vc1dec.c 122 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386
  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1dec.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. static const uint16_t vlc_offs[] = {
  47. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  48. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  49. 9262, 10202, 10756, 11310, 12228, 15078
  50. };
  51. /**
  52. * Init VC-1 specific tables and VC1Context members
  53. * @param v The VC1Context to initialize
  54. * @return Status
  55. */
  56. static int vc1_init_common(VC1Context *v)
  57. {
  58. static int done = 0;
  59. int i = 0;
  60. static VLC_TYPE vlc_table[15078][2];
  61. v->hrd_rate = v->hrd_buffer = NULL;
  62. /* VLC tables */
  63. if(!done)
  64. {
  65. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  66. ff_vc1_bfraction_bits, 1, 1,
  67. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  68. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  69. ff_vc1_norm2_bits, 1, 1,
  70. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  71. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  72. ff_vc1_norm6_bits, 1, 1,
  73. ff_vc1_norm6_codes, 2, 2, 556);
  74. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  75. ff_vc1_imode_bits, 1, 1,
  76. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  77. for (i=0; i<3; i++)
  78. {
  79. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  80. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  81. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  82. ff_vc1_ttmb_bits[i], 1, 1,
  83. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  84. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  85. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  86. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  87. ff_vc1_ttblk_bits[i], 1, 1,
  88. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  89. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  90. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  91. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  92. ff_vc1_subblkpat_bits[i], 1, 1,
  93. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  94. }
  95. for(i=0; i<4; i++)
  96. {
  97. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  98. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  99. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  100. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  101. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  102. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  103. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  104. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  105. ff_vc1_cbpcy_p_bits[i], 1, 1,
  106. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  107. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  108. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  109. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  110. ff_vc1_mv_diff_bits[i], 1, 1,
  111. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. for(i=0; i<8; i++){
  114. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  115. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  116. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  117. &vc1_ac_tables[i][0][1], 8, 4,
  118. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  119. }
  120. done = 1;
  121. }
  122. /* Other defaults */
  123. v->pq = -1;
  124. v->mvrange = 0; /* 7.1.1.18, p80 */
  125. return 0;
  126. }
  127. /***********************************************************************/
  128. /**
  129. * @defgroup vc1bitplane VC-1 Bitplane decoding
  130. * @see 8.7, p56
  131. * @{
  132. */
  133. /**
  134. * Imode types
  135. * @{
  136. */
  137. enum Imode {
  138. IMODE_RAW,
  139. IMODE_NORM2,
  140. IMODE_DIFF2,
  141. IMODE_NORM6,
  142. IMODE_DIFF6,
  143. IMODE_ROWSKIP,
  144. IMODE_COLSKIP
  145. };
  146. /** @} */ //imode defines
  147. /** @} */ //Bitplane group
  148. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  149. {
  150. int i, j;
  151. if(!s->first_slice_line)
  152. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  153. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  154. for(i = !s->mb_x*8; i < 16; i += 8)
  155. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  156. for(j = 0; j < 2; j++){
  157. if(!s->first_slice_line)
  158. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  159. if(s->mb_x)
  160. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  161. }
  162. }
  163. /** Put block onto picture
  164. */
  165. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  166. {
  167. uint8_t *Y;
  168. int ys, us, vs;
  169. DSPContext *dsp = &v->s.dsp;
  170. if(v->rangeredfrm) {
  171. int i, j, k;
  172. for(k = 0; k < 6; k++)
  173. for(j = 0; j < 8; j++)
  174. for(i = 0; i < 8; i++)
  175. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  176. }
  177. ys = v->s.current_picture.linesize[0];
  178. us = v->s.current_picture.linesize[1];
  179. vs = v->s.current_picture.linesize[2];
  180. Y = v->s.dest[0];
  181. dsp->put_pixels_clamped(block[0], Y, ys);
  182. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  183. Y += ys * 8;
  184. dsp->put_pixels_clamped(block[2], Y, ys);
  185. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  186. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  187. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  188. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  189. }
  190. }
  191. /** Do motion compensation over 1 macroblock
  192. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  193. */
  194. static void vc1_mc_1mv(VC1Context *v, int dir)
  195. {
  196. MpegEncContext *s = &v->s;
  197. DSPContext *dsp = &v->s.dsp;
  198. uint8_t *srcY, *srcU, *srcV;
  199. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  200. if(!v->s.last_picture.data[0])return;
  201. mx = s->mv[dir][0][0];
  202. my = s->mv[dir][0][1];
  203. // store motion vectors for further use in B frames
  204. if(s->pict_type == FF_P_TYPE) {
  205. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  206. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  207. }
  208. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  209. uvmy = (my + ((my & 3) == 3)) >> 1;
  210. if(v->fastuvmc) {
  211. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  212. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  213. }
  214. if(!dir) {
  215. srcY = s->last_picture.data[0];
  216. srcU = s->last_picture.data[1];
  217. srcV = s->last_picture.data[2];
  218. } else {
  219. srcY = s->next_picture.data[0];
  220. srcU = s->next_picture.data[1];
  221. srcV = s->next_picture.data[2];
  222. }
  223. src_x = s->mb_x * 16 + (mx >> 2);
  224. src_y = s->mb_y * 16 + (my >> 2);
  225. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  226. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  227. if(v->profile != PROFILE_ADVANCED){
  228. src_x = av_clip( src_x, -16, s->mb_width * 16);
  229. src_y = av_clip( src_y, -16, s->mb_height * 16);
  230. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  231. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  232. }else{
  233. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  234. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  235. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  236. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  237. }
  238. srcY += src_y * s->linesize + src_x;
  239. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  240. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  241. /* for grayscale we should not try to read from unknown area */
  242. if(s->flags & CODEC_FLAG_GRAY) {
  243. srcU = s->edge_emu_buffer + 18 * s->linesize;
  244. srcV = s->edge_emu_buffer + 18 * s->linesize;
  245. }
  246. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  247. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  248. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  249. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  250. srcY -= s->mspel * (1 + s->linesize);
  251. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  252. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  253. srcY = s->edge_emu_buffer;
  254. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  255. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  256. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  257. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  258. srcU = uvbuf;
  259. srcV = uvbuf + 16;
  260. /* if we deal with range reduction we need to scale source blocks */
  261. if(v->rangeredfrm) {
  262. int i, j;
  263. uint8_t *src, *src2;
  264. src = srcY;
  265. for(j = 0; j < 17 + s->mspel*2; j++) {
  266. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  267. src += s->linesize;
  268. }
  269. src = srcU; src2 = srcV;
  270. for(j = 0; j < 9; j++) {
  271. for(i = 0; i < 9; i++) {
  272. src[i] = ((src[i] - 128) >> 1) + 128;
  273. src2[i] = ((src2[i] - 128) >> 1) + 128;
  274. }
  275. src += s->uvlinesize;
  276. src2 += s->uvlinesize;
  277. }
  278. }
  279. /* if we deal with intensity compensation we need to scale source blocks */
  280. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  281. int i, j;
  282. uint8_t *src, *src2;
  283. src = srcY;
  284. for(j = 0; j < 17 + s->mspel*2; j++) {
  285. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  286. src += s->linesize;
  287. }
  288. src = srcU; src2 = srcV;
  289. for(j = 0; j < 9; j++) {
  290. for(i = 0; i < 9; i++) {
  291. src[i] = v->lutuv[src[i]];
  292. src2[i] = v->lutuv[src2[i]];
  293. }
  294. src += s->uvlinesize;
  295. src2 += s->uvlinesize;
  296. }
  297. }
  298. srcY += s->mspel * (1 + s->linesize);
  299. }
  300. if(s->mspel) {
  301. dxy = ((my & 3) << 2) | (mx & 3);
  302. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  303. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  304. srcY += s->linesize * 8;
  305. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  306. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  307. } else { // hpel mc - always used for luma
  308. dxy = (my & 2) | ((mx & 2) >> 1);
  309. if(!v->rnd)
  310. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  311. else
  312. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  313. }
  314. if(s->flags & CODEC_FLAG_GRAY) return;
  315. /* Chroma MC always uses qpel bilinear */
  316. uvmx = (uvmx&3)<<1;
  317. uvmy = (uvmy&3)<<1;
  318. if(!v->rnd){
  319. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  320. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  321. }else{
  322. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  323. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  324. }
  325. }
  326. /** Do motion compensation for 4-MV macroblock - luminance block
  327. */
  328. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  329. {
  330. MpegEncContext *s = &v->s;
  331. DSPContext *dsp = &v->s.dsp;
  332. uint8_t *srcY;
  333. int dxy, mx, my, src_x, src_y;
  334. int off;
  335. if(!v->s.last_picture.data[0])return;
  336. mx = s->mv[0][n][0];
  337. my = s->mv[0][n][1];
  338. srcY = s->last_picture.data[0];
  339. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  340. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  341. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  342. if(v->profile != PROFILE_ADVANCED){
  343. src_x = av_clip( src_x, -16, s->mb_width * 16);
  344. src_y = av_clip( src_y, -16, s->mb_height * 16);
  345. }else{
  346. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  347. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  348. }
  349. srcY += src_y * s->linesize + src_x;
  350. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  351. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  352. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  353. srcY -= s->mspel * (1 + s->linesize);
  354. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  355. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  356. srcY = s->edge_emu_buffer;
  357. /* if we deal with range reduction we need to scale source blocks */
  358. if(v->rangeredfrm) {
  359. int i, j;
  360. uint8_t *src;
  361. src = srcY;
  362. for(j = 0; j < 9 + s->mspel*2; j++) {
  363. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  364. src += s->linesize;
  365. }
  366. }
  367. /* if we deal with intensity compensation we need to scale source blocks */
  368. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  369. int i, j;
  370. uint8_t *src;
  371. src = srcY;
  372. for(j = 0; j < 9 + s->mspel*2; j++) {
  373. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  374. src += s->linesize;
  375. }
  376. }
  377. srcY += s->mspel * (1 + s->linesize);
  378. }
  379. if(s->mspel) {
  380. dxy = ((my & 3) << 2) | (mx & 3);
  381. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  382. } else { // hpel mc - always used for luma
  383. dxy = (my & 2) | ((mx & 2) >> 1);
  384. if(!v->rnd)
  385. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  386. else
  387. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  388. }
  389. }
  390. static inline int median4(int a, int b, int c, int d)
  391. {
  392. if(a < b) {
  393. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  394. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  395. } else {
  396. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  397. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  398. }
  399. }
  400. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  401. */
  402. static void vc1_mc_4mv_chroma(VC1Context *v)
  403. {
  404. MpegEncContext *s = &v->s;
  405. DSPContext *dsp = &v->s.dsp;
  406. uint8_t *srcU, *srcV;
  407. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  408. int i, idx, tx = 0, ty = 0;
  409. int mvx[4], mvy[4], intra[4];
  410. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  411. if(!v->s.last_picture.data[0])return;
  412. if(s->flags & CODEC_FLAG_GRAY) return;
  413. for(i = 0; i < 4; i++) {
  414. mvx[i] = s->mv[0][i][0];
  415. mvy[i] = s->mv[0][i][1];
  416. intra[i] = v->mb_type[0][s->block_index[i]];
  417. }
  418. /* calculate chroma MV vector from four luma MVs */
  419. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  420. if(!idx) { // all blocks are inter
  421. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  422. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  423. } else if(count[idx] == 1) { // 3 inter blocks
  424. switch(idx) {
  425. case 0x1:
  426. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  427. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  428. break;
  429. case 0x2:
  430. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  431. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  432. break;
  433. case 0x4:
  434. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  435. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  436. break;
  437. case 0x8:
  438. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  439. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  440. break;
  441. }
  442. } else if(count[idx] == 2) {
  443. int t1 = 0, t2 = 0;
  444. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  445. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  446. tx = (mvx[t1] + mvx[t2]) / 2;
  447. ty = (mvy[t1] + mvy[t2]) / 2;
  448. } else {
  449. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  450. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  451. return; //no need to do MC for inter blocks
  452. }
  453. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  454. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  455. uvmx = (tx + ((tx&3) == 3)) >> 1;
  456. uvmy = (ty + ((ty&3) == 3)) >> 1;
  457. if(v->fastuvmc) {
  458. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  459. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  460. }
  461. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  462. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  463. if(v->profile != PROFILE_ADVANCED){
  464. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  465. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  466. }else{
  467. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  468. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  469. }
  470. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  471. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  472. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  473. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  474. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  475. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  476. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  477. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  478. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  479. srcU = s->edge_emu_buffer;
  480. srcV = s->edge_emu_buffer + 16;
  481. /* if we deal with range reduction we need to scale source blocks */
  482. if(v->rangeredfrm) {
  483. int i, j;
  484. uint8_t *src, *src2;
  485. src = srcU; src2 = srcV;
  486. for(j = 0; j < 9; j++) {
  487. for(i = 0; i < 9; i++) {
  488. src[i] = ((src[i] - 128) >> 1) + 128;
  489. src2[i] = ((src2[i] - 128) >> 1) + 128;
  490. }
  491. src += s->uvlinesize;
  492. src2 += s->uvlinesize;
  493. }
  494. }
  495. /* if we deal with intensity compensation we need to scale source blocks */
  496. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  497. int i, j;
  498. uint8_t *src, *src2;
  499. src = srcU; src2 = srcV;
  500. for(j = 0; j < 9; j++) {
  501. for(i = 0; i < 9; i++) {
  502. src[i] = v->lutuv[src[i]];
  503. src2[i] = v->lutuv[src2[i]];
  504. }
  505. src += s->uvlinesize;
  506. src2 += s->uvlinesize;
  507. }
  508. }
  509. }
  510. /* Chroma MC always uses qpel bilinear */
  511. uvmx = (uvmx&3)<<1;
  512. uvmy = (uvmy&3)<<1;
  513. if(!v->rnd){
  514. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  515. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  516. }else{
  517. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  518. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  519. }
  520. }
  521. /***********************************************************************/
  522. /**
  523. * @defgroup vc1block VC-1 Block-level functions
  524. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  525. * @{
  526. */
  527. /**
  528. * @def GET_MQUANT
  529. * @brief Get macroblock-level quantizer scale
  530. */
  531. #define GET_MQUANT() \
  532. if (v->dquantfrm) \
  533. { \
  534. int edges = 0; \
  535. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  536. { \
  537. if (v->dqbilevel) \
  538. { \
  539. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  540. } \
  541. else \
  542. { \
  543. mqdiff = get_bits(gb, 3); \
  544. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  545. else mquant = get_bits(gb, 5); \
  546. } \
  547. } \
  548. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  549. edges = 1 << v->dqsbedge; \
  550. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  551. edges = (3 << v->dqsbedge) % 15; \
  552. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  553. edges = 15; \
  554. if((edges&1) && !s->mb_x) \
  555. mquant = v->altpq; \
  556. if((edges&2) && s->first_slice_line) \
  557. mquant = v->altpq; \
  558. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  559. mquant = v->altpq; \
  560. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  561. mquant = v->altpq; \
  562. }
  563. /**
  564. * @def GET_MVDATA(_dmv_x, _dmv_y)
  565. * @brief Get MV differentials
  566. * @see MVDATA decoding from 8.3.5.2, p(1)20
  567. * @param _dmv_x Horizontal differential for decoded MV
  568. * @param _dmv_y Vertical differential for decoded MV
  569. */
  570. #define GET_MVDATA(_dmv_x, _dmv_y) \
  571. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  572. VC1_MV_DIFF_VLC_BITS, 2); \
  573. if (index > 36) \
  574. { \
  575. mb_has_coeffs = 1; \
  576. index -= 37; \
  577. } \
  578. else mb_has_coeffs = 0; \
  579. s->mb_intra = 0; \
  580. if (!index) { _dmv_x = _dmv_y = 0; } \
  581. else if (index == 35) \
  582. { \
  583. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  584. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  585. } \
  586. else if (index == 36) \
  587. { \
  588. _dmv_x = 0; \
  589. _dmv_y = 0; \
  590. s->mb_intra = 1; \
  591. } \
  592. else \
  593. { \
  594. index1 = index%6; \
  595. if (!s->quarter_sample && index1 == 5) val = 1; \
  596. else val = 0; \
  597. if(size_table[index1] - val > 0) \
  598. val = get_bits(gb, size_table[index1] - val); \
  599. else val = 0; \
  600. sign = 0 - (val&1); \
  601. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  602. \
  603. index1 = index/6; \
  604. if (!s->quarter_sample && index1 == 5) val = 1; \
  605. else val = 0; \
  606. if(size_table[index1] - val > 0) \
  607. val = get_bits(gb, size_table[index1] - val); \
  608. else val = 0; \
  609. sign = 0 - (val&1); \
  610. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  611. }
  612. /** Predict and set motion vector
  613. */
  614. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  615. {
  616. int xy, wrap, off = 0;
  617. int16_t *A, *B, *C;
  618. int px, py;
  619. int sum;
  620. /* scale MV difference to be quad-pel */
  621. dmv_x <<= 1 - s->quarter_sample;
  622. dmv_y <<= 1 - s->quarter_sample;
  623. wrap = s->b8_stride;
  624. xy = s->block_index[n];
  625. if(s->mb_intra){
  626. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  627. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  628. s->current_picture.motion_val[1][xy][0] = 0;
  629. s->current_picture.motion_val[1][xy][1] = 0;
  630. if(mv1) { /* duplicate motion data for 1-MV block */
  631. s->current_picture.motion_val[0][xy + 1][0] = 0;
  632. s->current_picture.motion_val[0][xy + 1][1] = 0;
  633. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  634. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  635. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  636. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  637. s->current_picture.motion_val[1][xy + 1][0] = 0;
  638. s->current_picture.motion_val[1][xy + 1][1] = 0;
  639. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  640. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  641. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  642. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  643. }
  644. return;
  645. }
  646. C = s->current_picture.motion_val[0][xy - 1];
  647. A = s->current_picture.motion_val[0][xy - wrap];
  648. if(mv1)
  649. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  650. else {
  651. //in 4-MV mode different blocks have different B predictor position
  652. switch(n){
  653. case 0:
  654. off = (s->mb_x > 0) ? -1 : 1;
  655. break;
  656. case 1:
  657. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  658. break;
  659. case 2:
  660. off = 1;
  661. break;
  662. case 3:
  663. off = -1;
  664. }
  665. }
  666. B = s->current_picture.motion_val[0][xy - wrap + off];
  667. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  668. if(s->mb_width == 1) {
  669. px = A[0];
  670. py = A[1];
  671. } else {
  672. px = mid_pred(A[0], B[0], C[0]);
  673. py = mid_pred(A[1], B[1], C[1]);
  674. }
  675. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  676. px = C[0];
  677. py = C[1];
  678. } else {
  679. px = py = 0;
  680. }
  681. /* Pullback MV as specified in 8.3.5.3.4 */
  682. {
  683. int qx, qy, X, Y;
  684. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  685. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  686. X = (s->mb_width << 6) - 4;
  687. Y = (s->mb_height << 6) - 4;
  688. if(mv1) {
  689. if(qx + px < -60) px = -60 - qx;
  690. if(qy + py < -60) py = -60 - qy;
  691. } else {
  692. if(qx + px < -28) px = -28 - qx;
  693. if(qy + py < -28) py = -28 - qy;
  694. }
  695. if(qx + px > X) px = X - qx;
  696. if(qy + py > Y) py = Y - qy;
  697. }
  698. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  699. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  700. if(is_intra[xy - wrap])
  701. sum = FFABS(px) + FFABS(py);
  702. else
  703. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  704. if(sum > 32) {
  705. if(get_bits1(&s->gb)) {
  706. px = A[0];
  707. py = A[1];
  708. } else {
  709. px = C[0];
  710. py = C[1];
  711. }
  712. } else {
  713. if(is_intra[xy - 1])
  714. sum = FFABS(px) + FFABS(py);
  715. else
  716. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  717. if(sum > 32) {
  718. if(get_bits1(&s->gb)) {
  719. px = A[0];
  720. py = A[1];
  721. } else {
  722. px = C[0];
  723. py = C[1];
  724. }
  725. }
  726. }
  727. }
  728. /* store MV using signed modulus of MV range defined in 4.11 */
  729. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  730. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  731. if(mv1) { /* duplicate motion data for 1-MV block */
  732. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  733. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  734. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  735. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  736. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  737. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  738. }
  739. }
  740. /** Motion compensation for direct or interpolated blocks in B-frames
  741. */
  742. static void vc1_interp_mc(VC1Context *v)
  743. {
  744. MpegEncContext *s = &v->s;
  745. DSPContext *dsp = &v->s.dsp;
  746. uint8_t *srcY, *srcU, *srcV;
  747. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  748. if(!v->s.next_picture.data[0])return;
  749. mx = s->mv[1][0][0];
  750. my = s->mv[1][0][1];
  751. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  752. uvmy = (my + ((my & 3) == 3)) >> 1;
  753. if(v->fastuvmc) {
  754. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  755. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  756. }
  757. srcY = s->next_picture.data[0];
  758. srcU = s->next_picture.data[1];
  759. srcV = s->next_picture.data[2];
  760. src_x = s->mb_x * 16 + (mx >> 2);
  761. src_y = s->mb_y * 16 + (my >> 2);
  762. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  763. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  764. if(v->profile != PROFILE_ADVANCED){
  765. src_x = av_clip( src_x, -16, s->mb_width * 16);
  766. src_y = av_clip( src_y, -16, s->mb_height * 16);
  767. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  768. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  769. }else{
  770. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  771. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  772. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  773. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  774. }
  775. srcY += src_y * s->linesize + src_x;
  776. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  777. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  778. /* for grayscale we should not try to read from unknown area */
  779. if(s->flags & CODEC_FLAG_GRAY) {
  780. srcU = s->edge_emu_buffer + 18 * s->linesize;
  781. srcV = s->edge_emu_buffer + 18 * s->linesize;
  782. }
  783. if(v->rangeredfrm
  784. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  785. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  786. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  787. srcY -= s->mspel * (1 + s->linesize);
  788. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  789. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  790. srcY = s->edge_emu_buffer;
  791. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  792. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  793. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  794. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  795. srcU = uvbuf;
  796. srcV = uvbuf + 16;
  797. /* if we deal with range reduction we need to scale source blocks */
  798. if(v->rangeredfrm) {
  799. int i, j;
  800. uint8_t *src, *src2;
  801. src = srcY;
  802. for(j = 0; j < 17 + s->mspel*2; j++) {
  803. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  804. src += s->linesize;
  805. }
  806. src = srcU; src2 = srcV;
  807. for(j = 0; j < 9; j++) {
  808. for(i = 0; i < 9; i++) {
  809. src[i] = ((src[i] - 128) >> 1) + 128;
  810. src2[i] = ((src2[i] - 128) >> 1) + 128;
  811. }
  812. src += s->uvlinesize;
  813. src2 += s->uvlinesize;
  814. }
  815. }
  816. srcY += s->mspel * (1 + s->linesize);
  817. }
  818. if(s->mspel) {
  819. dxy = ((my & 3) << 2) | (mx & 3);
  820. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  821. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  822. srcY += s->linesize * 8;
  823. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  824. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  825. } else { // hpel mc
  826. dxy = (my & 2) | ((mx & 2) >> 1);
  827. if(!v->rnd)
  828. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  829. else
  830. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  831. }
  832. if(s->flags & CODEC_FLAG_GRAY) return;
  833. /* Chroma MC always uses qpel blilinear */
  834. uvmx = (uvmx&3)<<1;
  835. uvmy = (uvmy&3)<<1;
  836. if(!v->rnd){
  837. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  838. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  839. }else{
  840. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  841. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  842. }
  843. }
  844. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  845. {
  846. int n = bfrac;
  847. #if B_FRACTION_DEN==256
  848. if(inv)
  849. n -= 256;
  850. if(!qs)
  851. return 2 * ((value * n + 255) >> 9);
  852. return (value * n + 128) >> 8;
  853. #else
  854. if(inv)
  855. n -= B_FRACTION_DEN;
  856. if(!qs)
  857. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  858. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  859. #endif
  860. }
  861. /** Reconstruct motion vector for B-frame and do motion compensation
  862. */
  863. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  864. {
  865. if(v->use_ic) {
  866. v->mv_mode2 = v->mv_mode;
  867. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  868. }
  869. if(direct) {
  870. vc1_mc_1mv(v, 0);
  871. vc1_interp_mc(v);
  872. if(v->use_ic) v->mv_mode = v->mv_mode2;
  873. return;
  874. }
  875. if(mode == BMV_TYPE_INTERPOLATED) {
  876. vc1_mc_1mv(v, 0);
  877. vc1_interp_mc(v);
  878. if(v->use_ic) v->mv_mode = v->mv_mode2;
  879. return;
  880. }
  881. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  882. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  883. if(v->use_ic) v->mv_mode = v->mv_mode2;
  884. }
  885. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  886. {
  887. MpegEncContext *s = &v->s;
  888. int xy, wrap, off = 0;
  889. int16_t *A, *B, *C;
  890. int px, py;
  891. int sum;
  892. int r_x, r_y;
  893. const uint8_t *is_intra = v->mb_type[0];
  894. r_x = v->range_x;
  895. r_y = v->range_y;
  896. /* scale MV difference to be quad-pel */
  897. dmv_x[0] <<= 1 - s->quarter_sample;
  898. dmv_y[0] <<= 1 - s->quarter_sample;
  899. dmv_x[1] <<= 1 - s->quarter_sample;
  900. dmv_y[1] <<= 1 - s->quarter_sample;
  901. wrap = s->b8_stride;
  902. xy = s->block_index[0];
  903. if(s->mb_intra) {
  904. s->current_picture.motion_val[0][xy][0] =
  905. s->current_picture.motion_val[0][xy][1] =
  906. s->current_picture.motion_val[1][xy][0] =
  907. s->current_picture.motion_val[1][xy][1] = 0;
  908. return;
  909. }
  910. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  911. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  912. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  913. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  914. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  915. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  916. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  917. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  918. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  919. if(direct) {
  920. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  921. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  922. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  923. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  924. return;
  925. }
  926. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  927. C = s->current_picture.motion_val[0][xy - 2];
  928. A = s->current_picture.motion_val[0][xy - wrap*2];
  929. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  930. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  931. if(!s->mb_x) C[0] = C[1] = 0;
  932. if(!s->first_slice_line) { // predictor A is not out of bounds
  933. if(s->mb_width == 1) {
  934. px = A[0];
  935. py = A[1];
  936. } else {
  937. px = mid_pred(A[0], B[0], C[0]);
  938. py = mid_pred(A[1], B[1], C[1]);
  939. }
  940. } else if(s->mb_x) { // predictor C is not out of bounds
  941. px = C[0];
  942. py = C[1];
  943. } else {
  944. px = py = 0;
  945. }
  946. /* Pullback MV as specified in 8.3.5.3.4 */
  947. {
  948. int qx, qy, X, Y;
  949. if(v->profile < PROFILE_ADVANCED) {
  950. qx = (s->mb_x << 5);
  951. qy = (s->mb_y << 5);
  952. X = (s->mb_width << 5) - 4;
  953. Y = (s->mb_height << 5) - 4;
  954. if(qx + px < -28) px = -28 - qx;
  955. if(qy + py < -28) py = -28 - qy;
  956. if(qx + px > X) px = X - qx;
  957. if(qy + py > Y) py = Y - qy;
  958. } else {
  959. qx = (s->mb_x << 6);
  960. qy = (s->mb_y << 6);
  961. X = (s->mb_width << 6) - 4;
  962. Y = (s->mb_height << 6) - 4;
  963. if(qx + px < -60) px = -60 - qx;
  964. if(qy + py < -60) py = -60 - qy;
  965. if(qx + px > X) px = X - qx;
  966. if(qy + py > Y) py = Y - qy;
  967. }
  968. }
  969. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  970. if(0 && !s->first_slice_line && s->mb_x) {
  971. if(is_intra[xy - wrap])
  972. sum = FFABS(px) + FFABS(py);
  973. else
  974. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  975. if(sum > 32) {
  976. if(get_bits1(&s->gb)) {
  977. px = A[0];
  978. py = A[1];
  979. } else {
  980. px = C[0];
  981. py = C[1];
  982. }
  983. } else {
  984. if(is_intra[xy - 2])
  985. sum = FFABS(px) + FFABS(py);
  986. else
  987. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  988. if(sum > 32) {
  989. if(get_bits1(&s->gb)) {
  990. px = A[0];
  991. py = A[1];
  992. } else {
  993. px = C[0];
  994. py = C[1];
  995. }
  996. }
  997. }
  998. }
  999. /* store MV using signed modulus of MV range defined in 4.11 */
  1000. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1001. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1002. }
  1003. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1004. C = s->current_picture.motion_val[1][xy - 2];
  1005. A = s->current_picture.motion_val[1][xy - wrap*2];
  1006. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1007. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1008. if(!s->mb_x) C[0] = C[1] = 0;
  1009. if(!s->first_slice_line) { // predictor A is not out of bounds
  1010. if(s->mb_width == 1) {
  1011. px = A[0];
  1012. py = A[1];
  1013. } else {
  1014. px = mid_pred(A[0], B[0], C[0]);
  1015. py = mid_pred(A[1], B[1], C[1]);
  1016. }
  1017. } else if(s->mb_x) { // predictor C is not out of bounds
  1018. px = C[0];
  1019. py = C[1];
  1020. } else {
  1021. px = py = 0;
  1022. }
  1023. /* Pullback MV as specified in 8.3.5.3.4 */
  1024. {
  1025. int qx, qy, X, Y;
  1026. if(v->profile < PROFILE_ADVANCED) {
  1027. qx = (s->mb_x << 5);
  1028. qy = (s->mb_y << 5);
  1029. X = (s->mb_width << 5) - 4;
  1030. Y = (s->mb_height << 5) - 4;
  1031. if(qx + px < -28) px = -28 - qx;
  1032. if(qy + py < -28) py = -28 - qy;
  1033. if(qx + px > X) px = X - qx;
  1034. if(qy + py > Y) py = Y - qy;
  1035. } else {
  1036. qx = (s->mb_x << 6);
  1037. qy = (s->mb_y << 6);
  1038. X = (s->mb_width << 6) - 4;
  1039. Y = (s->mb_height << 6) - 4;
  1040. if(qx + px < -60) px = -60 - qx;
  1041. if(qy + py < -60) py = -60 - qy;
  1042. if(qx + px > X) px = X - qx;
  1043. if(qy + py > Y) py = Y - qy;
  1044. }
  1045. }
  1046. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1047. if(0 && !s->first_slice_line && s->mb_x) {
  1048. if(is_intra[xy - wrap])
  1049. sum = FFABS(px) + FFABS(py);
  1050. else
  1051. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1052. if(sum > 32) {
  1053. if(get_bits1(&s->gb)) {
  1054. px = A[0];
  1055. py = A[1];
  1056. } else {
  1057. px = C[0];
  1058. py = C[1];
  1059. }
  1060. } else {
  1061. if(is_intra[xy - 2])
  1062. sum = FFABS(px) + FFABS(py);
  1063. else
  1064. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1065. if(sum > 32) {
  1066. if(get_bits1(&s->gb)) {
  1067. px = A[0];
  1068. py = A[1];
  1069. } else {
  1070. px = C[0];
  1071. py = C[1];
  1072. }
  1073. }
  1074. }
  1075. }
  1076. /* store MV using signed modulus of MV range defined in 4.11 */
  1077. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1078. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1079. }
  1080. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1081. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1082. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1083. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1084. }
  1085. /** Get predicted DC value for I-frames only
  1086. * prediction dir: left=0, top=1
  1087. * @param s MpegEncContext
  1088. * @param overlap flag indicating that overlap filtering is used
  1089. * @param pq integer part of picture quantizer
  1090. * @param[in] n block index in the current MB
  1091. * @param dc_val_ptr Pointer to DC predictor
  1092. * @param dir_ptr Prediction direction for use in AC prediction
  1093. */
  1094. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1095. int16_t **dc_val_ptr, int *dir_ptr)
  1096. {
  1097. int a, b, c, wrap, pred, scale;
  1098. int16_t *dc_val;
  1099. static const uint16_t dcpred[32] = {
  1100. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1101. 114, 102, 93, 85, 79, 73, 68, 64,
  1102. 60, 57, 54, 51, 49, 47, 45, 43,
  1103. 41, 39, 38, 37, 35, 34, 33
  1104. };
  1105. /* find prediction - wmv3_dc_scale always used here in fact */
  1106. if (n < 4) scale = s->y_dc_scale;
  1107. else scale = s->c_dc_scale;
  1108. wrap = s->block_wrap[n];
  1109. dc_val= s->dc_val[0] + s->block_index[n];
  1110. /* B A
  1111. * C X
  1112. */
  1113. c = dc_val[ - 1];
  1114. b = dc_val[ - 1 - wrap];
  1115. a = dc_val[ - wrap];
  1116. if (pq < 9 || !overlap)
  1117. {
  1118. /* Set outer values */
  1119. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1120. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1121. }
  1122. else
  1123. {
  1124. /* Set outer values */
  1125. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1126. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1127. }
  1128. if (abs(a - b) <= abs(b - c)) {
  1129. pred = c;
  1130. *dir_ptr = 1;//left
  1131. } else {
  1132. pred = a;
  1133. *dir_ptr = 0;//top
  1134. }
  1135. /* update predictor */
  1136. *dc_val_ptr = &dc_val[0];
  1137. return pred;
  1138. }
  1139. /** Get predicted DC value
  1140. * prediction dir: left=0, top=1
  1141. * @param s MpegEncContext
  1142. * @param overlap flag indicating that overlap filtering is used
  1143. * @param pq integer part of picture quantizer
  1144. * @param[in] n block index in the current MB
  1145. * @param a_avail flag indicating top block availability
  1146. * @param c_avail flag indicating left block availability
  1147. * @param dc_val_ptr Pointer to DC predictor
  1148. * @param dir_ptr Prediction direction for use in AC prediction
  1149. */
  1150. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1151. int a_avail, int c_avail,
  1152. int16_t **dc_val_ptr, int *dir_ptr)
  1153. {
  1154. int a, b, c, wrap, pred;
  1155. int16_t *dc_val;
  1156. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1157. int q1, q2 = 0;
  1158. wrap = s->block_wrap[n];
  1159. dc_val= s->dc_val[0] + s->block_index[n];
  1160. /* B A
  1161. * C X
  1162. */
  1163. c = dc_val[ - 1];
  1164. b = dc_val[ - 1 - wrap];
  1165. a = dc_val[ - wrap];
  1166. /* scale predictors if needed */
  1167. q1 = s->current_picture.qscale_table[mb_pos];
  1168. if(c_avail && (n!= 1 && n!=3)) {
  1169. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1170. if(q2 && q2 != q1)
  1171. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1172. }
  1173. if(a_avail && (n!= 2 && n!=3)) {
  1174. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1175. if(q2 && q2 != q1)
  1176. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1177. }
  1178. if(a_avail && c_avail && (n!=3)) {
  1179. int off = mb_pos;
  1180. if(n != 1) off--;
  1181. if(n != 2) off -= s->mb_stride;
  1182. q2 = s->current_picture.qscale_table[off];
  1183. if(q2 && q2 != q1)
  1184. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1185. }
  1186. if(a_avail && c_avail) {
  1187. if(abs(a - b) <= abs(b - c)) {
  1188. pred = c;
  1189. *dir_ptr = 1;//left
  1190. } else {
  1191. pred = a;
  1192. *dir_ptr = 0;//top
  1193. }
  1194. } else if(a_avail) {
  1195. pred = a;
  1196. *dir_ptr = 0;//top
  1197. } else if(c_avail) {
  1198. pred = c;
  1199. *dir_ptr = 1;//left
  1200. } else {
  1201. pred = 0;
  1202. *dir_ptr = 1;//left
  1203. }
  1204. /* update predictor */
  1205. *dc_val_ptr = &dc_val[0];
  1206. return pred;
  1207. }
  1208. /** @} */ // Block group
  1209. /**
  1210. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1211. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1212. * @{
  1213. */
  1214. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1215. {
  1216. int xy, wrap, pred, a, b, c;
  1217. xy = s->block_index[n];
  1218. wrap = s->b8_stride;
  1219. /* B C
  1220. * A X
  1221. */
  1222. a = s->coded_block[xy - 1 ];
  1223. b = s->coded_block[xy - 1 - wrap];
  1224. c = s->coded_block[xy - wrap];
  1225. if (b == c) {
  1226. pred = a;
  1227. } else {
  1228. pred = c;
  1229. }
  1230. /* store value */
  1231. *coded_block_ptr = &s->coded_block[xy];
  1232. return pred;
  1233. }
  1234. /**
  1235. * Decode one AC coefficient
  1236. * @param v The VC1 context
  1237. * @param last Last coefficient
  1238. * @param skip How much zero coefficients to skip
  1239. * @param value Decoded AC coefficient value
  1240. * @param codingset set of VLC to decode data
  1241. * @see 8.1.3.4
  1242. */
  1243. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1244. {
  1245. GetBitContext *gb = &v->s.gb;
  1246. int index, escape, run = 0, level = 0, lst = 0;
  1247. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1248. if (index != vc1_ac_sizes[codingset] - 1) {
  1249. run = vc1_index_decode_table[codingset][index][0];
  1250. level = vc1_index_decode_table[codingset][index][1];
  1251. lst = index >= vc1_last_decode_table[codingset];
  1252. if(get_bits1(gb))
  1253. level = -level;
  1254. } else {
  1255. escape = decode210(gb);
  1256. if (escape != 2) {
  1257. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1258. run = vc1_index_decode_table[codingset][index][0];
  1259. level = vc1_index_decode_table[codingset][index][1];
  1260. lst = index >= vc1_last_decode_table[codingset];
  1261. if(escape == 0) {
  1262. if(lst)
  1263. level += vc1_last_delta_level_table[codingset][run];
  1264. else
  1265. level += vc1_delta_level_table[codingset][run];
  1266. } else {
  1267. if(lst)
  1268. run += vc1_last_delta_run_table[codingset][level] + 1;
  1269. else
  1270. run += vc1_delta_run_table[codingset][level] + 1;
  1271. }
  1272. if(get_bits1(gb))
  1273. level = -level;
  1274. } else {
  1275. int sign;
  1276. lst = get_bits1(gb);
  1277. if(v->s.esc3_level_length == 0) {
  1278. if(v->pq < 8 || v->dquantfrm) { // table 59
  1279. v->s.esc3_level_length = get_bits(gb, 3);
  1280. if(!v->s.esc3_level_length)
  1281. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1282. } else { //table 60
  1283. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1284. }
  1285. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1286. }
  1287. run = get_bits(gb, v->s.esc3_run_length);
  1288. sign = get_bits1(gb);
  1289. level = get_bits(gb, v->s.esc3_level_length);
  1290. if(sign)
  1291. level = -level;
  1292. }
  1293. }
  1294. *last = lst;
  1295. *skip = run;
  1296. *value = level;
  1297. }
  1298. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1299. * @param v VC1Context
  1300. * @param block block to decode
  1301. * @param[in] n subblock index
  1302. * @param coded are AC coeffs present or not
  1303. * @param codingset set of VLC to decode data
  1304. */
  1305. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1306. {
  1307. GetBitContext *gb = &v->s.gb;
  1308. MpegEncContext *s = &v->s;
  1309. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1310. int i;
  1311. int16_t *dc_val;
  1312. int16_t *ac_val, *ac_val2;
  1313. int dcdiff;
  1314. /* Get DC differential */
  1315. if (n < 4) {
  1316. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1317. } else {
  1318. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1319. }
  1320. if (dcdiff < 0){
  1321. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1322. return -1;
  1323. }
  1324. if (dcdiff)
  1325. {
  1326. if (dcdiff == 119 /* ESC index value */)
  1327. {
  1328. /* TODO: Optimize */
  1329. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1330. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1331. else dcdiff = get_bits(gb, 8);
  1332. }
  1333. else
  1334. {
  1335. if (v->pq == 1)
  1336. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1337. else if (v->pq == 2)
  1338. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1339. }
  1340. if (get_bits1(gb))
  1341. dcdiff = -dcdiff;
  1342. }
  1343. /* Prediction */
  1344. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1345. *dc_val = dcdiff;
  1346. /* Store the quantized DC coeff, used for prediction */
  1347. if (n < 4) {
  1348. block[0] = dcdiff * s->y_dc_scale;
  1349. } else {
  1350. block[0] = dcdiff * s->c_dc_scale;
  1351. }
  1352. /* Skip ? */
  1353. if (!coded) {
  1354. goto not_coded;
  1355. }
  1356. //AC Decoding
  1357. i = 1;
  1358. {
  1359. int last = 0, skip, value;
  1360. const int8_t *zz_table;
  1361. int scale;
  1362. int k;
  1363. scale = v->pq * 2 + v->halfpq;
  1364. if(v->s.ac_pred) {
  1365. if(!dc_pred_dir)
  1366. zz_table = wmv1_scantable[2];
  1367. else
  1368. zz_table = wmv1_scantable[3];
  1369. } else
  1370. zz_table = wmv1_scantable[1];
  1371. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1372. ac_val2 = ac_val;
  1373. if(dc_pred_dir) //left
  1374. ac_val -= 16;
  1375. else //top
  1376. ac_val -= 16 * s->block_wrap[n];
  1377. while (!last) {
  1378. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1379. i += skip;
  1380. if(i > 63)
  1381. break;
  1382. block[zz_table[i++]] = value;
  1383. }
  1384. /* apply AC prediction if needed */
  1385. if(s->ac_pred) {
  1386. if(dc_pred_dir) { //left
  1387. for(k = 1; k < 8; k++)
  1388. block[k << 3] += ac_val[k];
  1389. } else { //top
  1390. for(k = 1; k < 8; k++)
  1391. block[k] += ac_val[k + 8];
  1392. }
  1393. }
  1394. /* save AC coeffs for further prediction */
  1395. for(k = 1; k < 8; k++) {
  1396. ac_val2[k] = block[k << 3];
  1397. ac_val2[k + 8] = block[k];
  1398. }
  1399. /* scale AC coeffs */
  1400. for(k = 1; k < 64; k++)
  1401. if(block[k]) {
  1402. block[k] *= scale;
  1403. if(!v->pquantizer)
  1404. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1405. }
  1406. if(s->ac_pred) i = 63;
  1407. }
  1408. not_coded:
  1409. if(!coded) {
  1410. int k, scale;
  1411. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1412. ac_val2 = ac_val;
  1413. i = 0;
  1414. scale = v->pq * 2 + v->halfpq;
  1415. memset(ac_val2, 0, 16 * 2);
  1416. if(dc_pred_dir) {//left
  1417. ac_val -= 16;
  1418. if(s->ac_pred)
  1419. memcpy(ac_val2, ac_val, 8 * 2);
  1420. } else {//top
  1421. ac_val -= 16 * s->block_wrap[n];
  1422. if(s->ac_pred)
  1423. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1424. }
  1425. /* apply AC prediction if needed */
  1426. if(s->ac_pred) {
  1427. if(dc_pred_dir) { //left
  1428. for(k = 1; k < 8; k++) {
  1429. block[k << 3] = ac_val[k] * scale;
  1430. if(!v->pquantizer && block[k << 3])
  1431. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1432. }
  1433. } else { //top
  1434. for(k = 1; k < 8; k++) {
  1435. block[k] = ac_val[k + 8] * scale;
  1436. if(!v->pquantizer && block[k])
  1437. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1438. }
  1439. }
  1440. i = 63;
  1441. }
  1442. }
  1443. s->block_last_index[n] = i;
  1444. return 0;
  1445. }
  1446. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1447. * @param v VC1Context
  1448. * @param block block to decode
  1449. * @param[in] n subblock number
  1450. * @param coded are AC coeffs present or not
  1451. * @param codingset set of VLC to decode data
  1452. * @param mquant quantizer value for this macroblock
  1453. */
  1454. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1455. {
  1456. GetBitContext *gb = &v->s.gb;
  1457. MpegEncContext *s = &v->s;
  1458. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1459. int i;
  1460. int16_t *dc_val;
  1461. int16_t *ac_val, *ac_val2;
  1462. int dcdiff;
  1463. int a_avail = v->a_avail, c_avail = v->c_avail;
  1464. int use_pred = s->ac_pred;
  1465. int scale;
  1466. int q1, q2 = 0;
  1467. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1468. /* Get DC differential */
  1469. if (n < 4) {
  1470. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1471. } else {
  1472. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1473. }
  1474. if (dcdiff < 0){
  1475. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1476. return -1;
  1477. }
  1478. if (dcdiff)
  1479. {
  1480. if (dcdiff == 119 /* ESC index value */)
  1481. {
  1482. /* TODO: Optimize */
  1483. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1484. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1485. else dcdiff = get_bits(gb, 8);
  1486. }
  1487. else
  1488. {
  1489. if (mquant == 1)
  1490. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1491. else if (mquant == 2)
  1492. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1493. }
  1494. if (get_bits1(gb))
  1495. dcdiff = -dcdiff;
  1496. }
  1497. /* Prediction */
  1498. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1499. *dc_val = dcdiff;
  1500. /* Store the quantized DC coeff, used for prediction */
  1501. if (n < 4) {
  1502. block[0] = dcdiff * s->y_dc_scale;
  1503. } else {
  1504. block[0] = dcdiff * s->c_dc_scale;
  1505. }
  1506. //AC Decoding
  1507. i = 1;
  1508. /* check if AC is needed at all */
  1509. if(!a_avail && !c_avail) use_pred = 0;
  1510. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1511. ac_val2 = ac_val;
  1512. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1513. if(dc_pred_dir) //left
  1514. ac_val -= 16;
  1515. else //top
  1516. ac_val -= 16 * s->block_wrap[n];
  1517. q1 = s->current_picture.qscale_table[mb_pos];
  1518. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1519. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1520. if(dc_pred_dir && n==1) q2 = q1;
  1521. if(!dc_pred_dir && n==2) q2 = q1;
  1522. if(n==3) q2 = q1;
  1523. if(coded) {
  1524. int last = 0, skip, value;
  1525. const int8_t *zz_table;
  1526. int k;
  1527. if(v->s.ac_pred) {
  1528. if(!dc_pred_dir)
  1529. zz_table = wmv1_scantable[2];
  1530. else
  1531. zz_table = wmv1_scantable[3];
  1532. } else
  1533. zz_table = wmv1_scantable[1];
  1534. while (!last) {
  1535. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1536. i += skip;
  1537. if(i > 63)
  1538. break;
  1539. block[zz_table[i++]] = value;
  1540. }
  1541. /* apply AC prediction if needed */
  1542. if(use_pred) {
  1543. /* scale predictors if needed*/
  1544. if(q2 && q1!=q2) {
  1545. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1546. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1547. if(dc_pred_dir) { //left
  1548. for(k = 1; k < 8; k++)
  1549. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1550. } else { //top
  1551. for(k = 1; k < 8; k++)
  1552. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1553. }
  1554. } else {
  1555. if(dc_pred_dir) { //left
  1556. for(k = 1; k < 8; k++)
  1557. block[k << 3] += ac_val[k];
  1558. } else { //top
  1559. for(k = 1; k < 8; k++)
  1560. block[k] += ac_val[k + 8];
  1561. }
  1562. }
  1563. }
  1564. /* save AC coeffs for further prediction */
  1565. for(k = 1; k < 8; k++) {
  1566. ac_val2[k] = block[k << 3];
  1567. ac_val2[k + 8] = block[k];
  1568. }
  1569. /* scale AC coeffs */
  1570. for(k = 1; k < 64; k++)
  1571. if(block[k]) {
  1572. block[k] *= scale;
  1573. if(!v->pquantizer)
  1574. block[k] += (block[k] < 0) ? -mquant : mquant;
  1575. }
  1576. if(use_pred) i = 63;
  1577. } else { // no AC coeffs
  1578. int k;
  1579. memset(ac_val2, 0, 16 * 2);
  1580. if(dc_pred_dir) {//left
  1581. if(use_pred) {
  1582. memcpy(ac_val2, ac_val, 8 * 2);
  1583. if(q2 && q1!=q2) {
  1584. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1585. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1586. for(k = 1; k < 8; k++)
  1587. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1588. }
  1589. }
  1590. } else {//top
  1591. if(use_pred) {
  1592. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1593. if(q2 && q1!=q2) {
  1594. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1595. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1596. for(k = 1; k < 8; k++)
  1597. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1598. }
  1599. }
  1600. }
  1601. /* apply AC prediction if needed */
  1602. if(use_pred) {
  1603. if(dc_pred_dir) { //left
  1604. for(k = 1; k < 8; k++) {
  1605. block[k << 3] = ac_val2[k] * scale;
  1606. if(!v->pquantizer && block[k << 3])
  1607. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1608. }
  1609. } else { //top
  1610. for(k = 1; k < 8; k++) {
  1611. block[k] = ac_val2[k + 8] * scale;
  1612. if(!v->pquantizer && block[k])
  1613. block[k] += (block[k] < 0) ? -mquant : mquant;
  1614. }
  1615. }
  1616. i = 63;
  1617. }
  1618. }
  1619. s->block_last_index[n] = i;
  1620. return 0;
  1621. }
  1622. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1623. * @param v VC1Context
  1624. * @param block block to decode
  1625. * @param[in] n subblock index
  1626. * @param coded are AC coeffs present or not
  1627. * @param mquant block quantizer
  1628. * @param codingset set of VLC to decode data
  1629. */
  1630. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1631. {
  1632. GetBitContext *gb = &v->s.gb;
  1633. MpegEncContext *s = &v->s;
  1634. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1635. int i;
  1636. int16_t *dc_val;
  1637. int16_t *ac_val, *ac_val2;
  1638. int dcdiff;
  1639. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1640. int a_avail = v->a_avail, c_avail = v->c_avail;
  1641. int use_pred = s->ac_pred;
  1642. int scale;
  1643. int q1, q2 = 0;
  1644. s->dsp.clear_block(block);
  1645. /* XXX: Guard against dumb values of mquant */
  1646. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1647. /* Set DC scale - y and c use the same */
  1648. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1649. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1650. /* Get DC differential */
  1651. if (n < 4) {
  1652. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1653. } else {
  1654. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1655. }
  1656. if (dcdiff < 0){
  1657. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1658. return -1;
  1659. }
  1660. if (dcdiff)
  1661. {
  1662. if (dcdiff == 119 /* ESC index value */)
  1663. {
  1664. /* TODO: Optimize */
  1665. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1666. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1667. else dcdiff = get_bits(gb, 8);
  1668. }
  1669. else
  1670. {
  1671. if (mquant == 1)
  1672. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1673. else if (mquant == 2)
  1674. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1675. }
  1676. if (get_bits1(gb))
  1677. dcdiff = -dcdiff;
  1678. }
  1679. /* Prediction */
  1680. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1681. *dc_val = dcdiff;
  1682. /* Store the quantized DC coeff, used for prediction */
  1683. if (n < 4) {
  1684. block[0] = dcdiff * s->y_dc_scale;
  1685. } else {
  1686. block[0] = dcdiff * s->c_dc_scale;
  1687. }
  1688. //AC Decoding
  1689. i = 1;
  1690. /* check if AC is needed at all and adjust direction if needed */
  1691. if(!a_avail) dc_pred_dir = 1;
  1692. if(!c_avail) dc_pred_dir = 0;
  1693. if(!a_avail && !c_avail) use_pred = 0;
  1694. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1695. ac_val2 = ac_val;
  1696. scale = mquant * 2 + v->halfpq;
  1697. if(dc_pred_dir) //left
  1698. ac_val -= 16;
  1699. else //top
  1700. ac_val -= 16 * s->block_wrap[n];
  1701. q1 = s->current_picture.qscale_table[mb_pos];
  1702. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1703. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1704. if(dc_pred_dir && n==1) q2 = q1;
  1705. if(!dc_pred_dir && n==2) q2 = q1;
  1706. if(n==3) q2 = q1;
  1707. if(coded) {
  1708. int last = 0, skip, value;
  1709. const int8_t *zz_table;
  1710. int k;
  1711. zz_table = wmv1_scantable[0];
  1712. while (!last) {
  1713. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1714. i += skip;
  1715. if(i > 63)
  1716. break;
  1717. block[zz_table[i++]] = value;
  1718. }
  1719. /* apply AC prediction if needed */
  1720. if(use_pred) {
  1721. /* scale predictors if needed*/
  1722. if(q2 && q1!=q2) {
  1723. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1724. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1725. if(dc_pred_dir) { //left
  1726. for(k = 1; k < 8; k++)
  1727. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1728. } else { //top
  1729. for(k = 1; k < 8; k++)
  1730. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1731. }
  1732. } else {
  1733. if(dc_pred_dir) { //left
  1734. for(k = 1; k < 8; k++)
  1735. block[k << 3] += ac_val[k];
  1736. } else { //top
  1737. for(k = 1; k < 8; k++)
  1738. block[k] += ac_val[k + 8];
  1739. }
  1740. }
  1741. }
  1742. /* save AC coeffs for further prediction */
  1743. for(k = 1; k < 8; k++) {
  1744. ac_val2[k] = block[k << 3];
  1745. ac_val2[k + 8] = block[k];
  1746. }
  1747. /* scale AC coeffs */
  1748. for(k = 1; k < 64; k++)
  1749. if(block[k]) {
  1750. block[k] *= scale;
  1751. if(!v->pquantizer)
  1752. block[k] += (block[k] < 0) ? -mquant : mquant;
  1753. }
  1754. if(use_pred) i = 63;
  1755. } else { // no AC coeffs
  1756. int k;
  1757. memset(ac_val2, 0, 16 * 2);
  1758. if(dc_pred_dir) {//left
  1759. if(use_pred) {
  1760. memcpy(ac_val2, ac_val, 8 * 2);
  1761. if(q2 && q1!=q2) {
  1762. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1763. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1764. for(k = 1; k < 8; k++)
  1765. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1766. }
  1767. }
  1768. } else {//top
  1769. if(use_pred) {
  1770. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1771. if(q2 && q1!=q2) {
  1772. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1773. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1774. for(k = 1; k < 8; k++)
  1775. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1776. }
  1777. }
  1778. }
  1779. /* apply AC prediction if needed */
  1780. if(use_pred) {
  1781. if(dc_pred_dir) { //left
  1782. for(k = 1; k < 8; k++) {
  1783. block[k << 3] = ac_val2[k] * scale;
  1784. if(!v->pquantizer && block[k << 3])
  1785. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1786. }
  1787. } else { //top
  1788. for(k = 1; k < 8; k++) {
  1789. block[k] = ac_val2[k + 8] * scale;
  1790. if(!v->pquantizer && block[k])
  1791. block[k] += (block[k] < 0) ? -mquant : mquant;
  1792. }
  1793. }
  1794. i = 63;
  1795. }
  1796. }
  1797. s->block_last_index[n] = i;
  1798. return 0;
  1799. }
  1800. /** Decode P block
  1801. */
  1802. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1803. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  1804. {
  1805. MpegEncContext *s = &v->s;
  1806. GetBitContext *gb = &s->gb;
  1807. int i, j;
  1808. int subblkpat = 0;
  1809. int scale, off, idx, last, skip, value;
  1810. int ttblk = ttmb & 7;
  1811. int pat = 0;
  1812. s->dsp.clear_block(block);
  1813. if(ttmb == -1) {
  1814. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1815. }
  1816. if(ttblk == TT_4X4) {
  1817. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1818. }
  1819. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  1820. subblkpat = decode012(gb);
  1821. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1822. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1823. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1824. }
  1825. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1826. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1827. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1828. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1829. ttblk = TT_8X4;
  1830. }
  1831. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1832. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1833. ttblk = TT_4X8;
  1834. }
  1835. switch(ttblk) {
  1836. case TT_8X8:
  1837. pat = 0xF;
  1838. i = 0;
  1839. last = 0;
  1840. while (!last) {
  1841. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1842. i += skip;
  1843. if(i > 63)
  1844. break;
  1845. idx = wmv1_scantable[0][i++];
  1846. block[idx] = value * scale;
  1847. if(!v->pquantizer)
  1848. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1849. }
  1850. if(!skip_block){
  1851. if(i==1)
  1852. s->dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1853. else{
  1854. s->dsp.vc1_inv_trans_8x8(block);
  1855. s->dsp.add_pixels_clamped(block, dst, linesize);
  1856. }
  1857. if(apply_filter && cbp_top & 0xC)
  1858. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1859. if(apply_filter && cbp_left & 0xA)
  1860. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  1861. }
  1862. break;
  1863. case TT_4X4:
  1864. pat = ~subblkpat & 0xF;
  1865. for(j = 0; j < 4; j++) {
  1866. last = subblkpat & (1 << (3 - j));
  1867. i = 0;
  1868. off = (j & 1) * 4 + (j & 2) * 16;
  1869. while (!last) {
  1870. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1871. i += skip;
  1872. if(i > 15)
  1873. break;
  1874. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1875. block[idx + off] = value * scale;
  1876. if(!v->pquantizer)
  1877. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1878. }
  1879. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1880. if(i==1)
  1881. s->dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1882. else
  1883. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1884. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  1885. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1886. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  1887. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1888. }
  1889. }
  1890. break;
  1891. case TT_8X4:
  1892. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1893. for(j = 0; j < 2; j++) {
  1894. last = subblkpat & (1 << (1 - j));
  1895. i = 0;
  1896. off = j * 32;
  1897. while (!last) {
  1898. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1899. i += skip;
  1900. if(i > 31)
  1901. break;
  1902. idx = v->zz_8x4[i++]+off;
  1903. block[idx] = value * scale;
  1904. if(!v->pquantizer)
  1905. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1906. }
  1907. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1908. if(i==1)
  1909. s->dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  1910. else
  1911. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1912. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  1913. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  1914. if(apply_filter && cbp_left & (2 << j))
  1915. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  1916. }
  1917. }
  1918. break;
  1919. case TT_4X8:
  1920. pat = ~(subblkpat*5) & 0xF;
  1921. for(j = 0; j < 2; j++) {
  1922. last = subblkpat & (1 << (1 - j));
  1923. i = 0;
  1924. off = j * 4;
  1925. while (!last) {
  1926. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1927. i += skip;
  1928. if(i > 31)
  1929. break;
  1930. idx = v->zz_4x8[i++]+off;
  1931. block[idx] = value * scale;
  1932. if(!v->pquantizer)
  1933. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1934. }
  1935. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1936. if(i==1)
  1937. s->dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  1938. else
  1939. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1940. if(apply_filter && cbp_top & (2 << j))
  1941. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  1942. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  1943. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  1944. }
  1945. }
  1946. break;
  1947. }
  1948. return pat;
  1949. }
  1950. /** @} */ // Macroblock group
  1951. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1952. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1953. /** Decode one P-frame MB (in Simple/Main profile)
  1954. */
  1955. static int vc1_decode_p_mb(VC1Context *v)
  1956. {
  1957. MpegEncContext *s = &v->s;
  1958. GetBitContext *gb = &s->gb;
  1959. int i, j;
  1960. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1961. int cbp; /* cbp decoding stuff */
  1962. int mqdiff, mquant; /* MB quantization */
  1963. int ttmb = v->ttfrm; /* MB Transform type */
  1964. int mb_has_coeffs = 1; /* last_flag */
  1965. int dmv_x, dmv_y; /* Differential MV components */
  1966. int index, index1; /* LUT indexes */
  1967. int val, sign; /* temp values */
  1968. int first_block = 1;
  1969. int dst_idx, off;
  1970. int skipped, fourmv;
  1971. int block_cbp = 0, pat;
  1972. int apply_loop_filter;
  1973. mquant = v->pq; /* Loosy initialization */
  1974. if (v->mv_type_is_raw)
  1975. fourmv = get_bits1(gb);
  1976. else
  1977. fourmv = v->mv_type_mb_plane[mb_pos];
  1978. if (v->skip_is_raw)
  1979. skipped = get_bits1(gb);
  1980. else
  1981. skipped = v->s.mbskip_table[mb_pos];
  1982. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  1983. if (!fourmv) /* 1MV mode */
  1984. {
  1985. if (!skipped)
  1986. {
  1987. GET_MVDATA(dmv_x, dmv_y);
  1988. if (s->mb_intra) {
  1989. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1990. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1991. }
  1992. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1993. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  1994. /* FIXME Set DC val for inter block ? */
  1995. if (s->mb_intra && !mb_has_coeffs)
  1996. {
  1997. GET_MQUANT();
  1998. s->ac_pred = get_bits1(gb);
  1999. cbp = 0;
  2000. }
  2001. else if (mb_has_coeffs)
  2002. {
  2003. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2004. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2005. GET_MQUANT();
  2006. }
  2007. else
  2008. {
  2009. mquant = v->pq;
  2010. cbp = 0;
  2011. }
  2012. s->current_picture.qscale_table[mb_pos] = mquant;
  2013. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2014. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2015. VC1_TTMB_VLC_BITS, 2);
  2016. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2017. dst_idx = 0;
  2018. for (i=0; i<6; i++)
  2019. {
  2020. s->dc_val[0][s->block_index[i]] = 0;
  2021. dst_idx += i >> 2;
  2022. val = ((cbp >> (5 - i)) & 1);
  2023. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2024. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2025. if(s->mb_intra) {
  2026. /* check if prediction blocks A and C are available */
  2027. v->a_avail = v->c_avail = 0;
  2028. if(i == 2 || i == 3 || !s->first_slice_line)
  2029. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2030. if(i == 1 || i == 3 || s->mb_x)
  2031. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2032. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2033. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2034. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2035. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2036. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2037. if(v->pq >= 9 && v->overlap) {
  2038. if(v->c_avail)
  2039. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2040. if(v->a_avail)
  2041. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2042. }
  2043. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2044. int left_cbp, top_cbp;
  2045. if(i & 4){
  2046. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2047. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2048. }else{
  2049. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2050. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2051. }
  2052. if(left_cbp & 0xC)
  2053. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2054. if(top_cbp & 0xA)
  2055. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2056. }
  2057. block_cbp |= 0xF << (i << 2);
  2058. } else if(val) {
  2059. int left_cbp = 0, top_cbp = 0, filter = 0;
  2060. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2061. filter = 1;
  2062. if(i & 4){
  2063. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2064. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2065. }else{
  2066. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2067. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2068. }
  2069. if(left_cbp & 0xC)
  2070. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2071. if(top_cbp & 0xA)
  2072. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2073. }
  2074. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2075. block_cbp |= pat << (i << 2);
  2076. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2077. first_block = 0;
  2078. }
  2079. }
  2080. }
  2081. else //Skipped
  2082. {
  2083. s->mb_intra = 0;
  2084. for(i = 0; i < 6; i++) {
  2085. v->mb_type[0][s->block_index[i]] = 0;
  2086. s->dc_val[0][s->block_index[i]] = 0;
  2087. }
  2088. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2089. s->current_picture.qscale_table[mb_pos] = 0;
  2090. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2091. vc1_mc_1mv(v, 0);
  2092. return 0;
  2093. }
  2094. } //1MV mode
  2095. else //4MV mode
  2096. {
  2097. if (!skipped /* unskipped MB */)
  2098. {
  2099. int intra_count = 0, coded_inter = 0;
  2100. int is_intra[6], is_coded[6];
  2101. /* Get CBPCY */
  2102. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2103. for (i=0; i<6; i++)
  2104. {
  2105. val = ((cbp >> (5 - i)) & 1);
  2106. s->dc_val[0][s->block_index[i]] = 0;
  2107. s->mb_intra = 0;
  2108. if(i < 4) {
  2109. dmv_x = dmv_y = 0;
  2110. s->mb_intra = 0;
  2111. mb_has_coeffs = 0;
  2112. if(val) {
  2113. GET_MVDATA(dmv_x, dmv_y);
  2114. }
  2115. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2116. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2117. intra_count += s->mb_intra;
  2118. is_intra[i] = s->mb_intra;
  2119. is_coded[i] = mb_has_coeffs;
  2120. }
  2121. if(i&4){
  2122. is_intra[i] = (intra_count >= 3);
  2123. is_coded[i] = val;
  2124. }
  2125. if(i == 4) vc1_mc_4mv_chroma(v);
  2126. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2127. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2128. }
  2129. // if there are no coded blocks then don't do anything more
  2130. if(!intra_count && !coded_inter) return 0;
  2131. dst_idx = 0;
  2132. GET_MQUANT();
  2133. s->current_picture.qscale_table[mb_pos] = mquant;
  2134. /* test if block is intra and has pred */
  2135. {
  2136. int intrapred = 0;
  2137. for(i=0; i<6; i++)
  2138. if(is_intra[i]) {
  2139. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2140. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2141. intrapred = 1;
  2142. break;
  2143. }
  2144. }
  2145. if(intrapred)s->ac_pred = get_bits1(gb);
  2146. else s->ac_pred = 0;
  2147. }
  2148. if (!v->ttmbf && coded_inter)
  2149. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2150. for (i=0; i<6; i++)
  2151. {
  2152. dst_idx += i >> 2;
  2153. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2154. s->mb_intra = is_intra[i];
  2155. if (is_intra[i]) {
  2156. /* check if prediction blocks A and C are available */
  2157. v->a_avail = v->c_avail = 0;
  2158. if(i == 2 || i == 3 || !s->first_slice_line)
  2159. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2160. if(i == 1 || i == 3 || s->mb_x)
  2161. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2162. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2163. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2164. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2165. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2166. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2167. if(v->pq >= 9 && v->overlap) {
  2168. if(v->c_avail)
  2169. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2170. if(v->a_avail)
  2171. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2172. }
  2173. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2174. int left_cbp, top_cbp;
  2175. if(i & 4){
  2176. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2177. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2178. }else{
  2179. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2180. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2181. }
  2182. if(left_cbp & 0xC)
  2183. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2184. if(top_cbp & 0xA)
  2185. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2186. }
  2187. block_cbp |= 0xF << (i << 2);
  2188. } else if(is_coded[i]) {
  2189. int left_cbp = 0, top_cbp = 0, filter = 0;
  2190. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2191. filter = 1;
  2192. if(i & 4){
  2193. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2194. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2195. }else{
  2196. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2197. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2198. }
  2199. if(left_cbp & 0xC)
  2200. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2201. if(top_cbp & 0xA)
  2202. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2203. }
  2204. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2205. block_cbp |= pat << (i << 2);
  2206. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2207. first_block = 0;
  2208. }
  2209. }
  2210. return 0;
  2211. }
  2212. else //Skipped MB
  2213. {
  2214. s->mb_intra = 0;
  2215. s->current_picture.qscale_table[mb_pos] = 0;
  2216. for (i=0; i<6; i++) {
  2217. v->mb_type[0][s->block_index[i]] = 0;
  2218. s->dc_val[0][s->block_index[i]] = 0;
  2219. }
  2220. for (i=0; i<4; i++)
  2221. {
  2222. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2223. vc1_mc_4mv_luma(v, i);
  2224. }
  2225. vc1_mc_4mv_chroma(v);
  2226. s->current_picture.qscale_table[mb_pos] = 0;
  2227. return 0;
  2228. }
  2229. }
  2230. v->cbp[s->mb_x] = block_cbp;
  2231. /* Should never happen */
  2232. return -1;
  2233. }
  2234. /** Decode one B-frame MB (in Main profile)
  2235. */
  2236. static void vc1_decode_b_mb(VC1Context *v)
  2237. {
  2238. MpegEncContext *s = &v->s;
  2239. GetBitContext *gb = &s->gb;
  2240. int i, j;
  2241. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2242. int cbp = 0; /* cbp decoding stuff */
  2243. int mqdiff, mquant; /* MB quantization */
  2244. int ttmb = v->ttfrm; /* MB Transform type */
  2245. int mb_has_coeffs = 0; /* last_flag */
  2246. int index, index1; /* LUT indexes */
  2247. int val, sign; /* temp values */
  2248. int first_block = 1;
  2249. int dst_idx, off;
  2250. int skipped, direct;
  2251. int dmv_x[2], dmv_y[2];
  2252. int bmvtype = BMV_TYPE_BACKWARD;
  2253. mquant = v->pq; /* Loosy initialization */
  2254. s->mb_intra = 0;
  2255. if (v->dmb_is_raw)
  2256. direct = get_bits1(gb);
  2257. else
  2258. direct = v->direct_mb_plane[mb_pos];
  2259. if (v->skip_is_raw)
  2260. skipped = get_bits1(gb);
  2261. else
  2262. skipped = v->s.mbskip_table[mb_pos];
  2263. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2264. for(i = 0; i < 6; i++) {
  2265. v->mb_type[0][s->block_index[i]] = 0;
  2266. s->dc_val[0][s->block_index[i]] = 0;
  2267. }
  2268. s->current_picture.qscale_table[mb_pos] = 0;
  2269. if (!direct) {
  2270. if (!skipped) {
  2271. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2272. dmv_x[1] = dmv_x[0];
  2273. dmv_y[1] = dmv_y[0];
  2274. }
  2275. if(skipped || !s->mb_intra) {
  2276. bmvtype = decode012(gb);
  2277. switch(bmvtype) {
  2278. case 0:
  2279. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2280. break;
  2281. case 1:
  2282. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2283. break;
  2284. case 2:
  2285. bmvtype = BMV_TYPE_INTERPOLATED;
  2286. dmv_x[0] = dmv_y[0] = 0;
  2287. }
  2288. }
  2289. }
  2290. for(i = 0; i < 6; i++)
  2291. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2292. if (skipped) {
  2293. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2294. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2295. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2296. return;
  2297. }
  2298. if (direct) {
  2299. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2300. GET_MQUANT();
  2301. s->mb_intra = 0;
  2302. s->current_picture.qscale_table[mb_pos] = mquant;
  2303. if(!v->ttmbf)
  2304. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2305. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2306. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2307. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2308. } else {
  2309. if(!mb_has_coeffs && !s->mb_intra) {
  2310. /* no coded blocks - effectively skipped */
  2311. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2312. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2313. return;
  2314. }
  2315. if(s->mb_intra && !mb_has_coeffs) {
  2316. GET_MQUANT();
  2317. s->current_picture.qscale_table[mb_pos] = mquant;
  2318. s->ac_pred = get_bits1(gb);
  2319. cbp = 0;
  2320. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2321. } else {
  2322. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2323. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2324. if(!mb_has_coeffs) {
  2325. /* interpolated skipped block */
  2326. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2327. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2328. return;
  2329. }
  2330. }
  2331. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2332. if(!s->mb_intra) {
  2333. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2334. }
  2335. if(s->mb_intra)
  2336. s->ac_pred = get_bits1(gb);
  2337. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2338. GET_MQUANT();
  2339. s->current_picture.qscale_table[mb_pos] = mquant;
  2340. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2341. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2342. }
  2343. }
  2344. dst_idx = 0;
  2345. for (i=0; i<6; i++)
  2346. {
  2347. s->dc_val[0][s->block_index[i]] = 0;
  2348. dst_idx += i >> 2;
  2349. val = ((cbp >> (5 - i)) & 1);
  2350. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2351. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2352. if(s->mb_intra) {
  2353. /* check if prediction blocks A and C are available */
  2354. v->a_avail = v->c_avail = 0;
  2355. if(i == 2 || i == 3 || !s->first_slice_line)
  2356. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2357. if(i == 1 || i == 3 || s->mb_x)
  2358. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2359. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2360. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2361. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2362. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2363. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2364. } else if(val) {
  2365. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  2366. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2367. first_block = 0;
  2368. }
  2369. }
  2370. }
  2371. /** Decode blocks of I-frame
  2372. */
  2373. static void vc1_decode_i_blocks(VC1Context *v)
  2374. {
  2375. int k, j;
  2376. MpegEncContext *s = &v->s;
  2377. int cbp, val;
  2378. uint8_t *coded_val;
  2379. int mb_pos;
  2380. /* select codingmode used for VLC tables selection */
  2381. switch(v->y_ac_table_index){
  2382. case 0:
  2383. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2384. break;
  2385. case 1:
  2386. v->codingset = CS_HIGH_MOT_INTRA;
  2387. break;
  2388. case 2:
  2389. v->codingset = CS_MID_RATE_INTRA;
  2390. break;
  2391. }
  2392. switch(v->c_ac_table_index){
  2393. case 0:
  2394. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2395. break;
  2396. case 1:
  2397. v->codingset2 = CS_HIGH_MOT_INTER;
  2398. break;
  2399. case 2:
  2400. v->codingset2 = CS_MID_RATE_INTER;
  2401. break;
  2402. }
  2403. /* Set DC scale - y and c use the same */
  2404. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2405. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2406. //do frame decode
  2407. s->mb_x = s->mb_y = 0;
  2408. s->mb_intra = 1;
  2409. s->first_slice_line = 1;
  2410. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2411. s->mb_x = 0;
  2412. ff_init_block_index(s);
  2413. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2414. ff_update_block_index(s);
  2415. s->dsp.clear_blocks(s->block[0]);
  2416. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2417. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2418. s->current_picture.qscale_table[mb_pos] = v->pq;
  2419. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2420. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2421. // do actual MB decoding and displaying
  2422. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2423. v->s.ac_pred = get_bits1(&v->s.gb);
  2424. for(k = 0; k < 6; k++) {
  2425. val = ((cbp >> (5 - k)) & 1);
  2426. if (k < 4) {
  2427. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2428. val = val ^ pred;
  2429. *coded_val = val;
  2430. }
  2431. cbp |= val << (5 - k);
  2432. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2433. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2434. if(v->pq >= 9 && v->overlap) {
  2435. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2436. }
  2437. }
  2438. vc1_put_block(v, s->block);
  2439. if(v->pq >= 9 && v->overlap) {
  2440. if(s->mb_x) {
  2441. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2442. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2443. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2444. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2445. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2446. }
  2447. }
  2448. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2449. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2450. if(!s->first_slice_line) {
  2451. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2452. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2453. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2454. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2455. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2456. }
  2457. }
  2458. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2459. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2460. }
  2461. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2462. if(get_bits_count(&s->gb) > v->bits) {
  2463. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2464. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2465. return;
  2466. }
  2467. }
  2468. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2469. s->first_slice_line = 0;
  2470. }
  2471. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2472. }
  2473. /** Decode blocks of I-frame for advanced profile
  2474. */
  2475. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2476. {
  2477. int k, j;
  2478. MpegEncContext *s = &v->s;
  2479. int cbp, val;
  2480. uint8_t *coded_val;
  2481. int mb_pos;
  2482. int mquant = v->pq;
  2483. int mqdiff;
  2484. int overlap;
  2485. GetBitContext *gb = &s->gb;
  2486. /* select codingmode used for VLC tables selection */
  2487. switch(v->y_ac_table_index){
  2488. case 0:
  2489. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2490. break;
  2491. case 1:
  2492. v->codingset = CS_HIGH_MOT_INTRA;
  2493. break;
  2494. case 2:
  2495. v->codingset = CS_MID_RATE_INTRA;
  2496. break;
  2497. }
  2498. switch(v->c_ac_table_index){
  2499. case 0:
  2500. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2501. break;
  2502. case 1:
  2503. v->codingset2 = CS_HIGH_MOT_INTER;
  2504. break;
  2505. case 2:
  2506. v->codingset2 = CS_MID_RATE_INTER;
  2507. break;
  2508. }
  2509. //do frame decode
  2510. s->mb_x = s->mb_y = 0;
  2511. s->mb_intra = 1;
  2512. s->first_slice_line = 1;
  2513. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2514. s->mb_x = 0;
  2515. ff_init_block_index(s);
  2516. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2517. ff_update_block_index(s);
  2518. s->dsp.clear_blocks(s->block[0]);
  2519. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2520. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2521. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2522. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2523. // do actual MB decoding and displaying
  2524. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2525. if(v->acpred_is_raw)
  2526. v->s.ac_pred = get_bits1(&v->s.gb);
  2527. else
  2528. v->s.ac_pred = v->acpred_plane[mb_pos];
  2529. if(v->condover == CONDOVER_SELECT) {
  2530. if(v->overflg_is_raw)
  2531. overlap = get_bits1(&v->s.gb);
  2532. else
  2533. overlap = v->over_flags_plane[mb_pos];
  2534. } else
  2535. overlap = (v->condover == CONDOVER_ALL);
  2536. GET_MQUANT();
  2537. s->current_picture.qscale_table[mb_pos] = mquant;
  2538. /* Set DC scale - y and c use the same */
  2539. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2540. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2541. for(k = 0; k < 6; k++) {
  2542. val = ((cbp >> (5 - k)) & 1);
  2543. if (k < 4) {
  2544. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2545. val = val ^ pred;
  2546. *coded_val = val;
  2547. }
  2548. cbp |= val << (5 - k);
  2549. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2550. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2551. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2552. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2553. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2554. }
  2555. vc1_put_block(v, s->block);
  2556. if(overlap) {
  2557. if(s->mb_x) {
  2558. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2559. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2560. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2561. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2562. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2563. }
  2564. }
  2565. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2566. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2567. if(!s->first_slice_line) {
  2568. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2569. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2570. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2571. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2572. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2573. }
  2574. }
  2575. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2576. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2577. }
  2578. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2579. if(get_bits_count(&s->gb) > v->bits) {
  2580. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2581. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2582. return;
  2583. }
  2584. }
  2585. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2586. s->first_slice_line = 0;
  2587. }
  2588. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2589. }
  2590. static void vc1_decode_p_blocks(VC1Context *v)
  2591. {
  2592. MpegEncContext *s = &v->s;
  2593. /* select codingmode used for VLC tables selection */
  2594. switch(v->c_ac_table_index){
  2595. case 0:
  2596. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2597. break;
  2598. case 1:
  2599. v->codingset = CS_HIGH_MOT_INTRA;
  2600. break;
  2601. case 2:
  2602. v->codingset = CS_MID_RATE_INTRA;
  2603. break;
  2604. }
  2605. switch(v->c_ac_table_index){
  2606. case 0:
  2607. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2608. break;
  2609. case 1:
  2610. v->codingset2 = CS_HIGH_MOT_INTER;
  2611. break;
  2612. case 2:
  2613. v->codingset2 = CS_MID_RATE_INTER;
  2614. break;
  2615. }
  2616. s->first_slice_line = 1;
  2617. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2618. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2619. s->mb_x = 0;
  2620. ff_init_block_index(s);
  2621. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2622. ff_update_block_index(s);
  2623. vc1_decode_p_mb(v);
  2624. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2625. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2626. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2627. return;
  2628. }
  2629. }
  2630. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2631. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2632. s->first_slice_line = 0;
  2633. }
  2634. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2635. }
  2636. static void vc1_decode_b_blocks(VC1Context *v)
  2637. {
  2638. MpegEncContext *s = &v->s;
  2639. /* select codingmode used for VLC tables selection */
  2640. switch(v->c_ac_table_index){
  2641. case 0:
  2642. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2643. break;
  2644. case 1:
  2645. v->codingset = CS_HIGH_MOT_INTRA;
  2646. break;
  2647. case 2:
  2648. v->codingset = CS_MID_RATE_INTRA;
  2649. break;
  2650. }
  2651. switch(v->c_ac_table_index){
  2652. case 0:
  2653. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2654. break;
  2655. case 1:
  2656. v->codingset2 = CS_HIGH_MOT_INTER;
  2657. break;
  2658. case 2:
  2659. v->codingset2 = CS_MID_RATE_INTER;
  2660. break;
  2661. }
  2662. s->first_slice_line = 1;
  2663. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2664. s->mb_x = 0;
  2665. ff_init_block_index(s);
  2666. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2667. ff_update_block_index(s);
  2668. vc1_decode_b_mb(v);
  2669. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2670. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2671. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2672. return;
  2673. }
  2674. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2675. }
  2676. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2677. s->first_slice_line = 0;
  2678. }
  2679. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2680. }
  2681. static void vc1_decode_skip_blocks(VC1Context *v)
  2682. {
  2683. MpegEncContext *s = &v->s;
  2684. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2685. s->first_slice_line = 1;
  2686. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2687. s->mb_x = 0;
  2688. ff_init_block_index(s);
  2689. ff_update_block_index(s);
  2690. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2691. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2692. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2693. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2694. s->first_slice_line = 0;
  2695. }
  2696. s->pict_type = FF_P_TYPE;
  2697. }
  2698. static void vc1_decode_blocks(VC1Context *v)
  2699. {
  2700. v->s.esc3_level_length = 0;
  2701. if(v->x8_type){
  2702. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2703. }else{
  2704. switch(v->s.pict_type) {
  2705. case FF_I_TYPE:
  2706. if(v->profile == PROFILE_ADVANCED)
  2707. vc1_decode_i_blocks_adv(v);
  2708. else
  2709. vc1_decode_i_blocks(v);
  2710. break;
  2711. case FF_P_TYPE:
  2712. if(v->p_frame_skipped)
  2713. vc1_decode_skip_blocks(v);
  2714. else
  2715. vc1_decode_p_blocks(v);
  2716. break;
  2717. case FF_B_TYPE:
  2718. if(v->bi_type){
  2719. if(v->profile == PROFILE_ADVANCED)
  2720. vc1_decode_i_blocks_adv(v);
  2721. else
  2722. vc1_decode_i_blocks(v);
  2723. }else
  2724. vc1_decode_b_blocks(v);
  2725. break;
  2726. }
  2727. }
  2728. }
  2729. /** Initialize a VC1/WMV3 decoder
  2730. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2731. * @todo TODO: Decypher remaining bits in extra_data
  2732. */
  2733. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2734. {
  2735. VC1Context *v = avctx->priv_data;
  2736. MpegEncContext *s = &v->s;
  2737. GetBitContext gb;
  2738. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2739. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2740. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2741. else
  2742. avctx->pix_fmt = PIX_FMT_GRAY8;
  2743. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2744. v->s.avctx = avctx;
  2745. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2746. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2747. if(avctx->idct_algo==FF_IDCT_AUTO){
  2748. avctx->idct_algo=FF_IDCT_WMV2;
  2749. }
  2750. if(ff_h263_decode_init(avctx) < 0)
  2751. return -1;
  2752. if (vc1_init_common(v) < 0) return -1;
  2753. // only for ff_msmp4_mb_i_table
  2754. if (ff_msmpeg4_decode_init(avctx) < 0) return -1;
  2755. avctx->coded_width = avctx->width;
  2756. avctx->coded_height = avctx->height;
  2757. if (avctx->codec_id == CODEC_ID_WMV3)
  2758. {
  2759. int count = 0;
  2760. // looks like WMV3 has a sequence header stored in the extradata
  2761. // advanced sequence header may be before the first frame
  2762. // the last byte of the extradata is a version number, 1 for the
  2763. // samples we can decode
  2764. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2765. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2766. return -1;
  2767. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2768. if (count>0)
  2769. {
  2770. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2771. count, get_bits(&gb, count));
  2772. }
  2773. else if (count < 0)
  2774. {
  2775. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2776. }
  2777. } else { // VC1/WVC1
  2778. const uint8_t *start = avctx->extradata;
  2779. uint8_t *end = avctx->extradata + avctx->extradata_size;
  2780. const uint8_t *next;
  2781. int size, buf2_size;
  2782. uint8_t *buf2 = NULL;
  2783. int seq_initialized = 0, ep_initialized = 0;
  2784. if(avctx->extradata_size < 16) {
  2785. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  2786. return -1;
  2787. }
  2788. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2789. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  2790. next = start;
  2791. for(; next < end; start = next){
  2792. next = find_next_marker(start + 4, end);
  2793. size = next - start - 4;
  2794. if(size <= 0) continue;
  2795. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  2796. init_get_bits(&gb, buf2, buf2_size * 8);
  2797. switch(AV_RB32(start)){
  2798. case VC1_CODE_SEQHDR:
  2799. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  2800. av_free(buf2);
  2801. return -1;
  2802. }
  2803. seq_initialized = 1;
  2804. break;
  2805. case VC1_CODE_ENTRYPOINT:
  2806. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  2807. av_free(buf2);
  2808. return -1;
  2809. }
  2810. ep_initialized = 1;
  2811. break;
  2812. }
  2813. }
  2814. av_free(buf2);
  2815. if(!seq_initialized || !ep_initialized){
  2816. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  2817. return -1;
  2818. }
  2819. }
  2820. avctx->has_b_frames= !!(avctx->max_b_frames);
  2821. s->low_delay = !avctx->has_b_frames;
  2822. s->mb_width = (avctx->coded_width+15)>>4;
  2823. s->mb_height = (avctx->coded_height+15)>>4;
  2824. /* Allocate mb bitplanes */
  2825. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2826. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2827. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  2828. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  2829. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2830. v->cbp = v->cbp_base + s->mb_stride;
  2831. /* allocate block type info in that way so it could be used with s->block_index[] */
  2832. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2833. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2834. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2835. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2836. /* Init coded blocks info */
  2837. if (v->profile == PROFILE_ADVANCED)
  2838. {
  2839. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2840. // return -1;
  2841. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2842. // return -1;
  2843. }
  2844. ff_intrax8_common_init(&v->x8,s);
  2845. return 0;
  2846. }
  2847. /** Decode a VC1/WMV3 frame
  2848. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2849. */
  2850. static int vc1_decode_frame(AVCodecContext *avctx,
  2851. void *data, int *data_size,
  2852. AVPacket *avpkt)
  2853. {
  2854. const uint8_t *buf = avpkt->data;
  2855. int buf_size = avpkt->size;
  2856. VC1Context *v = avctx->priv_data;
  2857. MpegEncContext *s = &v->s;
  2858. AVFrame *pict = data;
  2859. uint8_t *buf2 = NULL;
  2860. const uint8_t *buf_start = buf;
  2861. /* no supplementary picture */
  2862. if (buf_size == 0) {
  2863. /* special case for last picture */
  2864. if (s->low_delay==0 && s->next_picture_ptr) {
  2865. *pict= *(AVFrame*)s->next_picture_ptr;
  2866. s->next_picture_ptr= NULL;
  2867. *data_size = sizeof(AVFrame);
  2868. }
  2869. return 0;
  2870. }
  2871. /* We need to set current_picture_ptr before reading the header,
  2872. * otherwise we cannot store anything in there. */
  2873. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2874. int i= ff_find_unused_picture(s, 0);
  2875. s->current_picture_ptr= &s->picture[i];
  2876. }
  2877. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2878. if (v->profile < PROFILE_ADVANCED)
  2879. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  2880. else
  2881. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  2882. }
  2883. //for advanced profile we may need to parse and unescape data
  2884. if (avctx->codec_id == CODEC_ID_VC1) {
  2885. int buf_size2 = 0;
  2886. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2887. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  2888. const uint8_t *start, *end, *next;
  2889. int size;
  2890. next = buf;
  2891. for(start = buf, end = buf + buf_size; next < end; start = next){
  2892. next = find_next_marker(start + 4, end);
  2893. size = next - start - 4;
  2894. if(size <= 0) continue;
  2895. switch(AV_RB32(start)){
  2896. case VC1_CODE_FRAME:
  2897. if (avctx->hwaccel ||
  2898. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2899. buf_start = start;
  2900. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2901. break;
  2902. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  2903. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2904. init_get_bits(&s->gb, buf2, buf_size2*8);
  2905. vc1_decode_entry_point(avctx, v, &s->gb);
  2906. break;
  2907. case VC1_CODE_SLICE:
  2908. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  2909. av_free(buf2);
  2910. return -1;
  2911. }
  2912. }
  2913. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  2914. const uint8_t *divider;
  2915. divider = find_next_marker(buf, buf + buf_size);
  2916. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  2917. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  2918. av_free(buf2);
  2919. return -1;
  2920. }
  2921. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  2922. // TODO
  2923. if(!v->warn_interlaced++)
  2924. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  2925. av_free(buf2);return -1;
  2926. }else{
  2927. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  2928. }
  2929. init_get_bits(&s->gb, buf2, buf_size2*8);
  2930. } else
  2931. init_get_bits(&s->gb, buf, buf_size*8);
  2932. // do parse frame header
  2933. if(v->profile < PROFILE_ADVANCED) {
  2934. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  2935. av_free(buf2);
  2936. return -1;
  2937. }
  2938. } else {
  2939. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  2940. av_free(buf2);
  2941. return -1;
  2942. }
  2943. }
  2944. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  2945. av_free(buf2);
  2946. return -1;
  2947. }
  2948. // for hurry_up==5
  2949. s->current_picture.pict_type= s->pict_type;
  2950. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  2951. /* skip B-frames if we don't have reference frames */
  2952. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  2953. av_free(buf2);
  2954. return -1;//buf_size;
  2955. }
  2956. /* skip b frames if we are in a hurry */
  2957. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  2958. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  2959. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  2960. || avctx->skip_frame >= AVDISCARD_ALL) {
  2961. av_free(buf2);
  2962. return buf_size;
  2963. }
  2964. /* skip everything if we are in a hurry>=5 */
  2965. if(avctx->hurry_up>=5) {
  2966. av_free(buf2);
  2967. return -1;//buf_size;
  2968. }
  2969. if(s->next_p_frame_damaged){
  2970. if(s->pict_type==FF_B_TYPE)
  2971. return buf_size;
  2972. else
  2973. s->next_p_frame_damaged=0;
  2974. }
  2975. if(MPV_frame_start(s, avctx) < 0) {
  2976. av_free(buf2);
  2977. return -1;
  2978. }
  2979. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  2980. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  2981. if ((CONFIG_VC1_VDPAU_DECODER)
  2982. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2983. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  2984. else if (avctx->hwaccel) {
  2985. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  2986. return -1;
  2987. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  2988. return -1;
  2989. if (avctx->hwaccel->end_frame(avctx) < 0)
  2990. return -1;
  2991. } else {
  2992. ff_er_frame_start(s);
  2993. v->bits = buf_size * 8;
  2994. vc1_decode_blocks(v);
  2995. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2996. // if(get_bits_count(&s->gb) > buf_size * 8)
  2997. // return -1;
  2998. ff_er_frame_end(s);
  2999. }
  3000. MPV_frame_end(s);
  3001. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3002. assert(s->current_picture.pict_type == s->pict_type);
  3003. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3004. *pict= *(AVFrame*)s->current_picture_ptr;
  3005. } else if (s->last_picture_ptr != NULL) {
  3006. *pict= *(AVFrame*)s->last_picture_ptr;
  3007. }
  3008. if(s->last_picture_ptr || s->low_delay){
  3009. *data_size = sizeof(AVFrame);
  3010. ff_print_debug_info(s, pict);
  3011. }
  3012. av_free(buf2);
  3013. return buf_size;
  3014. }
  3015. /** Close a VC1/WMV3 decoder
  3016. * @warning Initial try at using MpegEncContext stuff
  3017. */
  3018. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3019. {
  3020. VC1Context *v = avctx->priv_data;
  3021. av_freep(&v->hrd_rate);
  3022. av_freep(&v->hrd_buffer);
  3023. MPV_common_end(&v->s);
  3024. av_freep(&v->mv_type_mb_plane);
  3025. av_freep(&v->direct_mb_plane);
  3026. av_freep(&v->acpred_plane);
  3027. av_freep(&v->over_flags_plane);
  3028. av_freep(&v->mb_type_base);
  3029. av_freep(&v->cbp_base);
  3030. ff_intrax8_common_end(&v->x8);
  3031. return 0;
  3032. }
  3033. AVCodec vc1_decoder = {
  3034. "vc1",
  3035. CODEC_TYPE_VIDEO,
  3036. CODEC_ID_VC1,
  3037. sizeof(VC1Context),
  3038. vc1_decode_init,
  3039. NULL,
  3040. vc1_decode_end,
  3041. vc1_decode_frame,
  3042. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3043. NULL,
  3044. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3045. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3046. };
  3047. #if CONFIG_WMV3_DECODER
  3048. AVCodec wmv3_decoder = {
  3049. "wmv3",
  3050. CODEC_TYPE_VIDEO,
  3051. CODEC_ID_WMV3,
  3052. sizeof(VC1Context),
  3053. vc1_decode_init,
  3054. NULL,
  3055. vc1_decode_end,
  3056. vc1_decode_frame,
  3057. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3058. NULL,
  3059. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3060. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3061. };
  3062. #endif
  3063. #if CONFIG_WMV3_VDPAU_DECODER
  3064. AVCodec wmv3_vdpau_decoder = {
  3065. "wmv3_vdpau",
  3066. CODEC_TYPE_VIDEO,
  3067. CODEC_ID_WMV3,
  3068. sizeof(VC1Context),
  3069. vc1_decode_init,
  3070. NULL,
  3071. vc1_decode_end,
  3072. vc1_decode_frame,
  3073. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3074. NULL,
  3075. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3076. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3077. };
  3078. #endif
  3079. #if CONFIG_VC1_VDPAU_DECODER
  3080. AVCodec vc1_vdpau_decoder = {
  3081. "vc1_vdpau",
  3082. CODEC_TYPE_VIDEO,
  3083. CODEC_ID_VC1,
  3084. sizeof(VC1Context),
  3085. vc1_decode_init,
  3086. NULL,
  3087. vc1_decode_end,
  3088. vc1_decode_frame,
  3089. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3090. NULL,
  3091. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3092. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3093. };
  3094. #endif