aacsbr.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762
  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "libavutil/libm.h"
  34. #include <stdint.h>
  35. #include <float.h>
  36. #include <math.h>
  37. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  38. #define NOISE_FLOOR_OFFSET 6.0f
  39. /**
  40. * SBR VLC tables
  41. */
  42. enum {
  43. T_HUFFMAN_ENV_1_5DB,
  44. F_HUFFMAN_ENV_1_5DB,
  45. T_HUFFMAN_ENV_BAL_1_5DB,
  46. F_HUFFMAN_ENV_BAL_1_5DB,
  47. T_HUFFMAN_ENV_3_0DB,
  48. F_HUFFMAN_ENV_3_0DB,
  49. T_HUFFMAN_ENV_BAL_3_0DB,
  50. F_HUFFMAN_ENV_BAL_3_0DB,
  51. T_HUFFMAN_NOISE_3_0DB,
  52. T_HUFFMAN_NOISE_BAL_3_0DB,
  53. };
  54. /**
  55. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  56. */
  57. enum {
  58. FIXFIX,
  59. FIXVAR,
  60. VARFIX,
  61. VARVAR,
  62. };
  63. enum {
  64. EXTENSION_ID_PS = 2,
  65. };
  66. static VLC vlc_sbr[10];
  67. static const int8_t vlc_sbr_lav[10] =
  68. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  69. static const DECLARE_ALIGNED(16, float, zero64)[64];
  70. #define SBR_INIT_VLC_STATIC(num, size) \
  71. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  72. sbr_tmp[num].sbr_bits , 1, 1, \
  73. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  74. size)
  75. #define SBR_VLC_ROW(name) \
  76. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  77. av_cold void ff_aac_sbr_init(void)
  78. {
  79. int n;
  80. static const struct {
  81. const void *sbr_codes, *sbr_bits;
  82. const unsigned int table_size, elem_size;
  83. } sbr_tmp[] = {
  84. SBR_VLC_ROW(t_huffman_env_1_5dB),
  85. SBR_VLC_ROW(f_huffman_env_1_5dB),
  86. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_3_0dB),
  89. SBR_VLC_ROW(f_huffman_env_3_0dB),
  90. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  94. };
  95. // SBR VLC table initialization
  96. SBR_INIT_VLC_STATIC(0, 1098);
  97. SBR_INIT_VLC_STATIC(1, 1092);
  98. SBR_INIT_VLC_STATIC(2, 768);
  99. SBR_INIT_VLC_STATIC(3, 1026);
  100. SBR_INIT_VLC_STATIC(4, 1058);
  101. SBR_INIT_VLC_STATIC(5, 1052);
  102. SBR_INIT_VLC_STATIC(6, 544);
  103. SBR_INIT_VLC_STATIC(7, 544);
  104. SBR_INIT_VLC_STATIC(8, 592);
  105. SBR_INIT_VLC_STATIC(9, 512);
  106. for (n = 1; n < 320; n++)
  107. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  108. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  109. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  110. for (n = 0; n < 320; n++)
  111. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  112. ff_ps_init();
  113. }
  114. av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
  115. {
  116. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  117. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  118. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  119. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  120. ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
  121. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0);
  122. ff_ps_ctx_init(&sbr->ps);
  123. }
  124. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  125. {
  126. ff_mdct_end(&sbr->mdct);
  127. ff_mdct_end(&sbr->mdct_ana);
  128. }
  129. static int qsort_comparison_function_int16(const void *a, const void *b)
  130. {
  131. return *(const int16_t *)a - *(const int16_t *)b;
  132. }
  133. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  134. {
  135. int i;
  136. for (i = 0; i <= last_el; i++)
  137. if (table[i] == needle)
  138. return 1;
  139. return 0;
  140. }
  141. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  142. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  143. {
  144. int k;
  145. if (sbr->bs_limiter_bands > 0) {
  146. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  147. 1.18509277094158210129f, //2^(0.49/2)
  148. 1.11987160404675912501f }; //2^(0.49/3)
  149. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  150. int16_t patch_borders[7];
  151. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  152. patch_borders[0] = sbr->kx[1];
  153. for (k = 1; k <= sbr->num_patches; k++)
  154. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  155. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  156. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  157. if (sbr->num_patches > 1)
  158. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  159. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  160. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  161. sizeof(sbr->f_tablelim[0]),
  162. qsort_comparison_function_int16);
  163. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  164. while (out < sbr->f_tablelim + sbr->n_lim) {
  165. if (*in >= *out * lim_bands_per_octave_warped) {
  166. *++out = *in++;
  167. } else if (*in == *out ||
  168. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  169. in++;
  170. sbr->n_lim--;
  171. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  172. *out = *in++;
  173. sbr->n_lim--;
  174. } else {
  175. *++out = *in++;
  176. }
  177. }
  178. } else {
  179. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  180. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  181. sbr->n_lim = 1;
  182. }
  183. }
  184. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  185. {
  186. unsigned int cnt = get_bits_count(gb);
  187. uint8_t bs_header_extra_1;
  188. uint8_t bs_header_extra_2;
  189. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  190. SpectrumParameters old_spectrum_params;
  191. sbr->start = 1;
  192. // Save last spectrum parameters variables to compare to new ones
  193. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  194. sbr->bs_amp_res_header = get_bits1(gb);
  195. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  196. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  197. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  198. skip_bits(gb, 2); // bs_reserved
  199. bs_header_extra_1 = get_bits1(gb);
  200. bs_header_extra_2 = get_bits1(gb);
  201. if (bs_header_extra_1) {
  202. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  203. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  204. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  205. } else {
  206. sbr->spectrum_params.bs_freq_scale = 2;
  207. sbr->spectrum_params.bs_alter_scale = 1;
  208. sbr->spectrum_params.bs_noise_bands = 2;
  209. }
  210. // Check if spectrum parameters changed
  211. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  212. sbr->reset = 1;
  213. if (bs_header_extra_2) {
  214. sbr->bs_limiter_bands = get_bits(gb, 2);
  215. sbr->bs_limiter_gains = get_bits(gb, 2);
  216. sbr->bs_interpol_freq = get_bits1(gb);
  217. sbr->bs_smoothing_mode = get_bits1(gb);
  218. } else {
  219. sbr->bs_limiter_bands = 2;
  220. sbr->bs_limiter_gains = 2;
  221. sbr->bs_interpol_freq = 1;
  222. sbr->bs_smoothing_mode = 1;
  223. }
  224. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  225. sbr_make_f_tablelim(sbr);
  226. return get_bits_count(gb) - cnt;
  227. }
  228. static int array_min_int16(const int16_t *array, int nel)
  229. {
  230. int i, min = array[0];
  231. for (i = 1; i < nel; i++)
  232. min = FFMIN(array[i], min);
  233. return min;
  234. }
  235. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  236. {
  237. int k, previous, present;
  238. float base, prod;
  239. base = powf((float)stop / start, 1.0f / num_bands);
  240. prod = start;
  241. previous = start;
  242. for (k = 0; k < num_bands-1; k++) {
  243. prod *= base;
  244. present = lrintf(prod);
  245. bands[k] = present - previous;
  246. previous = present;
  247. }
  248. bands[num_bands-1] = stop - previous;
  249. }
  250. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  251. {
  252. // Requirements (14496-3 sp04 p205)
  253. if (n_master <= 0) {
  254. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  255. return -1;
  256. }
  257. if (bs_xover_band >= n_master) {
  258. av_log(avctx, AV_LOG_ERROR,
  259. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  260. bs_xover_band);
  261. return -1;
  262. }
  263. return 0;
  264. }
  265. /// Master Frequency Band Table (14496-3 sp04 p194)
  266. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  267. SpectrumParameters *spectrum)
  268. {
  269. unsigned int temp, max_qmf_subbands;
  270. unsigned int start_min, stop_min;
  271. int k;
  272. const int8_t *sbr_offset_ptr;
  273. int16_t stop_dk[13];
  274. if (sbr->sample_rate < 32000) {
  275. temp = 3000;
  276. } else if (sbr->sample_rate < 64000) {
  277. temp = 4000;
  278. } else
  279. temp = 5000;
  280. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  281. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  282. switch (sbr->sample_rate) {
  283. case 16000:
  284. sbr_offset_ptr = sbr_offset[0];
  285. break;
  286. case 22050:
  287. sbr_offset_ptr = sbr_offset[1];
  288. break;
  289. case 24000:
  290. sbr_offset_ptr = sbr_offset[2];
  291. break;
  292. case 32000:
  293. sbr_offset_ptr = sbr_offset[3];
  294. break;
  295. case 44100: case 48000: case 64000:
  296. sbr_offset_ptr = sbr_offset[4];
  297. break;
  298. case 88200: case 96000: case 128000: case 176400: case 192000:
  299. sbr_offset_ptr = sbr_offset[5];
  300. break;
  301. default:
  302. av_log(ac->avctx, AV_LOG_ERROR,
  303. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  304. return -1;
  305. }
  306. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  307. if (spectrum->bs_stop_freq < 14) {
  308. sbr->k[2] = stop_min;
  309. make_bands(stop_dk, stop_min, 64, 13);
  310. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  311. for (k = 0; k < spectrum->bs_stop_freq; k++)
  312. sbr->k[2] += stop_dk[k];
  313. } else if (spectrum->bs_stop_freq == 14) {
  314. sbr->k[2] = 2*sbr->k[0];
  315. } else if (spectrum->bs_stop_freq == 15) {
  316. sbr->k[2] = 3*sbr->k[0];
  317. } else {
  318. av_log(ac->avctx, AV_LOG_ERROR,
  319. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  320. return -1;
  321. }
  322. sbr->k[2] = FFMIN(64, sbr->k[2]);
  323. // Requirements (14496-3 sp04 p205)
  324. if (sbr->sample_rate <= 32000) {
  325. max_qmf_subbands = 48;
  326. } else if (sbr->sample_rate == 44100) {
  327. max_qmf_subbands = 35;
  328. } else if (sbr->sample_rate >= 48000)
  329. max_qmf_subbands = 32;
  330. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  331. av_log(ac->avctx, AV_LOG_ERROR,
  332. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  333. return -1;
  334. }
  335. if (!spectrum->bs_freq_scale) {
  336. int dk, k2diff;
  337. dk = spectrum->bs_alter_scale + 1;
  338. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  339. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  340. return -1;
  341. for (k = 1; k <= sbr->n_master; k++)
  342. sbr->f_master[k] = dk;
  343. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  344. if (k2diff < 0) {
  345. sbr->f_master[1]--;
  346. sbr->f_master[2]-= (k2diff < -1);
  347. } else if (k2diff) {
  348. sbr->f_master[sbr->n_master]++;
  349. }
  350. sbr->f_master[0] = sbr->k[0];
  351. for (k = 1; k <= sbr->n_master; k++)
  352. sbr->f_master[k] += sbr->f_master[k - 1];
  353. } else {
  354. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  355. int two_regions, num_bands_0;
  356. int vdk0_max, vdk1_min;
  357. int16_t vk0[49];
  358. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  359. two_regions = 1;
  360. sbr->k[1] = 2 * sbr->k[0];
  361. } else {
  362. two_regions = 0;
  363. sbr->k[1] = sbr->k[2];
  364. }
  365. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  366. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  367. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  368. return -1;
  369. }
  370. vk0[0] = 0;
  371. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  372. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  373. vdk0_max = vk0[num_bands_0];
  374. vk0[0] = sbr->k[0];
  375. for (k = 1; k <= num_bands_0; k++) {
  376. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  377. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  378. return -1;
  379. }
  380. vk0[k] += vk0[k-1];
  381. }
  382. if (two_regions) {
  383. int16_t vk1[49];
  384. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  385. : 1.0f; // bs_alter_scale = {0,1}
  386. int num_bands_1 = lrintf(half_bands * invwarp *
  387. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  388. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  389. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  390. if (vdk1_min < vdk0_max) {
  391. int change;
  392. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  393. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  394. vk1[1] += change;
  395. vk1[num_bands_1] -= change;
  396. }
  397. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  398. vk1[0] = sbr->k[1];
  399. for (k = 1; k <= num_bands_1; k++) {
  400. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  401. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  402. return -1;
  403. }
  404. vk1[k] += vk1[k-1];
  405. }
  406. sbr->n_master = num_bands_0 + num_bands_1;
  407. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  408. return -1;
  409. memcpy(&sbr->f_master[0], vk0,
  410. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  411. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  412. num_bands_1 * sizeof(sbr->f_master[0]));
  413. } else {
  414. sbr->n_master = num_bands_0;
  415. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  416. return -1;
  417. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  418. }
  419. }
  420. return 0;
  421. }
  422. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  423. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  424. {
  425. int i, k, sb = 0;
  426. int msb = sbr->k[0];
  427. int usb = sbr->kx[1];
  428. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  429. sbr->num_patches = 0;
  430. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  431. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  432. } else
  433. k = sbr->n_master;
  434. do {
  435. int odd = 0;
  436. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  437. sb = sbr->f_master[i];
  438. odd = (sb + sbr->k[0]) & 1;
  439. }
  440. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  441. // After this check the final number of patches can still be six which is
  442. // illegal however the Coding Technologies decoder check stream has a final
  443. // count of 6 patches
  444. if (sbr->num_patches > 5) {
  445. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  446. return -1;
  447. }
  448. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  449. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  450. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  451. usb = sb;
  452. msb = sb;
  453. sbr->num_patches++;
  454. } else
  455. msb = sbr->kx[1];
  456. if (sbr->f_master[k] - sb < 3)
  457. k = sbr->n_master;
  458. } while (sb != sbr->kx[1] + sbr->m[1]);
  459. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  460. sbr->num_patches--;
  461. return 0;
  462. }
  463. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  464. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  465. {
  466. int k, temp;
  467. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  468. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  469. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  470. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  471. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  472. sbr->kx[1] = sbr->f_tablehigh[0];
  473. // Requirements (14496-3 sp04 p205)
  474. if (sbr->kx[1] + sbr->m[1] > 64) {
  475. av_log(ac->avctx, AV_LOG_ERROR,
  476. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  477. return -1;
  478. }
  479. if (sbr->kx[1] > 32) {
  480. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  481. return -1;
  482. }
  483. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  484. temp = sbr->n[1] & 1;
  485. for (k = 1; k <= sbr->n[0]; k++)
  486. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  487. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  488. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  489. if (sbr->n_q > 5) {
  490. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  491. return -1;
  492. }
  493. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  494. temp = 0;
  495. for (k = 1; k <= sbr->n_q; k++) {
  496. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  497. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  498. }
  499. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  500. return -1;
  501. sbr_make_f_tablelim(sbr);
  502. sbr->data[0].f_indexnoise = 0;
  503. sbr->data[1].f_indexnoise = 0;
  504. return 0;
  505. }
  506. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  507. int elements)
  508. {
  509. int i;
  510. for (i = 0; i < elements; i++) {
  511. vec[i] = get_bits1(gb);
  512. }
  513. }
  514. /** ceil(log2(index+1)) */
  515. static const int8_t ceil_log2[] = {
  516. 0, 1, 2, 2, 3, 3,
  517. };
  518. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  519. GetBitContext *gb, SBRData *ch_data)
  520. {
  521. int i;
  522. unsigned bs_pointer = 0;
  523. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  524. int abs_bord_trail = 16;
  525. int num_rel_lead, num_rel_trail;
  526. unsigned bs_num_env_old = ch_data->bs_num_env;
  527. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  528. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  529. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  530. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  531. case FIXFIX:
  532. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  533. num_rel_lead = ch_data->bs_num_env - 1;
  534. if (ch_data->bs_num_env == 1)
  535. ch_data->bs_amp_res = 0;
  536. if (ch_data->bs_num_env > 4) {
  537. av_log(ac->avctx, AV_LOG_ERROR,
  538. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  539. ch_data->bs_num_env);
  540. return -1;
  541. }
  542. ch_data->t_env[0] = 0;
  543. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  544. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  545. ch_data->bs_num_env;
  546. for (i = 0; i < num_rel_lead; i++)
  547. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  548. ch_data->bs_freq_res[1] = get_bits1(gb);
  549. for (i = 1; i < ch_data->bs_num_env; i++)
  550. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  551. break;
  552. case FIXVAR:
  553. abs_bord_trail += get_bits(gb, 2);
  554. num_rel_trail = get_bits(gb, 2);
  555. ch_data->bs_num_env = num_rel_trail + 1;
  556. ch_data->t_env[0] = 0;
  557. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  558. for (i = 0; i < num_rel_trail; i++)
  559. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  560. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  561. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  562. for (i = 0; i < ch_data->bs_num_env; i++)
  563. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  564. break;
  565. case VARFIX:
  566. ch_data->t_env[0] = get_bits(gb, 2);
  567. num_rel_lead = get_bits(gb, 2);
  568. ch_data->bs_num_env = num_rel_lead + 1;
  569. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  570. for (i = 0; i < num_rel_lead; i++)
  571. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  572. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  573. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  574. break;
  575. case VARVAR:
  576. ch_data->t_env[0] = get_bits(gb, 2);
  577. abs_bord_trail += get_bits(gb, 2);
  578. num_rel_lead = get_bits(gb, 2);
  579. num_rel_trail = get_bits(gb, 2);
  580. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  581. if (ch_data->bs_num_env > 5) {
  582. av_log(ac->avctx, AV_LOG_ERROR,
  583. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  584. ch_data->bs_num_env);
  585. return -1;
  586. }
  587. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  588. for (i = 0; i < num_rel_lead; i++)
  589. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  590. for (i = 0; i < num_rel_trail; i++)
  591. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  592. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  593. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  594. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  595. break;
  596. }
  597. if (bs_pointer > ch_data->bs_num_env + 1) {
  598. av_log(ac->avctx, AV_LOG_ERROR,
  599. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  600. bs_pointer);
  601. return -1;
  602. }
  603. for (i = 1; i <= ch_data->bs_num_env; i++) {
  604. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  605. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  606. return -1;
  607. }
  608. }
  609. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  610. ch_data->t_q[0] = ch_data->t_env[0];
  611. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  612. if (ch_data->bs_num_noise > 1) {
  613. unsigned int idx;
  614. if (ch_data->bs_frame_class == FIXFIX) {
  615. idx = ch_data->bs_num_env >> 1;
  616. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  617. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  618. } else { // VARFIX
  619. if (!bs_pointer)
  620. idx = 1;
  621. else if (bs_pointer == 1)
  622. idx = ch_data->bs_num_env - 1;
  623. else // bs_pointer > 1
  624. idx = bs_pointer - 1;
  625. }
  626. ch_data->t_q[1] = ch_data->t_env[idx];
  627. }
  628. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  629. ch_data->e_a[1] = -1;
  630. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  631. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  632. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  633. ch_data->e_a[1] = bs_pointer - 1;
  634. return 0;
  635. }
  636. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  637. //These variables are saved from the previous frame rather than copied
  638. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  639. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  640. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  641. //These variables are read from the bitstream and therefore copied
  642. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  643. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  644. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  645. dst->bs_num_env = src->bs_num_env;
  646. dst->bs_amp_res = src->bs_amp_res;
  647. dst->bs_num_noise = src->bs_num_noise;
  648. dst->bs_frame_class = src->bs_frame_class;
  649. dst->e_a[1] = src->e_a[1];
  650. }
  651. /// Read how the envelope and noise floor data is delta coded
  652. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  653. SBRData *ch_data)
  654. {
  655. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  656. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  657. }
  658. /// Read inverse filtering data
  659. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  660. SBRData *ch_data)
  661. {
  662. int i;
  663. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  664. for (i = 0; i < sbr->n_q; i++)
  665. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  666. }
  667. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  668. SBRData *ch_data, int ch)
  669. {
  670. int bits;
  671. int i, j, k;
  672. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  673. int t_lav, f_lav;
  674. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  675. const int odd = sbr->n[1] & 1;
  676. if (sbr->bs_coupling && ch) {
  677. if (ch_data->bs_amp_res) {
  678. bits = 5;
  679. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  680. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  681. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  682. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  683. } else {
  684. bits = 6;
  685. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  686. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  687. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  688. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  689. }
  690. } else {
  691. if (ch_data->bs_amp_res) {
  692. bits = 6;
  693. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  694. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  695. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  696. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  697. } else {
  698. bits = 7;
  699. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  700. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  701. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  702. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  703. }
  704. }
  705. for (i = 0; i < ch_data->bs_num_env; i++) {
  706. if (ch_data->bs_df_env[i]) {
  707. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  708. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  709. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  710. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  711. } else if (ch_data->bs_freq_res[i + 1]) {
  712. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  713. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  714. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  715. }
  716. } else {
  717. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  718. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  719. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  720. }
  721. }
  722. } else {
  723. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  724. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  725. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  726. }
  727. }
  728. //assign 0th elements of env_facs from last elements
  729. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  730. sizeof(ch_data->env_facs[0]));
  731. }
  732. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  733. SBRData *ch_data, int ch)
  734. {
  735. int i, j;
  736. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  737. int t_lav, f_lav;
  738. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  739. if (sbr->bs_coupling && ch) {
  740. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  741. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  742. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  743. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  744. } else {
  745. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  746. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  747. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  748. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  749. }
  750. for (i = 0; i < ch_data->bs_num_noise; i++) {
  751. if (ch_data->bs_df_noise[i]) {
  752. for (j = 0; j < sbr->n_q; j++)
  753. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  754. } else {
  755. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  756. for (j = 1; j < sbr->n_q; j++)
  757. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  758. }
  759. }
  760. //assign 0th elements of noise_facs from last elements
  761. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  762. sizeof(ch_data->noise_facs[0]));
  763. }
  764. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  765. GetBitContext *gb,
  766. int bs_extension_id, int *num_bits_left)
  767. {
  768. switch (bs_extension_id) {
  769. case EXTENSION_ID_PS:
  770. if (!ac->m4ac.ps) {
  771. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  772. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  773. *num_bits_left = 0;
  774. } else {
  775. #if 1
  776. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  777. #else
  778. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  779. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  780. *num_bits_left = 0;
  781. #endif
  782. }
  783. break;
  784. default:
  785. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  786. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  787. *num_bits_left = 0;
  788. break;
  789. }
  790. }
  791. static int read_sbr_single_channel_element(AACContext *ac,
  792. SpectralBandReplication *sbr,
  793. GetBitContext *gb)
  794. {
  795. if (get_bits1(gb)) // bs_data_extra
  796. skip_bits(gb, 4); // bs_reserved
  797. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  798. return -1;
  799. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  800. read_sbr_invf(sbr, gb, &sbr->data[0]);
  801. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  802. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  803. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  804. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  805. return 0;
  806. }
  807. static int read_sbr_channel_pair_element(AACContext *ac,
  808. SpectralBandReplication *sbr,
  809. GetBitContext *gb)
  810. {
  811. if (get_bits1(gb)) // bs_data_extra
  812. skip_bits(gb, 8); // bs_reserved
  813. if ((sbr->bs_coupling = get_bits1(gb))) {
  814. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  815. return -1;
  816. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  817. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  818. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  819. read_sbr_invf(sbr, gb, &sbr->data[0]);
  820. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  821. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  822. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  823. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  824. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  825. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  826. } else {
  827. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  828. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  829. return -1;
  830. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  831. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  832. read_sbr_invf(sbr, gb, &sbr->data[0]);
  833. read_sbr_invf(sbr, gb, &sbr->data[1]);
  834. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  835. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  836. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  837. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  838. }
  839. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  840. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  841. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  842. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  843. return 0;
  844. }
  845. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  846. GetBitContext *gb, int id_aac)
  847. {
  848. unsigned int cnt = get_bits_count(gb);
  849. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  850. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  851. sbr->start = 0;
  852. return get_bits_count(gb) - cnt;
  853. }
  854. } else if (id_aac == TYPE_CPE) {
  855. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  856. sbr->start = 0;
  857. return get_bits_count(gb) - cnt;
  858. }
  859. } else {
  860. av_log(ac->avctx, AV_LOG_ERROR,
  861. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  862. sbr->start = 0;
  863. return get_bits_count(gb) - cnt;
  864. }
  865. if (get_bits1(gb)) { // bs_extended_data
  866. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  867. if (num_bits_left == 15)
  868. num_bits_left += get_bits(gb, 8); // bs_esc_count
  869. num_bits_left <<= 3;
  870. while (num_bits_left > 7) {
  871. num_bits_left -= 2;
  872. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  873. }
  874. if (num_bits_left < 0) {
  875. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  876. }
  877. if (num_bits_left > 0)
  878. skip_bits(gb, num_bits_left);
  879. }
  880. return get_bits_count(gb) - cnt;
  881. }
  882. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  883. {
  884. int err;
  885. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  886. if (err >= 0)
  887. err = sbr_make_f_derived(ac, sbr);
  888. if (err < 0) {
  889. av_log(ac->avctx, AV_LOG_ERROR,
  890. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  891. sbr->start = 0;
  892. }
  893. }
  894. /**
  895. * Decode Spectral Band Replication extension data; reference: table 4.55.
  896. *
  897. * @param crc flag indicating the presence of CRC checksum
  898. * @param cnt length of TYPE_FIL syntactic element in bytes
  899. *
  900. * @return Returns number of bytes consumed from the TYPE_FIL element.
  901. */
  902. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  903. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  904. {
  905. unsigned int num_sbr_bits = 0, num_align_bits;
  906. unsigned bytes_read;
  907. GetBitContext gbc = *gb_host, *gb = &gbc;
  908. skip_bits_long(gb_host, cnt*8 - 4);
  909. sbr->reset = 0;
  910. if (!sbr->sample_rate)
  911. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  912. if (!ac->m4ac.ext_sample_rate)
  913. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  914. if (crc) {
  915. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  916. num_sbr_bits += 10;
  917. }
  918. //Save some state from the previous frame.
  919. sbr->kx[0] = sbr->kx[1];
  920. sbr->m[0] = sbr->m[1];
  921. num_sbr_bits++;
  922. if (get_bits1(gb)) // bs_header_flag
  923. num_sbr_bits += read_sbr_header(sbr, gb);
  924. if (sbr->reset)
  925. sbr_reset(ac, sbr);
  926. if (sbr->start)
  927. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  928. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  929. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  930. if (bytes_read > cnt) {
  931. av_log(ac->avctx, AV_LOG_ERROR,
  932. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  933. }
  934. return cnt;
  935. }
  936. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  937. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  938. {
  939. int k, e;
  940. int ch;
  941. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  942. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  943. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  944. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  945. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  946. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  947. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  948. float fac = temp1 / (1.0f + temp2);
  949. sbr->data[0].env_facs[e][k] = fac;
  950. sbr->data[1].env_facs[e][k] = fac * temp2;
  951. }
  952. }
  953. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  954. for (k = 0; k < sbr->n_q; k++) {
  955. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  956. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  957. float fac = temp1 / (1.0f + temp2);
  958. sbr->data[0].noise_facs[e][k] = fac;
  959. sbr->data[1].noise_facs[e][k] = fac * temp2;
  960. }
  961. }
  962. } else { // SCE or one non-coupled CPE
  963. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  964. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  965. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  966. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  967. sbr->data[ch].env_facs[e][k] =
  968. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  969. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  970. for (k = 0; k < sbr->n_q; k++)
  971. sbr->data[ch].noise_facs[e][k] =
  972. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  973. }
  974. }
  975. }
  976. /**
  977. * Analysis QMF Bank (14496-3 sp04 p206)
  978. *
  979. * @param x pointer to the beginning of the first sample window
  980. * @param W array of complex-valued samples split into subbands
  981. */
  982. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  983. float z[320], float W[2][32][32][2])
  984. {
  985. int i, k;
  986. memcpy(W[0], W[1], sizeof(W[0]));
  987. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  988. memcpy(x+288, in, 1024*sizeof(x[0]));
  989. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  990. // are not supported
  991. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  992. for (k = 0; k < 64; k++) {
  993. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  994. z[k] = f;
  995. }
  996. //Shuffle to IMDCT
  997. z[64] = z[0];
  998. for (k = 1; k < 32; k++) {
  999. z[64+2*k-1] = z[ k];
  1000. z[64+2*k ] = -z[64-k];
  1001. }
  1002. z[64+63] = z[32];
  1003. mdct->imdct_half(mdct, z, z+64);
  1004. for (k = 0; k < 32; k++) {
  1005. W[1][i][k][0] = -z[63-k];
  1006. W[1][i][k][1] = z[k];
  1007. }
  1008. x += 32;
  1009. }
  1010. }
  1011. /**
  1012. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1013. * (14496-3 sp04 p206)
  1014. */
  1015. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1016. float *out, float X[2][38][64],
  1017. float mdct_buf[2][64],
  1018. float *v0, int *v_off, const unsigned int div)
  1019. {
  1020. int i, n;
  1021. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1022. float *v;
  1023. for (i = 0; i < 32; i++) {
  1024. if (*v_off == 0) {
  1025. int saved_samples = (1280 - 128) >> div;
  1026. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1027. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1028. } else {
  1029. *v_off -= 128 >> div;
  1030. }
  1031. v = v0 + *v_off;
  1032. if (div) {
  1033. for (n = 0; n < 32; n++) {
  1034. X[0][i][ n] = -X[0][i][n];
  1035. X[0][i][32+n] = X[1][i][31-n];
  1036. }
  1037. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1038. for (n = 0; n < 32; n++) {
  1039. v[ n] = mdct_buf[0][63 - 2*n];
  1040. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1041. }
  1042. } else {
  1043. for (n = 1; n < 64; n+=2) {
  1044. X[1][i][n] = -X[1][i][n];
  1045. }
  1046. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1047. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1048. for (n = 0; n < 64; n++) {
  1049. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1050. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1051. }
  1052. }
  1053. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1054. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1058. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1063. out += 64 >> div;
  1064. }
  1065. }
  1066. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1067. {
  1068. int i;
  1069. float real_sum = 0.0f;
  1070. float imag_sum = 0.0f;
  1071. if (lag) {
  1072. for (i = 1; i < 38; i++) {
  1073. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1074. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1075. }
  1076. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1077. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1078. if (lag == 1) {
  1079. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1080. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1081. }
  1082. } else {
  1083. for (i = 1; i < 38; i++) {
  1084. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1085. }
  1086. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1087. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1088. }
  1089. }
  1090. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1091. * (14496-3 sp04 p214)
  1092. * Warning: This routine does not seem numerically stable.
  1093. */
  1094. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1095. const float X_low[32][40][2], int k0)
  1096. {
  1097. int k;
  1098. for (k = 0; k < k0; k++) {
  1099. float phi[3][2][2], dk;
  1100. autocorrelate(X_low[k], phi, 0);
  1101. autocorrelate(X_low[k], phi, 1);
  1102. autocorrelate(X_low[k], phi, 2);
  1103. dk = phi[2][1][0] * phi[1][0][0] -
  1104. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1105. if (!dk) {
  1106. alpha1[k][0] = 0;
  1107. alpha1[k][1] = 0;
  1108. } else {
  1109. float temp_real, temp_im;
  1110. temp_real = phi[0][0][0] * phi[1][1][0] -
  1111. phi[0][0][1] * phi[1][1][1] -
  1112. phi[0][1][0] * phi[1][0][0];
  1113. temp_im = phi[0][0][0] * phi[1][1][1] +
  1114. phi[0][0][1] * phi[1][1][0] -
  1115. phi[0][1][1] * phi[1][0][0];
  1116. alpha1[k][0] = temp_real / dk;
  1117. alpha1[k][1] = temp_im / dk;
  1118. }
  1119. if (!phi[1][0][0]) {
  1120. alpha0[k][0] = 0;
  1121. alpha0[k][1] = 0;
  1122. } else {
  1123. float temp_real, temp_im;
  1124. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1125. alpha1[k][1] * phi[1][1][1];
  1126. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1127. alpha1[k][0] * phi[1][1][1];
  1128. alpha0[k][0] = -temp_real / phi[1][0][0];
  1129. alpha0[k][1] = -temp_im / phi[1][0][0];
  1130. }
  1131. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1132. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1133. alpha1[k][0] = 0;
  1134. alpha1[k][1] = 0;
  1135. alpha0[k][0] = 0;
  1136. alpha0[k][1] = 0;
  1137. }
  1138. }
  1139. }
  1140. /// Chirp Factors (14496-3 sp04 p214)
  1141. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1142. {
  1143. int i;
  1144. float new_bw;
  1145. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1146. for (i = 0; i < sbr->n_q; i++) {
  1147. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1148. new_bw = 0.6f;
  1149. } else
  1150. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1151. if (new_bw < ch_data->bw_array[i]) {
  1152. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1153. } else
  1154. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1155. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1156. }
  1157. }
  1158. /// Generate the subband filtered lowband
  1159. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1160. float X_low[32][40][2], const float W[2][32][32][2])
  1161. {
  1162. int i, k;
  1163. const int t_HFGen = 8;
  1164. const int i_f = 32;
  1165. memset(X_low, 0, 32*sizeof(*X_low));
  1166. for (k = 0; k < sbr->kx[1]; k++) {
  1167. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1168. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1169. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1170. }
  1171. }
  1172. for (k = 0; k < sbr->kx[0]; k++) {
  1173. for (i = 0; i < t_HFGen; i++) {
  1174. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1175. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1176. }
  1177. }
  1178. return 0;
  1179. }
  1180. /// High Frequency Generator (14496-3 sp04 p215)
  1181. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1182. float X_high[64][40][2], const float X_low[32][40][2],
  1183. const float (*alpha0)[2], const float (*alpha1)[2],
  1184. const float bw_array[5], const uint8_t *t_env,
  1185. int bs_num_env)
  1186. {
  1187. int i, j, x;
  1188. int g = 0;
  1189. int k = sbr->kx[1];
  1190. for (j = 0; j < sbr->num_patches; j++) {
  1191. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1192. float alpha[4];
  1193. const int p = sbr->patch_start_subband[j] + x;
  1194. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1195. g++;
  1196. g--;
  1197. if (g < 0) {
  1198. av_log(ac->avctx, AV_LOG_ERROR,
  1199. "ERROR : no subband found for frequency %d\n", k);
  1200. return -1;
  1201. }
  1202. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1203. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1204. alpha[2] = alpha0[p][0] * bw_array[g];
  1205. alpha[3] = alpha0[p][1] * bw_array[g];
  1206. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1207. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1208. X_high[k][idx][0] =
  1209. X_low[p][idx - 2][0] * alpha[0] -
  1210. X_low[p][idx - 2][1] * alpha[1] +
  1211. X_low[p][idx - 1][0] * alpha[2] -
  1212. X_low[p][idx - 1][1] * alpha[3] +
  1213. X_low[p][idx][0];
  1214. X_high[k][idx][1] =
  1215. X_low[p][idx - 2][1] * alpha[0] +
  1216. X_low[p][idx - 2][0] * alpha[1] +
  1217. X_low[p][idx - 1][1] * alpha[2] +
  1218. X_low[p][idx - 1][0] * alpha[3] +
  1219. X_low[p][idx][1];
  1220. }
  1221. }
  1222. }
  1223. if (k < sbr->m[1] + sbr->kx[1])
  1224. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1225. return 0;
  1226. }
  1227. /// Generate the subband filtered lowband
  1228. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1229. const float X_low[32][40][2], const float Y[2][38][64][2],
  1230. int ch)
  1231. {
  1232. int k, i;
  1233. const int i_f = 32;
  1234. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1235. memset(X, 0, 2*sizeof(*X));
  1236. for (k = 0; k < sbr->kx[0]; k++) {
  1237. for (i = 0; i < i_Temp; i++) {
  1238. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1239. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1240. }
  1241. }
  1242. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1243. for (i = 0; i < i_Temp; i++) {
  1244. X[0][i][k] = Y[0][i + i_f][k][0];
  1245. X[1][i][k] = Y[0][i + i_f][k][1];
  1246. }
  1247. }
  1248. for (k = 0; k < sbr->kx[1]; k++) {
  1249. for (i = i_Temp; i < 38; i++) {
  1250. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1251. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1252. }
  1253. }
  1254. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1255. for (i = i_Temp; i < i_f; i++) {
  1256. X[0][i][k] = Y[1][i][k][0];
  1257. X[1][i][k] = Y[1][i][k][1];
  1258. }
  1259. }
  1260. return 0;
  1261. }
  1262. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1263. * (14496-3 sp04 p217)
  1264. */
  1265. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1266. SBRData *ch_data, int e_a[2])
  1267. {
  1268. int e, i, m;
  1269. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1270. for (e = 0; e < ch_data->bs_num_env; e++) {
  1271. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1272. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1273. int k;
  1274. for (i = 0; i < ilim; i++)
  1275. for (m = table[i]; m < table[i + 1]; m++)
  1276. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1277. // ch_data->bs_num_noise > 1 => 2 noise floors
  1278. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1279. for (i = 0; i < sbr->n_q; i++)
  1280. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1281. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1282. for (i = 0; i < sbr->n[1]; i++) {
  1283. if (ch_data->bs_add_harmonic_flag) {
  1284. const unsigned int m_midpoint =
  1285. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1286. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1287. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1288. }
  1289. }
  1290. for (i = 0; i < ilim; i++) {
  1291. int additional_sinusoid_present = 0;
  1292. for (m = table[i]; m < table[i + 1]; m++) {
  1293. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1294. additional_sinusoid_present = 1;
  1295. break;
  1296. }
  1297. }
  1298. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1299. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1300. }
  1301. }
  1302. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1303. }
  1304. /// Estimation of current envelope (14496-3 sp04 p218)
  1305. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1306. SpectralBandReplication *sbr, SBRData *ch_data)
  1307. {
  1308. int e, i, m;
  1309. if (sbr->bs_interpol_freq) {
  1310. for (e = 0; e < ch_data->bs_num_env; e++) {
  1311. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1312. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1313. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1314. for (m = 0; m < sbr->m[1]; m++) {
  1315. float sum = 0.0f;
  1316. for (i = ilb; i < iub; i++) {
  1317. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1318. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1319. }
  1320. e_curr[e][m] = sum * recip_env_size;
  1321. }
  1322. }
  1323. } else {
  1324. int k, p;
  1325. for (e = 0; e < ch_data->bs_num_env; e++) {
  1326. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1327. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1328. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1329. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1330. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1331. float sum = 0.0f;
  1332. const int den = env_size * (table[p + 1] - table[p]);
  1333. for (k = table[p]; k < table[p + 1]; k++) {
  1334. for (i = ilb; i < iub; i++) {
  1335. sum += X_high[k][i][0] * X_high[k][i][0] +
  1336. X_high[k][i][1] * X_high[k][i][1];
  1337. }
  1338. }
  1339. sum /= den;
  1340. for (k = table[p]; k < table[p + 1]; k++) {
  1341. e_curr[e][k - sbr->kx[1]] = sum;
  1342. }
  1343. }
  1344. }
  1345. }
  1346. }
  1347. /**
  1348. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1349. * and Calculation of gain (14496-3 sp04 p219)
  1350. */
  1351. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1352. SBRData *ch_data, const int e_a[2])
  1353. {
  1354. int e, k, m;
  1355. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1356. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1357. for (e = 0; e < ch_data->bs_num_env; e++) {
  1358. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1359. for (k = 0; k < sbr->n_lim; k++) {
  1360. float gain_boost, gain_max;
  1361. float sum[2] = { 0.0f, 0.0f };
  1362. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1363. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1364. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1365. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1366. if (!sbr->s_mapped[e][m]) {
  1367. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1368. ((1.0f + sbr->e_curr[e][m]) *
  1369. (1.0f + sbr->q_mapped[e][m] * delta)));
  1370. } else {
  1371. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1372. ((1.0f + sbr->e_curr[e][m]) *
  1373. (1.0f + sbr->q_mapped[e][m])));
  1374. }
  1375. }
  1376. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1377. sum[0] += sbr->e_origmapped[e][m];
  1378. sum[1] += sbr->e_curr[e][m];
  1379. }
  1380. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1381. gain_max = FFMIN(100000.f, gain_max);
  1382. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1383. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1384. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1385. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1386. }
  1387. sum[0] = sum[1] = 0.0f;
  1388. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1389. sum[0] += sbr->e_origmapped[e][m];
  1390. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1391. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1392. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1393. }
  1394. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1395. gain_boost = FFMIN(1.584893192f, gain_boost);
  1396. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1397. sbr->gain[e][m] *= gain_boost;
  1398. sbr->q_m[e][m] *= gain_boost;
  1399. sbr->s_m[e][m] *= gain_boost;
  1400. }
  1401. }
  1402. }
  1403. }
  1404. /// Assembling HF Signals (14496-3 sp04 p220)
  1405. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1406. SpectralBandReplication *sbr, SBRData *ch_data,
  1407. const int e_a[2])
  1408. {
  1409. int e, i, j, m;
  1410. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1411. const int kx = sbr->kx[1];
  1412. const int m_max = sbr->m[1];
  1413. static const float h_smooth[5] = {
  1414. 0.33333333333333,
  1415. 0.30150283239582,
  1416. 0.21816949906249,
  1417. 0.11516383427084,
  1418. 0.03183050093751,
  1419. };
  1420. static const int8_t phi[2][4] = {
  1421. { 1, 0, -1, 0}, // real
  1422. { 0, 1, 0, -1}, // imaginary
  1423. };
  1424. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1425. int indexnoise = ch_data->f_indexnoise;
  1426. int indexsine = ch_data->f_indexsine;
  1427. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1428. if (sbr->reset) {
  1429. for (i = 0; i < h_SL; i++) {
  1430. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1431. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1432. }
  1433. } else if (h_SL) {
  1434. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1435. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1436. }
  1437. for (e = 0; e < ch_data->bs_num_env; e++) {
  1438. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1439. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1440. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1441. }
  1442. }
  1443. for (e = 0; e < ch_data->bs_num_env; e++) {
  1444. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1445. int phi_sign = (1 - 2*(kx & 1));
  1446. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1447. for (m = 0; m < m_max; m++) {
  1448. const int idx1 = i + h_SL;
  1449. float g_filt = 0.0f;
  1450. for (j = 0; j <= h_SL; j++)
  1451. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1452. Y[1][i][m + kx][0] =
  1453. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1454. Y[1][i][m + kx][1] =
  1455. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1456. }
  1457. } else {
  1458. for (m = 0; m < m_max; m++) {
  1459. const float g_filt = g_temp[i + h_SL][m];
  1460. Y[1][i][m + kx][0] =
  1461. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1462. Y[1][i][m + kx][1] =
  1463. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1464. }
  1465. }
  1466. if (e != e_a[0] && e != e_a[1]) {
  1467. for (m = 0; m < m_max; m++) {
  1468. indexnoise = (indexnoise + 1) & 0x1ff;
  1469. if (sbr->s_m[e][m]) {
  1470. Y[1][i][m + kx][0] +=
  1471. sbr->s_m[e][m] * phi[0][indexsine];
  1472. Y[1][i][m + kx][1] +=
  1473. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1474. } else {
  1475. float q_filt;
  1476. if (h_SL) {
  1477. const int idx1 = i + h_SL;
  1478. q_filt = 0.0f;
  1479. for (j = 0; j <= h_SL; j++)
  1480. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1481. } else {
  1482. q_filt = q_temp[i][m];
  1483. }
  1484. Y[1][i][m + kx][0] +=
  1485. q_filt * sbr_noise_table[indexnoise][0];
  1486. Y[1][i][m + kx][1] +=
  1487. q_filt * sbr_noise_table[indexnoise][1];
  1488. }
  1489. phi_sign = -phi_sign;
  1490. }
  1491. } else {
  1492. indexnoise = (indexnoise + m_max) & 0x1ff;
  1493. for (m = 0; m < m_max; m++) {
  1494. Y[1][i][m + kx][0] +=
  1495. sbr->s_m[e][m] * phi[0][indexsine];
  1496. Y[1][i][m + kx][1] +=
  1497. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1498. phi_sign = -phi_sign;
  1499. }
  1500. }
  1501. indexsine = (indexsine + 1) & 3;
  1502. }
  1503. }
  1504. ch_data->f_indexnoise = indexnoise;
  1505. ch_data->f_indexsine = indexsine;
  1506. }
  1507. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1508. float* L, float* R)
  1509. {
  1510. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1511. int ch;
  1512. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1513. if (sbr->start) {
  1514. sbr_dequant(sbr, id_aac);
  1515. }
  1516. for (ch = 0; ch < nch; ch++) {
  1517. /* decode channel */
  1518. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1519. (float*)sbr->qmf_filter_scratch,
  1520. sbr->data[ch].W);
  1521. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1522. if (sbr->start) {
  1523. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1524. sbr_chirp(sbr, &sbr->data[ch]);
  1525. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1526. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1527. sbr->data[ch].bs_num_env);
  1528. // hf_adj
  1529. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1530. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1531. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1532. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1533. sbr->data[ch].e_a);
  1534. }
  1535. /* synthesis */
  1536. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1537. }
  1538. if (ac->m4ac.ps == 1) {
  1539. if (sbr->ps.start) {
  1540. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1541. } else {
  1542. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1543. }
  1544. nch = 2;
  1545. }
  1546. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1547. sbr->data[0].synthesis_filterbank_samples,
  1548. &sbr->data[0].synthesis_filterbank_samples_offset,
  1549. downsampled);
  1550. if (nch == 2)
  1551. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1552. sbr->data[1].synthesis_filterbank_samples,
  1553. &sbr->data[1].synthesis_filterbank_samples_offset,
  1554. downsampled);
  1555. }