black".
  511. @end table
  512. For example:
  513. @example
  514. # Add paddings with color "violet" to the input video. Output video
  515. # size is 640x480, the top-left corner of the input video is placed at
  516. # row 0, column 40.
  517. pad=640:480:0:40:violet
  518. @end example
  519. @section pixdesctest
  520. Pixel format descriptor test filter, mainly useful for internal
  521. testing. The output video should be equal to the input video.
  522. For example:
  523. @example
  524. format=monow, pixdesctest
  525. @end example
  526. can be used to test the monowhite pixel format descriptor definition.
  527. @section scale
  528. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  529. For example the command:
  530. @example
  531. ./ffmpeg -i in.avi -vf "scale=200:100" out.avi
  532. @end example
  533. will scale the input video to a size of 200x100.
  534. If the input image format is different from the format requested by
  535. the next filter, the scale filter will convert the input to the
  536. requested format.
  537. If the value for @var{width} or @var{height} is 0, the respective input
  538. size is used for the output.
  539. If the value for @var{width} or @var{height} is -1, the scale filter will
  540. use, for the respective output size, a value that maintains the aspect
  541. ratio of the input image.
  542. The default value of @var{width} and @var{height} is 0.
  543. @section setpts
  544. Change the PTS (presentation timestamp) of the input video frames.
  545. Accept in input an expression evaluated through the eval API, which
  546. can contain the following constants:
  547. @table @option
  548. @item PTS
  549. the presentation timestamp in input
  550. @item PI
  551. Greek PI
  552. @item PHI
  553. golden ratio
  554. @item E
  555. Euler number
  556. @item N
  557. the count of the input frame, starting from 0.
  558. @item STARTPTS
  559. the PTS of the first video frame
  560. @item INTERLACED
  561. tell if the current frame is interlaced
  562. @item POS
  563. original position in the file of the frame, or undefined if undefined
  564. for the current frame
  565. @item PREV_INPTS
  566. previous input PTS
  567. @item PREV_OUTPTS
  568. previous output PTS
  569. @end table
  570. Some examples follow:
  571. @example
  572. # start counting PTS from zero
  573. setpts=PTS-STARTPTS
  574. # fast motion
  575. setpts=0.5*PTS
  576. # slow motion
  577. setpts=2.0*PTS
  578. # fixed rate 25 fps
  579. setpts=N/(25*TB)
  580. # fixed rate 25 fps with some jitter
  581. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  582. @end example
  583. @section settb
  584. Set the timebase to use for the output frames timestamps.
  585. It is mainly useful for testing timebase configuration.
  586. It accepts in input an arithmetic expression representing a rational.
  587. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  588. default timebase), and "intb" (the input timebase).
  589. The default value for the input is "intb".
  590. Follow some examples.
  591. @example
  592. # set the timebase to 1/25
  593. settb=1/25
  594. # set the timebase to 1/10
  595. settb=0.1
  596. #set the timebase to 1001/1000
  597. settb=1+0.001
  598. #set the timebase to 2*intb
  599. settb=2*intb
  600. #set the default timebase value
  601. settb=AVTB
  602. @end example
  603. @section slicify
  604. Pass the images of input video on to next video filter as multiple
  605. slices.
  606. @example
  607. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  608. @end example
  609. The filter accepts the slice height as parameter. If the parameter is
  610. not specified it will use the default value of 16.
  611. Adding this in the beginning of filter chains should make filtering
  612. faster due to better use of the memory cache.
  613. @section transpose
  614. Transpose rows with columns in the input video and optionally flip it.
  615. It accepts a parameter representing an integer, which can assume the
  616. values:
  617. @table @samp
  618. @item 0
  619. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  620. @example
  621. L.R L.l
  622. . . -> . .
  623. l.r R.r
  624. @end example
  625. @item 1
  626. Rotate by 90 degrees clockwise, that is:
  627. @example
  628. L.R l.L
  629. . . -> . .
  630. l.r r.R
  631. @end example
  632. @item 2
  633. Rotate by 90 degrees counterclockwise, that is:
  634. @example
  635. L.R R.r
  636. . . -> . .
  637. l.r L.l
  638. @end example
  639. @item 3
  640. Rotate by 90 degrees clockwise and vertically flip, that is:
  641. @example
  642. L.R r.R
  643. . . -> . .
  644. l.r l.L
  645. @end example
  646. @end table
  647. @section unsharp
  648. Sharpen or blur the input video.
  649. It accepts the following parameters:
  650. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  651. Negative values for the amount will blur the input video, while positive
  652. values will sharpen. All parameters are optional and default to the
  653. equivalent of the string '5:5:1.0:0:0:0.0'.
  654. @table @option
  655. @item luma_msize_x
  656. Set the luma matrix horizontal size. It can be an integer between 3
  657. and 13, default value is 5.
  658. @item luma_msize_y
  659. Set the luma matrix vertical size. It can be an integer between 3
  660. and 13, default value is 5.
  661. @item luma_amount
  662. Set the luma effect strength. It can be a float number between -2.0
  663. and 5.0, default value is 1.0.
  664. @item chroma_msize_x
  665. Set the chroma matrix horizontal size. It can be an integer between 3
  666. and 13, default value is 0.
  667. @item chroma_msize_y
  668. Set the chroma matrix vertical size. It can be an integer between 3
  669. and 13, default value is 0.
  670. @item luma_amount
  671. Set the chroma effect strength. It can be a float number between -2.0
  672. and 5.0, default value is 0.0.
  673. @end table
  674. @example
  675. # Strong luma sharpen effect parameters
  676. unsharp=7:7:2.5
  677. # Strong blur of both luma and chroma parameters
  678. unsharp=7:7:-2:7:7:-2
  679. # Use the default values with @command{ffmpeg}
  680. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  681. @end example
  682. @section vflip
  683. Flip the input video vertically.
  684. @example
  685. ./ffmpeg -i in.avi -vf "vflip" out.avi
  686. @end example
  687. @section yadif
  688. Deinterlace the input video ("yadif" means "yet another deinterlacing
  689. filter").
  690. It accepts the optional parameters: @var{mode}:@var{parity}.
  691. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  692. following values:
  693. @table @option
  694. @item 0
  695. output 1 frame for each frame
  696. @item 1
  697. output 1 frame for each field
  698. @item 2
  699. like 0 but skips spatial interlacing check
  700. @item 3
  701. like 1 but skips spatial interlacing check
  702. @end table
  703. Default value is 0.
  704. @var{parity} specifies the picture field parity assumed for the input
  705. interlaced video, accepts one of the following values:
  706. @table @option
  707. @item 0
  708. assume bottom field first
  709. @item 1
  710. assume top field first
  711. @item -1
  712. enable automatic detection
  713. @end table
  714. Default value is -1.
  715. If interlacing is unknown or decoder does not export this information,
  716. top field first will be assumed.
  717. @c man end VIDEO FILTERS
  718. @chapter Video Sources
  719. @c man begin VIDEO SOURCES
  720. Below is a description of the currently available video sources.
  721. @section buffer
  722. Buffer video frames, and make them available to the filter chain.
  723. This source is mainly intended for a programmatic use, in particular
  724. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  725. It accepts the following parameters:
  726. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}
  727. All the parameters need to be explicitely defined.
  728. Follows the list of the accepted parameters.
  729. @table @option
  730. @item width, height
  731. Specify the width and height of the buffered video frames.
  732. @item pix_fmt_string
  733. A string representing the pixel format of the buffered video frames.
  734. It may be a number corresponding to a pixel format, or a pixel format
  735. name.
  736. @item timebase_num, timebase_den
  737. Specify numerator and denomitor of the timebase assumed by the
  738. timestamps of the buffered frames.
  739. @end table
  740. For example:
  741. @example
  742. buffer=320:240:yuv410p:1:24
  743. @end example
  744. will instruct the source to accept video frames with size 320x240 and
  745. with format "yuv410p" and assuming 1/24 as the timestamps timebase.
  746. Since the pixel format with name "yuv410p" corresponds to the number 6
  747. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  748. this example corresponds to:
  749. @example
  750. buffer=320:240:6:1:24
  751. @end example
  752. @section color
  753. Provide an uniformly colored input.
  754. It accepts the following parameters:
  755. @var{color}:@var{frame_size}:@var{frame_rate}
  756. Follows the description of the accepted parameters.
  757. @table @option
  758. @item color
  759. Specify the color of the source. It can be the name of a color (case
  760. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  761. alpha specifier. The default value is "black".
  762. @item frame_size
  763. Specify the size of the sourced video, it may be a string of the form
  764. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  765. default value is "320x240".
  766. @item frame_rate
  767. Specify the frame rate of the sourced video, as the number of frames
  768. generated per second. It has to be a string in the format
  769. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  770. number or a valid video frame rate abbreviation. The default value is
  771. "25".
  772. @end table
  773. For example the following graph description will generate a red source
  774. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  775. frames per second, which will be overlayed over the source connected
  776. to the pad with identifier "in".
  777. @example
  778. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  779. @end example
  780. @section nullsrc
  781. Null video source, never return images. It is mainly useful as a
  782. template and to be employed in analysis / debugging tools.
  783. It accepts as optional parameter a string of the form
  784. @var{width}:@var{height}:@var{timebase}.
  785. @var{width} and @var{height} specify the size of the configured
  786. source. The default values of @var{width} and @var{height} are
  787. respectively 352 and 288 (corresponding to the CIF size format).
  788. @var{timebase} specifies an arithmetic expression representing a
  789. timebase. The expression can contain the constants "PI", "E", "PHI",
  790. "AVTB" (the default timebase), and defaults to the value "AVTB".
  791. @section frei0r_src
  792. Provide a frei0r source.
  793. To enable compilation of this filter you need to install the frei0r
  794. header and configure FFmpeg with --enable-frei0r.
  795. The source supports the syntax:
  796. @example
  797. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  798. @end example
  799. @var{size} is the size of the video to generate, may be a string of the
  800. form @var{width}x@var{height} or a frame size abbreviation.
  801. @var{rate} is the rate of the video to generate, may be a string of
  802. the form @var{num}/@var{den} or a frame rate abbreviation.
  803. @var{src_name} is the name to the frei0r source to load. For more
  804. information regarding frei0r and how to set the parameters read the
  805. section "frei0r" (@pxref{frei0r}) in the description of the video
  806. filters.
  807. Some examples follow:
  808. @example
  809. # generate a frei0r partik0l source with size 200x200 and framerate 10
  810. # which is overlayed on the overlay filter main input
  811. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  812. @end example
  813. @c man end VIDEO SOURCES
  814. @chapter Video Sinks
  815. @c man begin VIDEO SINKS
  816. Below is a description of the currently available video sinks.
  817. @section nullsink
  818. Null video sink, do absolutely nothing with the input video. It is
  819. mainly useful as a template and to be employed in analysis / debugging
  820. tools.
  821. @c man end VIDEO SINKS