cook.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295
  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include <math.h>
  44. #include <stddef.h>
  45. #include <stdio.h>
  46. #include "libavutil/lfg.h"
  47. #include "libavutil/random_seed.h"
  48. #include "avcodec.h"
  49. #include "get_bits.h"
  50. #include "dsputil.h"
  51. #include "bytestream.h"
  52. #include "fft.h"
  53. #include "cookdata.h"
  54. /* the different Cook versions */
  55. #define MONO 0x1000001
  56. #define STEREO 0x1000002
  57. #define JOINT_STEREO 0x1000003
  58. #define MC_COOK 0x2000000 //multichannel Cook, not supported
  59. #define SUBBAND_SIZE 20
  60. #define MAX_SUBPACKETS 5
  61. //#define COOKDEBUG
  62. typedef struct {
  63. int *now;
  64. int *previous;
  65. } cook_gains;
  66. typedef struct {
  67. int ch_idx;
  68. int size;
  69. int num_channels;
  70. int cookversion;
  71. int samples_per_frame;
  72. int subbands;
  73. int js_subband_start;
  74. int js_vlc_bits;
  75. int samples_per_channel;
  76. int log2_numvector_size;
  77. unsigned int channel_mask;
  78. VLC ccpl; ///< channel coupling
  79. int joint_stereo;
  80. int bits_per_subpacket;
  81. int bits_per_subpdiv;
  82. int total_subbands;
  83. int numvector_size; ///< 1 << log2_numvector_size;
  84. float mono_previous_buffer1[1024];
  85. float mono_previous_buffer2[1024];
  86. /** gain buffers */
  87. cook_gains gains1;
  88. cook_gains gains2;
  89. int gain_1[9];
  90. int gain_2[9];
  91. int gain_3[9];
  92. int gain_4[9];
  93. } COOKSubpacket;
  94. typedef struct cook {
  95. /*
  96. * The following 5 functions provide the lowlevel arithmetic on
  97. * the internal audio buffers.
  98. */
  99. void (* scalar_dequant)(struct cook *q, int index, int quant_index,
  100. int* subband_coef_index, int* subband_coef_sign,
  101. float* mlt_p);
  102. void (* decouple) (struct cook *q,
  103. COOKSubpacket *p,
  104. int subband,
  105. float f1, float f2,
  106. float *decode_buffer,
  107. float *mlt_buffer1, float *mlt_buffer2);
  108. void (* imlt_window) (struct cook *q, float *buffer1,
  109. cook_gains *gains_ptr, float *previous_buffer);
  110. void (* interpolate) (struct cook *q, float* buffer,
  111. int gain_index, int gain_index_next);
  112. void (* saturate_output) (struct cook *q, int chan, int16_t *out);
  113. AVCodecContext* avctx;
  114. GetBitContext gb;
  115. /* stream data */
  116. int nb_channels;
  117. int bit_rate;
  118. int sample_rate;
  119. int num_vectors;
  120. int samples_per_channel;
  121. /* states */
  122. AVLFG random_state;
  123. /* transform data */
  124. FFTContext mdct_ctx;
  125. float* mlt_window;
  126. /* VLC data */
  127. VLC envelope_quant_index[13];
  128. VLC sqvh[7]; //scalar quantization
  129. /* generatable tables and related variables */
  130. int gain_size_factor;
  131. float gain_table[23];
  132. /* data buffers */
  133. uint8_t* decoded_bytes_buffer;
  134. DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
  135. float decode_buffer_1[1024];
  136. float decode_buffer_2[1024];
  137. float decode_buffer_0[1060]; /* static allocation for joint decode */
  138. const float *cplscales[5];
  139. int num_subpackets;
  140. COOKSubpacket subpacket[MAX_SUBPACKETS];
  141. } COOKContext;
  142. static float pow2tab[127];
  143. static float rootpow2tab[127];
  144. /* debug functions */
  145. #ifdef COOKDEBUG
  146. static void dump_float_table(float* table, int size, int delimiter) {
  147. int i=0;
  148. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  149. for (i=0 ; i<size ; i++) {
  150. av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
  151. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  152. }
  153. }
  154. static void dump_int_table(int* table, int size, int delimiter) {
  155. int i=0;
  156. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  157. for (i=0 ; i<size ; i++) {
  158. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  159. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  160. }
  161. }
  162. static void dump_short_table(short* table, int size, int delimiter) {
  163. int i=0;
  164. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  165. for (i=0 ; i<size ; i++) {
  166. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  167. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  168. }
  169. }
  170. #endif
  171. /*************** init functions ***************/
  172. /* table generator */
  173. static av_cold void init_pow2table(void){
  174. int i;
  175. for (i=-63 ; i<64 ; i++){
  176. pow2tab[63+i]= pow(2, i);
  177. rootpow2tab[63+i]=sqrt(pow(2, i));
  178. }
  179. }
  180. /* table generator */
  181. static av_cold void init_gain_table(COOKContext *q) {
  182. int i;
  183. q->gain_size_factor = q->samples_per_channel/8;
  184. for (i=0 ; i<23 ; i++) {
  185. q->gain_table[i] = pow(pow2tab[i+52] ,
  186. (1.0/(double)q->gain_size_factor));
  187. }
  188. }
  189. static av_cold int init_cook_vlc_tables(COOKContext *q) {
  190. int i, result;
  191. result = 0;
  192. for (i=0 ; i<13 ; i++) {
  193. result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
  194. envelope_quant_index_huffbits[i], 1, 1,
  195. envelope_quant_index_huffcodes[i], 2, 2, 0);
  196. }
  197. av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
  198. for (i=0 ; i<7 ; i++) {
  199. result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  200. cvh_huffbits[i], 1, 1,
  201. cvh_huffcodes[i], 2, 2, 0);
  202. }
  203. for(i=0;i<q->num_subpackets;i++){
  204. if (q->subpacket[i].joint_stereo==1){
  205. result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
  206. ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
  207. ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
  208. av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
  209. }
  210. }
  211. av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
  212. return result;
  213. }
  214. static av_cold int init_cook_mlt(COOKContext *q) {
  215. int j;
  216. int mlt_size = q->samples_per_channel;
  217. if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
  218. return -1;
  219. /* Initialize the MLT window: simple sine window. */
  220. ff_sine_window_init(q->mlt_window, mlt_size);
  221. for(j=0 ; j<mlt_size ; j++)
  222. q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  223. /* Initialize the MDCT. */
  224. if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
  225. av_free(q->mlt_window);
  226. return -1;
  227. }
  228. av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
  229. av_log2(mlt_size)+1);
  230. return 0;
  231. }
  232. static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
  233. {
  234. if (1)
  235. return ptr;
  236. }
  237. static av_cold void init_cplscales_table (COOKContext *q) {
  238. int i;
  239. for (i=0;i<5;i++)
  240. q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
  241. }
  242. /*************** init functions end ***********/
  243. /**
  244. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  245. * Why? No idea, some checksum/error detection method maybe.
  246. *
  247. * Out buffer size: extra bytes are needed to cope with
  248. * padding/misalignment.
  249. * Subpackets passed to the decoder can contain two, consecutive
  250. * half-subpackets, of identical but arbitrary size.
  251. * 1234 1234 1234 1234 extraA extraB
  252. * Case 1: AAAA BBBB 0 0
  253. * Case 2: AAAA ABBB BB-- 3 3
  254. * Case 3: AAAA AABB BBBB 2 2
  255. * Case 4: AAAA AAAB BBBB BB-- 1 5
  256. *
  257. * Nice way to waste CPU cycles.
  258. *
  259. * @param inbuffer pointer to byte array of indata
  260. * @param out pointer to byte array of outdata
  261. * @param bytes number of bytes
  262. */
  263. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
  264. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  265. static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
  266. int i, off;
  267. uint32_t c;
  268. const uint32_t* buf;
  269. uint32_t* obuf = (uint32_t*) out;
  270. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  271. * I'm too lazy though, should be something like
  272. * for(i=0 ; i<bitamount/64 ; i++)
  273. * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
  274. * Buffer alignment needs to be checked. */
  275. off = (intptr_t)inbuffer & 3;
  276. buf = (const uint32_t*) (inbuffer - off);
  277. c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
  278. bytes += 3 + off;
  279. for (i = 0; i < bytes/4; i++)
  280. obuf[i] = c ^ buf[i];
  281. return off;
  282. }
  283. /**
  284. * Cook uninit
  285. */
  286. static av_cold int cook_decode_close(AVCodecContext *avctx)
  287. {
  288. int i;
  289. COOKContext *q = avctx->priv_data;
  290. av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
  291. /* Free allocated memory buffers. */
  292. av_free(q->mlt_window);
  293. av_free(q->decoded_bytes_buffer);
  294. /* Free the transform. */
  295. ff_mdct_end(&q->mdct_ctx);
  296. /* Free the VLC tables. */
  297. for (i=0 ; i<13 ; i++) {
  298. free_vlc(&q->envelope_quant_index[i]);
  299. }
  300. for (i=0 ; i<7 ; i++) {
  301. free_vlc(&q->sqvh[i]);
  302. }
  303. for (i=0 ; i<q->num_subpackets ; i++) {
  304. free_vlc(&q->subpacket[i].ccpl);
  305. }
  306. av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
  307. return 0;
  308. }
  309. /**
  310. * Fill the gain array for the timedomain quantization.
  311. *
  312. * @param q pointer to the COOKContext
  313. * @param gaininfo array of gain indexes
  314. */
  315. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  316. {
  317. int i, n;
  318. while (get_bits1(gb)) {}
  319. n = get_bits_count(gb) - 1; //amount of elements*2 to update
  320. i = 0;
  321. while (n--) {
  322. int index = get_bits(gb, 3);
  323. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  324. while (i <= index) gaininfo[i++] = gain;
  325. }
  326. while (i <= 8) gaininfo[i++] = 0;
  327. }
  328. /**
  329. * Create the quant index table needed for the envelope.
  330. *
  331. * @param q pointer to the COOKContext
  332. * @param quant_index_table pointer to the array
  333. */
  334. static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
  335. int i,j, vlc_index;
  336. quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
  337. for (i=1 ; i < p->total_subbands ; i++){
  338. vlc_index=i;
  339. if (i >= p->js_subband_start * 2) {
  340. vlc_index-=p->js_subband_start;
  341. } else {
  342. vlc_index/=2;
  343. if(vlc_index < 1) vlc_index = 1;
  344. }
  345. if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
  346. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
  347. q->envelope_quant_index[vlc_index-1].bits,2);
  348. quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
  349. }
  350. }
  351. /**
  352. * Calculate the category and category_index vector.
  353. *
  354. * @param q pointer to the COOKContext
  355. * @param quant_index_table pointer to the array
  356. * @param category pointer to the category array
  357. * @param category_index pointer to the category_index array
  358. */
  359. static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
  360. int* category, int* category_index){
  361. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  362. int exp_index2[102];
  363. int exp_index1[102];
  364. int tmp_categorize_array[128*2];
  365. int tmp_categorize_array1_idx=p->numvector_size;
  366. int tmp_categorize_array2_idx=p->numvector_size;
  367. bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
  368. if(bits_left > q->samples_per_channel) {
  369. bits_left = q->samples_per_channel +
  370. ((bits_left - q->samples_per_channel)*5)/8;
  371. //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
  372. }
  373. memset(&exp_index1,0,102*sizeof(int));
  374. memset(&exp_index2,0,102*sizeof(int));
  375. memset(&tmp_categorize_array,0,128*2*sizeof(int));
  376. bias=-32;
  377. /* Estimate bias. */
  378. for (i=32 ; i>0 ; i=i/2){
  379. num_bits = 0;
  380. index = 0;
  381. for (j=p->total_subbands ; j>0 ; j--){
  382. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  383. index++;
  384. num_bits+=expbits_tab[exp_idx];
  385. }
  386. if(num_bits >= bits_left - 32){
  387. bias+=i;
  388. }
  389. }
  390. /* Calculate total number of bits. */
  391. num_bits=0;
  392. for (i=0 ; i<p->total_subbands ; i++) {
  393. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  394. num_bits += expbits_tab[exp_idx];
  395. exp_index1[i] = exp_idx;
  396. exp_index2[i] = exp_idx;
  397. }
  398. tmpbias1 = tmpbias2 = num_bits;
  399. for (j = 1 ; j < p->numvector_size ; j++) {
  400. if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
  401. int max = -999999;
  402. index=-1;
  403. for (i=0 ; i<p->total_subbands ; i++){
  404. if (exp_index1[i] < 7) {
  405. v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
  406. if ( v >= max) {
  407. max = v;
  408. index = i;
  409. }
  410. }
  411. }
  412. if(index==-1)break;
  413. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  414. tmpbias1 -= expbits_tab[exp_index1[index]] -
  415. expbits_tab[exp_index1[index]+1];
  416. ++exp_index1[index];
  417. } else { /* <--- */
  418. int min = 999999;
  419. index=-1;
  420. for (i=0 ; i<p->total_subbands ; i++){
  421. if(exp_index2[i] > 0){
  422. v = (-2*exp_index2[i])-quant_index_table[i]+bias;
  423. if ( v < min) {
  424. min = v;
  425. index = i;
  426. }
  427. }
  428. }
  429. if(index == -1)break;
  430. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  431. tmpbias2 -= expbits_tab[exp_index2[index]] -
  432. expbits_tab[exp_index2[index]-1];
  433. --exp_index2[index];
  434. }
  435. }
  436. for(i=0 ; i<p->total_subbands ; i++)
  437. category[i] = exp_index2[i];
  438. for(i=0 ; i<p->numvector_size-1 ; i++)
  439. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  440. }
  441. /**
  442. * Expand the category vector.
  443. *
  444. * @param q pointer to the COOKContext
  445. * @param category pointer to the category array
  446. * @param category_index pointer to the category_index array
  447. */
  448. static inline void expand_category(COOKContext *q, int* category,
  449. int* category_index){
  450. int i;
  451. for(i=0 ; i<q->num_vectors ; i++){
  452. ++category[category_index[i]];
  453. }
  454. }
  455. /**
  456. * The real requantization of the mltcoefs
  457. *
  458. * @param q pointer to the COOKContext
  459. * @param index index
  460. * @param quant_index quantisation index
  461. * @param subband_coef_index array of indexes to quant_centroid_tab
  462. * @param subband_coef_sign signs of coefficients
  463. * @param mlt_p pointer into the mlt buffer
  464. */
  465. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  466. int* subband_coef_index, int* subband_coef_sign,
  467. float* mlt_p){
  468. int i;
  469. float f1;
  470. for(i=0 ; i<SUBBAND_SIZE ; i++) {
  471. if (subband_coef_index[i]) {
  472. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  473. if (subband_coef_sign[i]) f1 = -f1;
  474. } else {
  475. /* noise coding if subband_coef_index[i] == 0 */
  476. f1 = dither_tab[index];
  477. if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
  478. }
  479. mlt_p[i] = f1 * rootpow2tab[quant_index+63];
  480. }
  481. }
  482. /**
  483. * Unpack the subband_coef_index and subband_coef_sign vectors.
  484. *
  485. * @param q pointer to the COOKContext
  486. * @param category pointer to the category array
  487. * @param subband_coef_index array of indexes to quant_centroid_tab
  488. * @param subband_coef_sign signs of coefficients
  489. */
  490. static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
  491. int* subband_coef_sign) {
  492. int i,j;
  493. int vlc, vd ,tmp, result;
  494. vd = vd_tab[category];
  495. result = 0;
  496. for(i=0 ; i<vpr_tab[category] ; i++){
  497. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  498. if (p->bits_per_subpacket < get_bits_count(&q->gb)){
  499. vlc = 0;
  500. result = 1;
  501. }
  502. for(j=vd-1 ; j>=0 ; j--){
  503. tmp = (vlc * invradix_tab[category])/0x100000;
  504. subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
  505. vlc = tmp;
  506. }
  507. for(j=0 ; j<vd ; j++){
  508. if (subband_coef_index[i*vd + j]) {
  509. if(get_bits_count(&q->gb) < p->bits_per_subpacket){
  510. subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
  511. } else {
  512. result=1;
  513. subband_coef_sign[i*vd+j]=0;
  514. }
  515. } else {
  516. subband_coef_sign[i*vd+j]=0;
  517. }
  518. }
  519. }
  520. return result;
  521. }
  522. /**
  523. * Fill the mlt_buffer with mlt coefficients.
  524. *
  525. * @param q pointer to the COOKContext
  526. * @param category pointer to the category array
  527. * @param quant_index_table pointer to the array
  528. * @param mlt_buffer pointer to mlt coefficients
  529. */
  530. static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
  531. int *quant_index_table, float* mlt_buffer){
  532. /* A zero in this table means that the subband coefficient is
  533. random noise coded. */
  534. int subband_coef_index[SUBBAND_SIZE];
  535. /* A zero in this table means that the subband coefficient is a
  536. positive multiplicator. */
  537. int subband_coef_sign[SUBBAND_SIZE];
  538. int band, j;
  539. int index=0;
  540. for(band=0 ; band<p->total_subbands ; band++){
  541. index = category[band];
  542. if(category[band] < 7){
  543. if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
  544. index=7;
  545. for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
  546. }
  547. }
  548. if(index>=7) {
  549. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  550. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  551. }
  552. q->scalar_dequant(q, index, quant_index_table[band],
  553. subband_coef_index, subband_coef_sign,
  554. &mlt_buffer[band * SUBBAND_SIZE]);
  555. }
  556. if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
  557. return;
  558. } /* FIXME: should this be removed, or moved into loop above? */
  559. }
  560. /**
  561. * function for decoding mono data
  562. *
  563. * @param q pointer to the COOKContext
  564. * @param mlt_buffer pointer to mlt coefficients
  565. */
  566. static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
  567. int category_index[128];
  568. int quant_index_table[102];
  569. int category[128];
  570. memset(&category, 0, 128*sizeof(int));
  571. memset(&category_index, 0, 128*sizeof(int));
  572. decode_envelope(q, p, quant_index_table);
  573. q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
  574. categorize(q, p, quant_index_table, category, category_index);
  575. expand_category(q, category, category_index);
  576. decode_vectors(q, p, category, quant_index_table, mlt_buffer);
  577. }
  578. /**
  579. * the actual requantization of the timedomain samples
  580. *
  581. * @param q pointer to the COOKContext
  582. * @param buffer pointer to the timedomain buffer
  583. * @param gain_index index for the block multiplier
  584. * @param gain_index_next index for the next block multiplier
  585. */
  586. static void interpolate_float(COOKContext *q, float* buffer,
  587. int gain_index, int gain_index_next){
  588. int i;
  589. float fc1, fc2;
  590. fc1 = pow2tab[gain_index+63];
  591. if(gain_index == gain_index_next){ //static gain
  592. for(i=0 ; i<q->gain_size_factor ; i++){
  593. buffer[i]*=fc1;
  594. }
  595. return;
  596. } else { //smooth gain
  597. fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
  598. for(i=0 ; i<q->gain_size_factor ; i++){
  599. buffer[i]*=fc1;
  600. fc1*=fc2;
  601. }
  602. return;
  603. }
  604. }
  605. /**
  606. * Apply transform window, overlap buffers.
  607. *
  608. * @param q pointer to the COOKContext
  609. * @param buffer1 pointer to the mltcoefficients
  610. * @param gains_ptr current and previous gains
  611. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  612. */
  613. static void imlt_window_float (COOKContext *q, float *buffer1,
  614. cook_gains *gains_ptr, float *previous_buffer)
  615. {
  616. const float fc = pow2tab[gains_ptr->previous[0] + 63];
  617. int i;
  618. /* The weird thing here, is that the two halves of the time domain
  619. * buffer are swapped. Also, the newest data, that we save away for
  620. * next frame, has the wrong sign. Hence the subtraction below.
  621. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  622. */
  623. /* Apply window and overlap */
  624. for(i = 0; i < q->samples_per_channel; i++){
  625. buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
  626. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  627. }
  628. }
  629. /**
  630. * The modulated lapped transform, this takes transform coefficients
  631. * and transforms them into timedomain samples.
  632. * Apply transform window, overlap buffers, apply gain profile
  633. * and buffer management.
  634. *
  635. * @param q pointer to the COOKContext
  636. * @param inbuffer pointer to the mltcoefficients
  637. * @param gains_ptr current and previous gains
  638. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  639. */
  640. static void imlt_gain(COOKContext *q, float *inbuffer,
  641. cook_gains *gains_ptr, float* previous_buffer)
  642. {
  643. float *buffer0 = q->mono_mdct_output;
  644. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  645. int i;
  646. /* Inverse modified discrete cosine transform */
  647. ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
  648. q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
  649. /* Apply gain profile */
  650. for (i = 0; i < 8; i++) {
  651. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  652. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  653. gains_ptr->now[i], gains_ptr->now[i + 1]);
  654. }
  655. /* Save away the current to be previous block. */
  656. memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
  657. }
  658. /**
  659. * function for getting the jointstereo coupling information
  660. *
  661. * @param q pointer to the COOKContext
  662. * @param decouple_tab decoupling array
  663. *
  664. */
  665. static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
  666. int length, i;
  667. if(get_bits1(&q->gb)) {
  668. if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
  669. length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
  670. for (i=0 ; i<length ; i++) {
  671. decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
  672. }
  673. return;
  674. }
  675. if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
  676. length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
  677. for (i=0 ; i<length ; i++) {
  678. decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
  679. }
  680. return;
  681. }
  682. /*
  683. * function decouples a pair of signals from a single signal via multiplication.
  684. *
  685. * @param q pointer to the COOKContext
  686. * @param subband index of the current subband
  687. * @param f1 multiplier for channel 1 extraction
  688. * @param f2 multiplier for channel 2 extraction
  689. * @param decode_buffer input buffer
  690. * @param mlt_buffer1 pointer to left channel mlt coefficients
  691. * @param mlt_buffer2 pointer to right channel mlt coefficients
  692. */
  693. static void decouple_float (COOKContext *q,
  694. COOKSubpacket *p,
  695. int subband,
  696. float f1, float f2,
  697. float *decode_buffer,
  698. float *mlt_buffer1, float *mlt_buffer2)
  699. {
  700. int j, tmp_idx;
  701. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  702. tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
  703. mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
  704. mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
  705. }
  706. }
  707. /**
  708. * function for decoding joint stereo data
  709. *
  710. * @param q pointer to the COOKContext
  711. * @param mlt_buffer1 pointer to left channel mlt coefficients
  712. * @param mlt_buffer2 pointer to right channel mlt coefficients
  713. */
  714. static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
  715. float* mlt_buffer2) {
  716. int i,j;
  717. int decouple_tab[SUBBAND_SIZE];
  718. float *decode_buffer = q->decode_buffer_0;
  719. int idx, cpl_tmp;
  720. float f1,f2;
  721. const float* cplscale;
  722. memset(decouple_tab, 0, sizeof(decouple_tab));
  723. memset(decode_buffer, 0, sizeof(decode_buffer));
  724. /* Make sure the buffers are zeroed out. */
  725. memset(mlt_buffer1,0, 1024*sizeof(float));
  726. memset(mlt_buffer2,0, 1024*sizeof(float));
  727. decouple_info(q, p, decouple_tab);
  728. mono_decode(q, p, decode_buffer);
  729. /* The two channels are stored interleaved in decode_buffer. */
  730. for (i=0 ; i<p->js_subband_start ; i++) {
  731. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  732. mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
  733. mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
  734. }
  735. }
  736. /* When we reach js_subband_start (the higher frequencies)
  737. the coefficients are stored in a coupling scheme. */
  738. idx = (1 << p->js_vlc_bits) - 1;
  739. for (i=p->js_subband_start ; i<p->subbands ; i++) {
  740. cpl_tmp = cplband[i];
  741. idx -=decouple_tab[cpl_tmp];
  742. cplscale = q->cplscales[p->js_vlc_bits-2]; //choose decoupler table
  743. f1 = cplscale[decouple_tab[cpl_tmp]];
  744. f2 = cplscale[idx-1];
  745. q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  746. idx = (1 << p->js_vlc_bits) - 1;
  747. }
  748. }
  749. /**
  750. * First part of subpacket decoding:
  751. * decode raw stream bytes and read gain info.
  752. *
  753. * @param q pointer to the COOKContext
  754. * @param inbuffer pointer to raw stream data
  755. * @param gains_ptr array of current/prev gain pointers
  756. */
  757. static inline void
  758. decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
  759. cook_gains *gains_ptr)
  760. {
  761. int offset;
  762. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  763. p->bits_per_subpacket/8);
  764. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  765. p->bits_per_subpacket);
  766. decode_gain_info(&q->gb, gains_ptr->now);
  767. /* Swap current and previous gains */
  768. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  769. }
  770. /**
  771. * Saturate the output signal to signed 16bit integers.
  772. *
  773. * @param q pointer to the COOKContext
  774. * @param chan channel to saturate
  775. * @param out pointer to the output vector
  776. */
  777. static void
  778. saturate_output_float (COOKContext *q, int chan, int16_t *out)
  779. {
  780. int j;
  781. float *output = q->mono_mdct_output + q->samples_per_channel;
  782. /* Clip and convert floats to 16 bits.
  783. */
  784. for (j = 0; j < q->samples_per_channel; j++) {
  785. out[chan + q->nb_channels * j] =
  786. av_clip_int16(lrintf(output[j]));
  787. }
  788. }
  789. /**
  790. * Final part of subpacket decoding:
  791. * Apply modulated lapped transform, gain compensation,
  792. * clip and convert to integer.
  793. *
  794. * @param q pointer to the COOKContext
  795. * @param decode_buffer pointer to the mlt coefficients
  796. * @param gains array of current/prev gain pointers
  797. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  798. * @param out pointer to the output buffer
  799. * @param chan 0: left or single channel, 1: right channel
  800. */
  801. static inline void
  802. mlt_compensate_output(COOKContext *q, float *decode_buffer,
  803. cook_gains *gains, float *previous_buffer,
  804. int16_t *out, int chan)
  805. {
  806. imlt_gain(q, decode_buffer, gains, previous_buffer);
  807. q->saturate_output (q, chan, out);
  808. }
  809. /**
  810. * Cook subpacket decoding. This function returns one decoded subpacket,
  811. * usually 1024 samples per channel.
  812. *
  813. * @param q pointer to the COOKContext
  814. * @param inbuffer pointer to the inbuffer
  815. * @param outbuffer pointer to the outbuffer
  816. */
  817. static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
  818. int sub_packet_size = p->size;
  819. /* packet dump */
  820. // for (i=0 ; i<sub_packet_size ; i++) {
  821. // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
  822. // }
  823. // av_log(q->avctx, AV_LOG_ERROR, "\n");
  824. memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
  825. decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
  826. if (p->joint_stereo) {
  827. joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
  828. } else {
  829. mono_decode(q, p, q->decode_buffer_1);
  830. if (p->num_channels == 2) {
  831. decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
  832. mono_decode(q, p, q->decode_buffer_2);
  833. }
  834. }
  835. mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
  836. p->mono_previous_buffer1, outbuffer, p->ch_idx);
  837. if (p->num_channels == 2) {
  838. if (p->joint_stereo) {
  839. mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
  840. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  841. } else {
  842. mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
  843. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  844. }
  845. }
  846. }
  847. /**
  848. * Cook frame decoding
  849. *
  850. * @param avctx pointer to the AVCodecContext
  851. */
  852. static int cook_decode_frame(AVCodecContext *avctx,
  853. void *data, int *data_size,
  854. AVPacket *avpkt) {
  855. const uint8_t *buf = avpkt->data;
  856. int buf_size = avpkt->size;
  857. COOKContext *q = avctx->priv_data;
  858. int i;
  859. int offset = 0;
  860. int chidx = 0;
  861. if (buf_size < avctx->block_align)
  862. return buf_size;
  863. /* estimate subpacket sizes */
  864. q->subpacket[0].size = avctx->block_align;
  865. for(i=1;i<q->num_subpackets;i++){
  866. q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
  867. q->subpacket[0].size -= q->subpacket[i].size + 1;
  868. if (q->subpacket[0].size < 0) {
  869. av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
  870. return -1;
  871. }
  872. }
  873. /* decode supbackets */
  874. *data_size = 0;
  875. for(i=0;i<q->num_subpackets;i++){
  876. q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
  877. q->subpacket[i].ch_idx = chidx;
  878. av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
  879. decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
  880. offset += q->subpacket[i].size;
  881. chidx += q->subpacket[i].num_channels;
  882. av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
  883. }
  884. *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
  885. /* Discard the first two frames: no valid audio. */
  886. if (avctx->frame_number < 2) *data_size = 0;
  887. return avctx->block_align;
  888. }
  889. #ifdef COOKDEBUG
  890. static void dump_cook_context(COOKContext *q)
  891. {
  892. //int i=0;
  893. #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
  894. av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
  895. av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
  896. if (q->subpacket[0].cookversion > STEREO) {
  897. PRINT("js_subband_start",q->subpacket[0].js_subband_start);
  898. PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
  899. }
  900. av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
  901. PRINT("nb_channels",q->nb_channels);
  902. PRINT("bit_rate",q->bit_rate);
  903. PRINT("sample_rate",q->sample_rate);
  904. PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
  905. PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
  906. PRINT("subbands",q->subpacket[0].subbands);
  907. PRINT("random_state",q->random_state);
  908. PRINT("js_subband_start",q->subpacket[0].js_subband_start);
  909. PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
  910. PRINT("numvector_size",q->subpacket[0].numvector_size);
  911. PRINT("total_subbands",q->subpacket[0].total_subbands);
  912. }
  913. #endif
  914. static av_cold int cook_count_channels(unsigned int mask){
  915. int i;
  916. int channels = 0;
  917. for(i = 0;i<32;i++){
  918. if(mask & (1<<i))
  919. ++channels;
  920. }
  921. return channels;
  922. }
  923. /**
  924. * Cook initialization
  925. *
  926. * @param avctx pointer to the AVCodecContext
  927. */
  928. static av_cold int cook_decode_init(AVCodecContext *avctx)
  929. {
  930. COOKContext *q = avctx->priv_data;
  931. const uint8_t *edata_ptr = avctx->extradata;
  932. const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
  933. int extradata_size = avctx->extradata_size;
  934. int s = 0;
  935. unsigned int channel_mask = 0;
  936. q->avctx = avctx;
  937. /* Take care of the codec specific extradata. */
  938. if (extradata_size <= 0) {
  939. av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
  940. return -1;
  941. }
  942. av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
  943. /* Take data from the AVCodecContext (RM container). */
  944. q->sample_rate = avctx->sample_rate;
  945. q->nb_channels = avctx->channels;
  946. q->bit_rate = avctx->bit_rate;
  947. /* Initialize RNG. */
  948. av_lfg_init(&q->random_state, 0);
  949. while(edata_ptr < edata_ptr_end){
  950. /* 8 for mono, 16 for stereo, ? for multichannel
  951. Swap to right endianness so we don't need to care later on. */
  952. if (extradata_size >= 8){
  953. q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
  954. q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
  955. q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
  956. extradata_size -= 8;
  957. }
  958. if (avctx->extradata_size >= 8){
  959. bytestream_get_be32(&edata_ptr); //Unknown unused
  960. q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
  961. q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
  962. extradata_size -= 8;
  963. }
  964. /* Initialize extradata related variables. */
  965. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
  966. q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
  967. /* Initialize default data states. */
  968. q->subpacket[s].log2_numvector_size = 5;
  969. q->subpacket[s].total_subbands = q->subpacket[s].subbands;
  970. q->subpacket[s].num_channels = 1;
  971. /* Initialize version-dependent variables */
  972. av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
  973. q->subpacket[s].joint_stereo = 0;
  974. switch (q->subpacket[s].cookversion) {
  975. case MONO:
  976. if (q->nb_channels != 1) {
  977. av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
  978. return -1;
  979. }
  980. av_log(avctx,AV_LOG_DEBUG,"MONO\n");
  981. break;
  982. case STEREO:
  983. if (q->nb_channels != 1) {
  984. q->subpacket[s].bits_per_subpdiv = 1;
  985. q->subpacket[s].num_channels = 2;
  986. }
  987. av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
  988. break;
  989. case JOINT_STEREO:
  990. if (q->nb_channels != 2) {
  991. av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
  992. return -1;
  993. }
  994. av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
  995. if (avctx->extradata_size >= 16){
  996. q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
  997. q->subpacket[s].joint_stereo = 1;
  998. q->subpacket[s].num_channels = 2;
  999. }
  1000. if (q->subpacket[s].samples_per_channel > 256) {
  1001. q->subpacket[s].log2_numvector_size = 6;
  1002. }
  1003. if (q->subpacket[s].samples_per_channel > 512) {
  1004. q->subpacket[s].log2_numvector_size = 7;
  1005. }
  1006. break;
  1007. case MC_COOK:
  1008. av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
  1009. if(extradata_size >= 4)
  1010. channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
  1011. if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
  1012. q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
  1013. q->subpacket[s].joint_stereo = 1;
  1014. q->subpacket[s].num_channels = 2;
  1015. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
  1016. if (q->subpacket[s].samples_per_channel > 256) {
  1017. q->subpacket[s].log2_numvector_size = 6;
  1018. }
  1019. if (q->subpacket[s].samples_per_channel > 512) {
  1020. q->subpacket[s].log2_numvector_size = 7;
  1021. }
  1022. }else
  1023. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
  1024. break;
  1025. default:
  1026. av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
  1027. return -1;
  1028. break;
  1029. }
  1030. if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
  1031. av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
  1032. return -1;
  1033. } else
  1034. q->samples_per_channel = q->subpacket[0].samples_per_channel;
  1035. /* Initialize variable relations */
  1036. q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
  1037. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1038. if (q->subpacket[s].total_subbands > 53) {
  1039. av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
  1040. return -1;
  1041. }
  1042. if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
  1043. av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
  1044. return -1;
  1045. }
  1046. if (q->subpacket[s].subbands > 50) {
  1047. av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
  1048. return -1;
  1049. }
  1050. q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
  1051. q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
  1052. q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
  1053. q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
  1054. q->num_subpackets++;
  1055. s++;
  1056. if (s > MAX_SUBPACKETS) {
  1057. av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
  1058. return -1;
  1059. }
  1060. }
  1061. /* Generate tables */
  1062. init_pow2table();
  1063. init_gain_table(q);
  1064. init_cplscales_table(q);
  1065. if (init_cook_vlc_tables(q) != 0)
  1066. return -1;
  1067. if(avctx->block_align >= UINT_MAX/2)
  1068. return -1;
  1069. /* Pad the databuffer with:
  1070. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  1071. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  1072. q->decoded_bytes_buffer =
  1073. av_mallocz(avctx->block_align
  1074. + DECODE_BYTES_PAD1(avctx->block_align)
  1075. + FF_INPUT_BUFFER_PADDING_SIZE);
  1076. if (q->decoded_bytes_buffer == NULL)
  1077. return -1;
  1078. /* Initialize transform. */
  1079. if ( init_cook_mlt(q) != 0 )
  1080. return -1;
  1081. /* Initialize COOK signal arithmetic handling */
  1082. if (1) {
  1083. q->scalar_dequant = scalar_dequant_float;
  1084. q->decouple = decouple_float;
  1085. q->imlt_window = imlt_window_float;
  1086. q->interpolate = interpolate_float;
  1087. q->saturate_output = saturate_output_float;
  1088. }
  1089. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1090. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
  1091. } else {
  1092. av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
  1093. return -1;
  1094. }
  1095. avctx->sample_fmt = SAMPLE_FMT_S16;
  1096. if (channel_mask)
  1097. avctx->channel_layout = channel_mask;
  1098. else
  1099. avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
  1100. #ifdef COOKDEBUG
  1101. dump_cook_context(q);
  1102. #endif
  1103. return 0;
  1104. }
  1105. AVCodec cook_decoder =
  1106. {
  1107. .name = "cook",
  1108. .type = AVMEDIA_TYPE_AUDIO,
  1109. .id = CODEC_ID_COOK,
  1110. .priv_data_size = sizeof(COOKContext),
  1111. .init = cook_decode_init,
  1112. .close = cook_decode_close,
  1113. .decode = cook_decode_frame,
  1114. .long_name = NULL_IF_CONFIG_SMALL("COOK"),
  1115. };