dnxhdenc.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384
  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/mem_internal.h"
  28. #include "libavutil/opt.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "codec_internal.h"
  32. #include "encode.h"
  33. #include "fdctdsp.h"
  34. #include "mathops.h"
  35. #include "mpegvideo.h"
  36. #include "mpegvideoenc.h"
  37. #include "pixblockdsp.h"
  38. #include "packet_internal.h"
  39. #include "profiles.h"
  40. #include "dnxhdenc.h"
  41. // The largest value that will not lead to overflow for 10-bit samples.
  42. #define DNX10BIT_QMAT_SHIFT 18
  43. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  44. #define LAMBDA_FRAC_BITS 10
  45. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  46. static const AVOption options[] = {
  47. { "nitris_compat", "encode with Avid Nitris compatibility",
  48. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
  49. { "ibias", "intra quant bias",
  50. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  51. { .i64 = 0 }, INT_MIN, INT_MAX, VE },
  52. { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
  53. { .i64 = AV_PROFILE_DNXHD },
  54. AV_PROFILE_DNXHD, AV_PROFILE_DNXHR_444, VE, .unit = "profile" },
  55. { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHD },
  56. 0, 0, VE, .unit = "profile" },
  57. { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_444 },
  58. 0, 0, VE, .unit = "profile" },
  59. { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQX },
  60. 0, 0, VE, .unit = "profile" },
  61. { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQ },
  62. 0, 0, VE, .unit = "profile" },
  63. { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_SQ },
  64. 0, 0, VE, .unit = "profile" },
  65. { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_LB },
  66. 0, 0, VE, .unit = "profile" },
  67. { NULL }
  68. };
  69. static const AVClass dnxhd_class = {
  70. .class_name = "dnxhd",
  71. .item_name = av_default_item_name,
  72. .option = options,
  73. .version = LIBAVUTIL_VERSION_INT,
  74. };
  75. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  76. const uint8_t *pixels,
  77. ptrdiff_t line_size)
  78. {
  79. int i;
  80. for (i = 0; i < 4; i++) {
  81. block[0] = pixels[0];
  82. block[1] = pixels[1];
  83. block[2] = pixels[2];
  84. block[3] = pixels[3];
  85. block[4] = pixels[4];
  86. block[5] = pixels[5];
  87. block[6] = pixels[6];
  88. block[7] = pixels[7];
  89. pixels += line_size;
  90. block += 8;
  91. }
  92. memcpy(block, block - 8, sizeof(*block) * 8);
  93. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  94. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  95. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  96. }
  97. static av_always_inline
  98. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  99. const uint8_t *pixels,
  100. ptrdiff_t line_size)
  101. {
  102. memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  103. memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  104. memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  105. memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  106. memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  107. memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  108. memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  109. memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  110. }
  111. static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
  112. int n, int qscale, int *overflow)
  113. {
  114. int i, j, level, last_non_zero, start_i;
  115. const int *qmat;
  116. const uint8_t *scantable= ctx->intra_scantable.scantable;
  117. int bias;
  118. int max = 0;
  119. unsigned int threshold1, threshold2;
  120. ctx->fdsp.fdct(block);
  121. block[0] = (block[0] + 2) >> 2;
  122. start_i = 1;
  123. last_non_zero = 0;
  124. qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  125. bias= ctx->intra_quant_bias * (1 << (16 - 8));
  126. threshold1 = (1 << 16) - bias - 1;
  127. threshold2 = (threshold1 << 1);
  128. for (i = 63; i >= start_i; i--) {
  129. j = scantable[i];
  130. level = block[j] * qmat[j];
  131. if (((unsigned)(level + threshold1)) > threshold2) {
  132. last_non_zero = i;
  133. break;
  134. } else{
  135. block[j]=0;
  136. }
  137. }
  138. for (i = start_i; i <= last_non_zero; i++) {
  139. j = scantable[i];
  140. level = block[j] * qmat[j];
  141. if (((unsigned)(level + threshold1)) > threshold2) {
  142. if (level > 0) {
  143. level = (bias + level) >> 16;
  144. block[j] = level;
  145. } else{
  146. level = (bias - level) >> 16;
  147. block[j] = -level;
  148. }
  149. max |= level;
  150. } else {
  151. block[j] = 0;
  152. }
  153. }
  154. *overflow = ctx->max_qcoeff < max; //overflow might have happened
  155. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  156. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  157. ff_block_permute(block, ctx->idsp.idct_permutation,
  158. scantable, last_non_zero);
  159. return last_non_zero;
  160. }
  161. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  162. int n, int qscale, int *overflow)
  163. {
  164. const uint8_t *scantable= ctx->intra_scantable.scantable;
  165. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  166. int last_non_zero = 0;
  167. int i;
  168. ctx->fdsp.fdct(block);
  169. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  170. block[0] = (block[0] + 2) >> 2;
  171. for (i = 1; i < 64; ++i) {
  172. int j = scantable[i];
  173. int sign = FF_SIGNBIT(block[j]);
  174. int level = (block[j] ^ sign) - sign;
  175. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  176. block[j] = (level ^ sign) - sign;
  177. if (level)
  178. last_non_zero = i;
  179. }
  180. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  181. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  182. ff_block_permute(block, ctx->idsp.idct_permutation,
  183. scantable, last_non_zero);
  184. return last_non_zero;
  185. }
  186. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  187. {
  188. int i, j, level, run;
  189. int max_level = 1 << (ctx->bit_depth + 2);
  190. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
  191. !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits, max_level * 4) ||
  192. !(ctx->run_codes = av_mallocz(63 * 2)) ||
  193. !(ctx->run_bits = av_mallocz(63)))
  194. return AVERROR(ENOMEM);
  195. ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
  196. ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
  197. for (level = -max_level; level < max_level; level++) {
  198. for (run = 0; run < 2; run++) {
  199. int index = level * (1 << 1) | run;
  200. int sign, offset = 0, alevel = level;
  201. MASK_ABS(sign, alevel);
  202. if (alevel > 64) {
  203. offset = (alevel - 1) >> 6;
  204. alevel -= offset << 6;
  205. }
  206. for (j = 0; j < 257; j++) {
  207. if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
  208. (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
  209. (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
  210. av_assert1(!ctx->vlc_codes[index]);
  211. if (alevel) {
  212. ctx->vlc_codes[index] =
  213. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  214. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  215. } else {
  216. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  217. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  218. }
  219. break;
  220. }
  221. }
  222. av_assert0(!alevel || j < 257);
  223. if (offset) {
  224. ctx->vlc_codes[index] =
  225. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  226. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  227. }
  228. }
  229. }
  230. for (i = 0; i < 62; i++) {
  231. int run = ctx->cid_table->run[i];
  232. av_assert0(run < 63);
  233. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  234. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  235. }
  236. return 0;
  237. }
  238. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  239. {
  240. // init first elem to 1 to avoid div by 0 in convert_matrix
  241. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  242. int qscale, i;
  243. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  244. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  245. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l, ctx->m.avctx->qmax + 1) ||
  246. !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c, ctx->m.avctx->qmax + 1) ||
  247. !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
  248. !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
  249. return AVERROR(ENOMEM);
  250. if (ctx->bit_depth == 8) {
  251. for (i = 1; i < 64; i++) {
  252. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  253. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  254. }
  255. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  256. weight_matrix, ctx->intra_quant_bias, 1,
  257. ctx->m.avctx->qmax, 1);
  258. for (i = 1; i < 64; i++) {
  259. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  260. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  261. }
  262. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  263. weight_matrix, ctx->intra_quant_bias, 1,
  264. ctx->m.avctx->qmax, 1);
  265. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  266. for (i = 0; i < 64; i++) {
  267. ctx->qmatrix_l[qscale][i] <<= 2;
  268. ctx->qmatrix_c[qscale][i] <<= 2;
  269. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  270. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  271. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  272. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  273. }
  274. }
  275. } else {
  276. // 10-bit
  277. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  278. for (i = 1; i < 64; i++) {
  279. int j = ff_zigzag_direct[i];
  280. /* The quantization formula from the VC-3 standard is:
  281. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  282. * (qscale * weight_table[i]))
  283. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  284. * The s factor compensates scaling of DCT coefficients done by
  285. * the DCT routines, and therefore is not present in standard.
  286. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  287. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  288. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  289. * (qscale * weight_table[i])
  290. * For 10-bit samples, p / s == 2 */
  291. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  292. (qscale * luma_weight_table[i]);
  293. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  294. (qscale * chroma_weight_table[i]);
  295. }
  296. }
  297. }
  298. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  299. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  300. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  301. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  302. return 0;
  303. }
  304. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  305. {
  306. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
  307. return AVERROR(ENOMEM);
  308. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
  309. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp, ctx->m.mb_num) ||
  310. !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
  311. return AVERROR(ENOMEM);
  312. }
  313. ctx->frame_bits = (ctx->coding_unit_size -
  314. ctx->data_offset - 4 - ctx->min_padding) * 8;
  315. ctx->qscale = 1;
  316. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  317. return 0;
  318. }
  319. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  320. {
  321. DNXHDEncContext *ctx = avctx->priv_data;
  322. int i, ret;
  323. switch (avctx->pix_fmt) {
  324. case AV_PIX_FMT_YUV422P:
  325. ctx->bit_depth = 8;
  326. break;
  327. case AV_PIX_FMT_YUV422P10:
  328. case AV_PIX_FMT_YUV444P10:
  329. case AV_PIX_FMT_GBRP10:
  330. ctx->bit_depth = 10;
  331. break;
  332. }
  333. if ((ctx->profile == AV_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
  334. avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
  335. (ctx->profile != AV_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
  336. avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
  337. av_log(avctx, AV_LOG_ERROR,
  338. "pixel format is incompatible with DNxHD profile\n");
  339. return AVERROR(EINVAL);
  340. }
  341. if (ctx->profile == AV_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
  342. av_log(avctx, AV_LOG_ERROR,
  343. "pixel format is incompatible with DNxHR HQX profile\n");
  344. return AVERROR(EINVAL);
  345. }
  346. if ((ctx->profile == AV_PROFILE_DNXHR_LB ||
  347. ctx->profile == AV_PROFILE_DNXHR_SQ ||
  348. ctx->profile == AV_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
  349. av_log(avctx, AV_LOG_ERROR,
  350. "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
  351. return AVERROR(EINVAL);
  352. }
  353. ctx->is_444 = ctx->profile == AV_PROFILE_DNXHR_444;
  354. avctx->profile = ctx->profile;
  355. ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
  356. if (!ctx->cid) {
  357. av_log(avctx, AV_LOG_ERROR,
  358. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  359. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  360. return AVERROR(EINVAL);
  361. }
  362. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  363. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  364. avctx->codec_tag = MKTAG('A','V','d','h');
  365. if (avctx->width < 256 || avctx->height < 120) {
  366. av_log(avctx, AV_LOG_ERROR,
  367. "Input dimensions too small, input must be at least 256x120\n");
  368. return AVERROR(EINVAL);
  369. }
  370. ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
  371. av_assert0(ctx->cid_table);
  372. ctx->m.avctx = avctx;
  373. ctx->m.mb_intra = 1;
  374. ctx->m.h263_aic = 1;
  375. avctx->bits_per_raw_sample = ctx->bit_depth;
  376. ff_blockdsp_init(&ctx->bdsp);
  377. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  378. ff_mpv_idct_init(&ctx->m);
  379. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  380. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  381. ff_dct_encode_init(&ctx->m);
  382. if (ctx->profile != AV_PROFILE_DNXHD)
  383. ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
  384. if (!ctx->m.dct_quantize)
  385. ctx->m.dct_quantize = ff_dct_quantize_c;
  386. if (ctx->is_444 || ctx->profile == AV_PROFILE_DNXHR_HQX) {
  387. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
  388. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  389. ctx->block_width_l2 = 4;
  390. } else if (ctx->bit_depth == 10) {
  391. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  392. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  393. ctx->block_width_l2 = 4;
  394. } else {
  395. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  396. ctx->block_width_l2 = 3;
  397. }
  398. ff_dnxhdenc_init(ctx);
  399. ctx->m.mb_height = (avctx->height + 15) / 16;
  400. ctx->m.mb_width = (avctx->width + 15) / 16;
  401. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  402. ctx->interlaced = 1;
  403. ctx->m.mb_height /= 2;
  404. }
  405. if (ctx->interlaced && ctx->profile != AV_PROFILE_DNXHD) {
  406. av_log(avctx, AV_LOG_ERROR,
  407. "Interlaced encoding is not supported for DNxHR profiles.\n");
  408. return AVERROR(EINVAL);
  409. }
  410. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  411. if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
  412. ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
  413. avctx->width, avctx->height);
  414. av_assert0(ctx->frame_size >= 0);
  415. ctx->coding_unit_size = ctx->frame_size;
  416. } else {
  417. ctx->frame_size = ctx->cid_table->frame_size;
  418. ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
  419. }
  420. if (ctx->m.mb_height > 68)
  421. ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
  422. else
  423. ctx->data_offset = 0x280;
  424. // XXX tune lbias/cbias
  425. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  426. return ret;
  427. /* Avid Nitris hardware decoder requires a minimum amount of padding
  428. * in the coding unit payload */
  429. if (ctx->nitris_compat)
  430. ctx->min_padding = 1600;
  431. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  432. return ret;
  433. if ((ret = dnxhd_init_rc(ctx)) < 0)
  434. return ret;
  435. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
  436. !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
  437. !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits, ctx->m.mb_num) ||
  438. !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale, ctx->m.mb_num))
  439. return AVERROR(ENOMEM);
  440. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  441. if (avctx->thread_count > MAX_THREADS) {
  442. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  443. return AVERROR(EINVAL);
  444. }
  445. }
  446. if (avctx->qmax <= 1) {
  447. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  448. return AVERROR(EINVAL);
  449. }
  450. ctx->thread[0] = ctx;
  451. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  452. for (i = 1; i < avctx->thread_count; i++) {
  453. ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
  454. if (!ctx->thread[i])
  455. return AVERROR(ENOMEM);
  456. }
  457. }
  458. return 0;
  459. }
  460. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  461. {
  462. DNXHDEncContext *ctx = avctx->priv_data;
  463. memset(buf, 0, ctx->data_offset);
  464. // * write prefix */
  465. AV_WB16(buf + 0x02, ctx->data_offset);
  466. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  467. buf[4] = 0x03;
  468. else
  469. buf[4] = 0x01;
  470. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  471. buf[6] = 0x80; // crc flag off
  472. buf[7] = 0xa0; // reserved
  473. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  474. AV_WB16(buf + 0x1a, avctx->width); // SPL
  475. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  476. buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
  477. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  478. AV_WB32(buf + 0x28, ctx->cid); // CID
  479. buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  480. buf[0x5f] = 0x01; // UDL
  481. buf[0x167] = 0x02; // reserved
  482. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  483. AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
  484. buf[0x16f] = 0x10; // reserved
  485. ctx->msip = buf + 0x170;
  486. return 0;
  487. }
  488. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  489. {
  490. int nbits;
  491. if (diff < 0) {
  492. nbits = av_log2_16bit(-2 * diff);
  493. diff--;
  494. } else {
  495. nbits = av_log2_16bit(2 * diff);
  496. }
  497. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  498. (ctx->cid_table->dc_codes[nbits] << nbits) +
  499. av_mod_uintp2(diff, nbits));
  500. }
  501. static av_always_inline
  502. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  503. int last_index, int n)
  504. {
  505. int last_non_zero = 0;
  506. int slevel, i, j;
  507. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  508. ctx->m.last_dc[n] = block[0];
  509. for (i = 1; i <= last_index; i++) {
  510. j = ctx->m.intra_scantable.permutated[i];
  511. slevel = block[j];
  512. if (slevel) {
  513. int run_level = i - last_non_zero - 1;
  514. int rlevel = slevel * (1 << 1) | !!run_level;
  515. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  516. if (run_level)
  517. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  518. ctx->run_codes[run_level]);
  519. last_non_zero = i;
  520. }
  521. }
  522. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  523. }
  524. static av_always_inline
  525. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  526. int qscale, int last_index)
  527. {
  528. const uint8_t *weight_matrix;
  529. int level;
  530. int i;
  531. if (ctx->is_444) {
  532. weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
  533. : ctx->cid_table->chroma_weight;
  534. } else {
  535. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  536. : ctx->cid_table->luma_weight;
  537. }
  538. for (i = 1; i <= last_index; i++) {
  539. int j = ctx->m.intra_scantable.permutated[i];
  540. level = block[j];
  541. if (level) {
  542. if (level < 0) {
  543. level = (1 - 2 * level) * qscale * weight_matrix[i];
  544. if (ctx->bit_depth == 10) {
  545. if (weight_matrix[i] != 8)
  546. level += 8;
  547. level >>= 4;
  548. } else {
  549. if (weight_matrix[i] != 32)
  550. level += 32;
  551. level >>= 6;
  552. }
  553. level = -level;
  554. } else {
  555. level = (2 * level + 1) * qscale * weight_matrix[i];
  556. if (ctx->bit_depth == 10) {
  557. if (weight_matrix[i] != 8)
  558. level += 8;
  559. level >>= 4;
  560. } else {
  561. if (weight_matrix[i] != 32)
  562. level += 32;
  563. level >>= 6;
  564. }
  565. }
  566. block[j] = level;
  567. }
  568. }
  569. }
  570. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  571. {
  572. int score = 0;
  573. int i;
  574. for (i = 0; i < 64; i++)
  575. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  576. return score;
  577. }
  578. static av_always_inline
  579. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  580. {
  581. int last_non_zero = 0;
  582. int bits = 0;
  583. int i, j, level;
  584. for (i = 1; i <= last_index; i++) {
  585. j = ctx->m.intra_scantable.permutated[i];
  586. level = block[j];
  587. if (level) {
  588. int run_level = i - last_non_zero - 1;
  589. bits += ctx->vlc_bits[level * (1 << 1) |
  590. !!run_level] + ctx->run_bits[run_level];
  591. last_non_zero = i;
  592. }
  593. }
  594. return bits;
  595. }
  596. static av_always_inline
  597. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  598. {
  599. const int bs = ctx->block_width_l2;
  600. const int bw = 1 << bs;
  601. int dct_y_offset = ctx->dct_y_offset;
  602. int dct_uv_offset = ctx->dct_uv_offset;
  603. int linesize = ctx->m.linesize;
  604. int uvlinesize = ctx->m.uvlinesize;
  605. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  606. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  607. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  608. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
  609. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  610. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
  611. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  612. VideoDSPContext *vdsp = &ctx->m.vdsp;
  613. if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
  614. (mb_y << 4) + 16 > ctx->m.avctx->height)) {
  615. int y_w = ctx->m.avctx->width - (mb_x << 4);
  616. int y_h = ctx->m.avctx->height - (mb_y << 4);
  617. int uv_w = (y_w + 1) / 2;
  618. int uv_h = y_h;
  619. linesize = 16;
  620. uvlinesize = 8;
  621. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  622. linesize, ctx->m.linesize,
  623. linesize, 16,
  624. 0, 0, y_w, y_h);
  625. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  626. uvlinesize, ctx->m.uvlinesize,
  627. uvlinesize, 16,
  628. 0, 0, uv_w, uv_h);
  629. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  630. uvlinesize, ctx->m.uvlinesize,
  631. uvlinesize, 16,
  632. 0, 0, uv_w, uv_h);
  633. dct_y_offset = bw * linesize;
  634. dct_uv_offset = bw * uvlinesize;
  635. ptr_y = &ctx->edge_buf_y[0];
  636. ptr_u = &ctx->edge_buf_uv[0][0];
  637. ptr_v = &ctx->edge_buf_uv[1][0];
  638. } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
  639. (mb_y << 4) + 16 > ctx->m.avctx->height)) {
  640. int y_w = ctx->m.avctx->width - (mb_x << 4);
  641. int y_h = ctx->m.avctx->height - (mb_y << 4);
  642. int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
  643. int uv_h = y_h;
  644. linesize = 32;
  645. uvlinesize = 16 + 16 * ctx->is_444;
  646. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  647. linesize, ctx->m.linesize,
  648. linesize / 2, 16,
  649. 0, 0, y_w, y_h);
  650. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  651. uvlinesize, ctx->m.uvlinesize,
  652. uvlinesize / 2, 16,
  653. 0, 0, uv_w, uv_h);
  654. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  655. uvlinesize, ctx->m.uvlinesize,
  656. uvlinesize / 2, 16,
  657. 0, 0, uv_w, uv_h);
  658. dct_y_offset = bw * linesize / 2;
  659. dct_uv_offset = bw * uvlinesize / 2;
  660. ptr_y = &ctx->edge_buf_y[0];
  661. ptr_u = &ctx->edge_buf_uv[0][0];
  662. ptr_v = &ctx->edge_buf_uv[1][0];
  663. }
  664. if (!ctx->is_444) {
  665. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  666. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  667. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  668. pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
  669. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  670. if (ctx->interlaced) {
  671. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  672. ptr_y + dct_y_offset,
  673. linesize);
  674. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  675. ptr_y + dct_y_offset + bw,
  676. linesize);
  677. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  678. ptr_u + dct_uv_offset,
  679. uvlinesize);
  680. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  681. ptr_v + dct_uv_offset,
  682. uvlinesize);
  683. } else {
  684. ctx->bdsp.clear_block(ctx->blocks[4]);
  685. ctx->bdsp.clear_block(ctx->blocks[5]);
  686. ctx->bdsp.clear_block(ctx->blocks[6]);
  687. ctx->bdsp.clear_block(ctx->blocks[7]);
  688. }
  689. } else {
  690. pdsp->get_pixels(ctx->blocks[4],
  691. ptr_y + dct_y_offset, linesize);
  692. pdsp->get_pixels(ctx->blocks[5],
  693. ptr_y + dct_y_offset + bw, linesize);
  694. pdsp->get_pixels(ctx->blocks[6],
  695. ptr_u + dct_uv_offset, uvlinesize);
  696. pdsp->get_pixels(ctx->blocks[7],
  697. ptr_v + dct_uv_offset, uvlinesize);
  698. }
  699. } else {
  700. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  701. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  702. pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
  703. pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
  704. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  705. pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
  706. pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
  707. pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
  708. pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
  709. pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
  710. pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
  711. pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
  712. }
  713. }
  714. static av_always_inline
  715. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  716. {
  717. int x;
  718. if (ctx->is_444) {
  719. x = (i >> 1) % 3;
  720. } else {
  721. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  722. x = component[i];
  723. }
  724. return x;
  725. }
  726. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  727. int jobnr, int threadnr)
  728. {
  729. DNXHDEncContext *ctx = avctx->priv_data;
  730. int mb_y = jobnr, mb_x;
  731. int qscale = ctx->qscale;
  732. LOCAL_ALIGNED_16(int16_t, block, [64]);
  733. ctx = ctx->thread[threadnr];
  734. ctx->m.last_dc[0] =
  735. ctx->m.last_dc[1] =
  736. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  737. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  738. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  739. int ssd = 0;
  740. int ac_bits = 0;
  741. int dc_bits = 0;
  742. int i;
  743. dnxhd_get_blocks(ctx, mb_x, mb_y);
  744. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  745. int16_t *src_block = ctx->blocks[i];
  746. int overflow, nbits, diff, last_index;
  747. int n = dnxhd_switch_matrix(ctx, i);
  748. memcpy(block, src_block, 64 * sizeof(*block));
  749. last_index = ctx->m.dct_quantize(&ctx->m, block,
  750. ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
  751. qscale, &overflow);
  752. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  753. diff = block[0] - ctx->m.last_dc[n];
  754. if (diff < 0)
  755. nbits = av_log2_16bit(-2 * diff);
  756. else
  757. nbits = av_log2_16bit(2 * diff);
  758. av_assert1(nbits < ctx->bit_depth + 4);
  759. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  760. ctx->m.last_dc[n] = block[0];
  761. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  762. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  763. ctx->m.idsp.idct(block);
  764. ssd += dnxhd_ssd_block(block, src_block);
  765. }
  766. }
  767. ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
  768. ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
  769. (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
  770. }
  771. return 0;
  772. }
  773. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  774. int jobnr, int threadnr)
  775. {
  776. DNXHDEncContext *ctx = avctx->priv_data;
  777. int mb_y = jobnr, mb_x;
  778. ctx = ctx->thread[threadnr];
  779. init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
  780. ctx->slice_size[jobnr]);
  781. ctx->m.last_dc[0] =
  782. ctx->m.last_dc[1] =
  783. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  784. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  785. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  786. int qscale = ctx->mb_qscale[mb];
  787. int i;
  788. put_bits(&ctx->m.pb, 11, qscale);
  789. put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  790. dnxhd_get_blocks(ctx, mb_x, mb_y);
  791. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  792. int16_t *block = ctx->blocks[i];
  793. int overflow, n = dnxhd_switch_matrix(ctx, i);
  794. int last_index = ctx->m.dct_quantize(&ctx->m, block,
  795. ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
  796. qscale, &overflow);
  797. dnxhd_encode_block(ctx, block, last_index, n);
  798. }
  799. }
  800. if (put_bits_count(&ctx->m.pb) & 31)
  801. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  802. flush_put_bits(&ctx->m.pb);
  803. memset(put_bits_ptr(&ctx->m.pb), 0, put_bytes_left(&ctx->m.pb, 0));
  804. return 0;
  805. }
  806. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  807. {
  808. int mb_y, mb_x;
  809. int offset = 0;
  810. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  811. int thread_size;
  812. ctx->slice_offs[mb_y] = offset;
  813. ctx->slice_size[mb_y] = 0;
  814. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  815. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  816. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  817. }
  818. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31U) & ~31U;
  819. ctx->slice_size[mb_y] >>= 3;
  820. thread_size = ctx->slice_size[mb_y];
  821. offset += thread_size;
  822. }
  823. }
  824. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  825. int jobnr, int threadnr)
  826. {
  827. DNXHDEncContext *ctx = avctx->priv_data;
  828. int mb_y = jobnr, mb_x, x, y;
  829. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  830. ((avctx->height >> ctx->interlaced) & 0xF);
  831. ctx = ctx->thread[threadnr];
  832. if (ctx->bit_depth == 8) {
  833. const uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  834. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  835. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  836. int sum;
  837. int varc;
  838. if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
  839. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  840. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  841. } else {
  842. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  843. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  844. sum = varc = 0;
  845. for (y = 0; y < bh; y++) {
  846. for (x = 0; x < bw; x++) {
  847. uint8_t val = pix[x + y * ctx->m.linesize];
  848. sum += val;
  849. varc += val * val;
  850. }
  851. }
  852. }
  853. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  854. ctx->mb_cmp[mb].value = varc;
  855. ctx->mb_cmp[mb].mb = mb;
  856. }
  857. } else { // 10-bit
  858. const int linesize = ctx->m.linesize >> 1;
  859. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  860. const uint16_t *pix = (const uint16_t *)ctx->thread[0]->src[0] +
  861. ((mb_y << 4) * linesize) + (mb_x << 4);
  862. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  863. int sum = 0;
  864. int sqsum = 0;
  865. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  866. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  867. int mean, sqmean;
  868. int i, j;
  869. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  870. for (i = 0; i < bh; ++i) {
  871. for (j = 0; j < bw; ++j) {
  872. // Turn 16-bit pixels into 10-bit ones.
  873. const int sample = (unsigned) pix[j] >> 6;
  874. sum += sample;
  875. sqsum += sample * sample;
  876. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  877. }
  878. pix += linesize;
  879. }
  880. mean = sum >> 8; // 16*16 == 2^8
  881. sqmean = sqsum >> 8;
  882. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  883. ctx->mb_cmp[mb].mb = mb;
  884. }
  885. }
  886. return 0;
  887. }
  888. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  889. {
  890. int lambda, up_step, down_step;
  891. int last_lower = INT_MAX, last_higher = 0;
  892. int x, y, q;
  893. for (q = 1; q < avctx->qmax; q++) {
  894. ctx->qscale = q;
  895. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  896. NULL, NULL, ctx->m.mb_height);
  897. }
  898. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  899. lambda = ctx->lambda;
  900. for (;;) {
  901. int bits = 0;
  902. int end = 0;
  903. if (lambda == last_higher) {
  904. lambda++;
  905. end = 1; // need to set final qscales/bits
  906. }
  907. for (y = 0; y < ctx->m.mb_height; y++) {
  908. for (x = 0; x < ctx->m.mb_width; x++) {
  909. unsigned min = UINT_MAX;
  910. int qscale = 1;
  911. int mb = y * ctx->m.mb_width + x;
  912. int rc = 0;
  913. for (q = 1; q < avctx->qmax; q++) {
  914. int i = (q*ctx->m.mb_num) + mb;
  915. unsigned score = ctx->mb_rc[i].bits * lambda +
  916. ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
  917. if (score < min) {
  918. min = score;
  919. qscale = q;
  920. rc = i;
  921. }
  922. }
  923. bits += ctx->mb_rc[rc].bits;
  924. ctx->mb_qscale[mb] = qscale;
  925. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  926. }
  927. bits = (bits + 31) & ~31; // padding
  928. if (bits > ctx->frame_bits)
  929. break;
  930. }
  931. if (end) {
  932. if (bits > ctx->frame_bits)
  933. return AVERROR(EINVAL);
  934. break;
  935. }
  936. if (bits < ctx->frame_bits) {
  937. last_lower = FFMIN(lambda, last_lower);
  938. if (last_higher != 0)
  939. lambda = (lambda+last_higher)>>1;
  940. else
  941. lambda -= down_step;
  942. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  943. up_step = 1<<LAMBDA_FRAC_BITS;
  944. lambda = FFMAX(1, lambda);
  945. if (lambda == last_lower)
  946. break;
  947. } else {
  948. last_higher = FFMAX(lambda, last_higher);
  949. if (last_lower != INT_MAX)
  950. lambda = (lambda+last_lower)>>1;
  951. else if ((int64_t)lambda + up_step > INT_MAX)
  952. return AVERROR(EINVAL);
  953. else
  954. lambda += up_step;
  955. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  956. down_step = 1<<LAMBDA_FRAC_BITS;
  957. }
  958. }
  959. ctx->lambda = lambda;
  960. return 0;
  961. }
  962. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  963. {
  964. int bits = 0;
  965. int up_step = 1;
  966. int down_step = 1;
  967. int last_higher = 0;
  968. int last_lower = INT_MAX;
  969. int qscale;
  970. int x, y;
  971. qscale = ctx->qscale;
  972. for (;;) {
  973. bits = 0;
  974. ctx->qscale = qscale;
  975. // XXX avoid recalculating bits
  976. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  977. NULL, NULL, ctx->m.mb_height);
  978. for (y = 0; y < ctx->m.mb_height; y++) {
  979. for (x = 0; x < ctx->m.mb_width; x++)
  980. bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
  981. bits = (bits+31)&~31; // padding
  982. if (bits > ctx->frame_bits)
  983. break;
  984. }
  985. if (bits < ctx->frame_bits) {
  986. if (qscale == 1)
  987. return 1;
  988. if (last_higher == qscale - 1) {
  989. qscale = last_higher;
  990. break;
  991. }
  992. last_lower = FFMIN(qscale, last_lower);
  993. if (last_higher != 0)
  994. qscale = (qscale + last_higher) >> 1;
  995. else
  996. qscale -= down_step++;
  997. if (qscale < 1)
  998. qscale = 1;
  999. up_step = 1;
  1000. } else {
  1001. if (last_lower == qscale + 1)
  1002. break;
  1003. last_higher = FFMAX(qscale, last_higher);
  1004. if (last_lower != INT_MAX)
  1005. qscale = (qscale + last_lower) >> 1;
  1006. else
  1007. qscale += up_step++;
  1008. down_step = 1;
  1009. if (qscale >= ctx->m.avctx->qmax)
  1010. return AVERROR(EINVAL);
  1011. }
  1012. }
  1013. ctx->qscale = qscale;
  1014. return 0;
  1015. }
  1016. #define BUCKET_BITS 8
  1017. #define RADIX_PASSES 4
  1018. #define NBUCKETS (1 << BUCKET_BITS)
  1019. static inline int get_bucket(int value, int shift)
  1020. {
  1021. value >>= shift;
  1022. value &= NBUCKETS - 1;
  1023. return NBUCKETS - 1 - value;
  1024. }
  1025. static void radix_count(const RCCMPEntry *data, int size,
  1026. int buckets[RADIX_PASSES][NBUCKETS])
  1027. {
  1028. int i, j;
  1029. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  1030. for (i = 0; i < size; i++) {
  1031. int v = data[i].value;
  1032. for (j = 0; j < RADIX_PASSES; j++) {
  1033. buckets[j][get_bucket(v, 0)]++;
  1034. v >>= BUCKET_BITS;
  1035. }
  1036. av_assert1(!v);
  1037. }
  1038. for (j = 0; j < RADIX_PASSES; j++) {
  1039. int offset = size;
  1040. for (i = NBUCKETS - 1; i >= 0; i--)
  1041. buckets[j][i] = offset -= buckets[j][i];
  1042. av_assert1(!buckets[j][0]);
  1043. }
  1044. }
  1045. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  1046. int size, int buckets[NBUCKETS], int pass)
  1047. {
  1048. int shift = pass * BUCKET_BITS;
  1049. int i;
  1050. for (i = 0; i < size; i++) {
  1051. int v = get_bucket(data[i].value, shift);
  1052. int pos = buckets[v]++;
  1053. dst[pos] = data[i];
  1054. }
  1055. }
  1056. static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
  1057. {
  1058. int buckets[RADIX_PASSES][NBUCKETS];
  1059. radix_count(data, size, buckets);
  1060. radix_sort_pass(tmp, data, size, buckets[0], 0);
  1061. radix_sort_pass(data, tmp, size, buckets[1], 1);
  1062. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  1063. radix_sort_pass(tmp, data, size, buckets[2], 2);
  1064. radix_sort_pass(data, tmp, size, buckets[3], 3);
  1065. }
  1066. }
  1067. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  1068. {
  1069. int max_bits = 0;
  1070. int ret, x, y;
  1071. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  1072. return ret;
  1073. for (y = 0; y < ctx->m.mb_height; y++) {
  1074. for (x = 0; x < ctx->m.mb_width; x++) {
  1075. int mb = y * ctx->m.mb_width + x;
  1076. int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
  1077. int delta_bits;
  1078. ctx->mb_qscale[mb] = ctx->qscale;
  1079. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  1080. max_bits += ctx->mb_rc[rc].bits;
  1081. if (!RC_VARIANCE) {
  1082. delta_bits = ctx->mb_rc[rc].bits -
  1083. ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1084. ctx->mb_cmp[mb].mb = mb;
  1085. ctx->mb_cmp[mb].value =
  1086. delta_bits ? ((ctx->mb_rc[rc].ssd -
  1087. ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
  1088. delta_bits
  1089. : INT_MIN; // avoid increasing qscale
  1090. }
  1091. }
  1092. max_bits += 31; // worst padding
  1093. }
  1094. if (!ret) {
  1095. if (RC_VARIANCE)
  1096. avctx->execute2(avctx, dnxhd_mb_var_thread,
  1097. NULL, NULL, ctx->m.mb_height);
  1098. radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
  1099. retry:
  1100. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  1101. int mb = ctx->mb_cmp[x].mb;
  1102. int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
  1103. max_bits -= ctx->mb_rc[rc].bits -
  1104. ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1105. if (ctx->mb_qscale[mb] < 255)
  1106. ctx->mb_qscale[mb]++;
  1107. ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1108. }
  1109. if (max_bits > ctx->frame_bits)
  1110. goto retry;
  1111. }
  1112. return 0;
  1113. }
  1114. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  1115. {
  1116. int i;
  1117. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  1118. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  1119. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  1120. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  1121. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  1122. }
  1123. ctx->cur_field = (frame->flags & AV_FRAME_FLAG_INTERLACED) &&
  1124. !(frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST);
  1125. }
  1126. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  1127. const AVFrame *frame, int *got_packet)
  1128. {
  1129. DNXHDEncContext *ctx = avctx->priv_data;
  1130. int first_field = 1;
  1131. int offset, i, ret;
  1132. uint8_t *buf;
  1133. if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
  1134. return ret;
  1135. buf = pkt->data;
  1136. dnxhd_load_picture(ctx, frame);
  1137. encode_coding_unit:
  1138. for (i = 0; i < 3; i++) {
  1139. ctx->src[i] = frame->data[i];
  1140. if (ctx->interlaced && ctx->cur_field)
  1141. ctx->src[i] += frame->linesize[i];
  1142. }
  1143. dnxhd_write_header(avctx, buf);
  1144. if (avctx->mb_decision == FF_MB_DECISION_RD)
  1145. ret = dnxhd_encode_rdo(avctx, ctx);
  1146. else
  1147. ret = dnxhd_encode_fast(avctx, ctx);
  1148. if (ret < 0) {
  1149. av_log(avctx, AV_LOG_ERROR,
  1150. "picture could not fit ratecontrol constraints, increase qmax\n");
  1151. return ret;
  1152. }
  1153. dnxhd_setup_threads_slices(ctx);
  1154. offset = 0;
  1155. for (i = 0; i < ctx->m.mb_height; i++) {
  1156. AV_WB32(ctx->msip + i * 4, offset);
  1157. offset += ctx->slice_size[i];
  1158. av_assert1(!(ctx->slice_size[i] & 3));
  1159. }
  1160. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  1161. av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
  1162. memset(buf + ctx->data_offset + offset, 0,
  1163. ctx->coding_unit_size - 4 - offset - ctx->data_offset);
  1164. AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
  1165. if (ctx->interlaced && first_field) {
  1166. first_field = 0;
  1167. ctx->cur_field ^= 1;
  1168. buf += ctx->coding_unit_size;
  1169. goto encode_coding_unit;
  1170. }
  1171. ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
  1172. *got_packet = 1;
  1173. return 0;
  1174. }
  1175. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1176. {
  1177. DNXHDEncContext *ctx = avctx->priv_data;
  1178. int i;
  1179. av_freep(&ctx->orig_vlc_codes);
  1180. av_freep(&ctx->orig_vlc_bits);
  1181. av_freep(&ctx->run_codes);
  1182. av_freep(&ctx->run_bits);
  1183. av_freep(&ctx->mb_bits);
  1184. av_freep(&ctx->mb_qscale);
  1185. av_freep(&ctx->mb_rc);
  1186. av_freep(&ctx->mb_cmp);
  1187. av_freep(&ctx->mb_cmp_tmp);
  1188. av_freep(&ctx->slice_size);
  1189. av_freep(&ctx->slice_offs);
  1190. av_freep(&ctx->qmatrix_c);
  1191. av_freep(&ctx->qmatrix_l);
  1192. av_freep(&ctx->qmatrix_c16);
  1193. av_freep(&ctx->qmatrix_l16);
  1194. if (ctx->thread[1]) {
  1195. for (i = 1; i < avctx->thread_count; i++)
  1196. av_freep(&ctx->thread[i]);
  1197. }
  1198. return 0;
  1199. }
  1200. static const FFCodecDefault dnxhd_defaults[] = {
  1201. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1202. { NULL },
  1203. };
  1204. const FFCodec ff_dnxhd_encoder = {
  1205. .p.name = "dnxhd",
  1206. CODEC_LONG_NAME("VC3/DNxHD"),
  1207. .p.type = AVMEDIA_TYPE_VIDEO,
  1208. .p.id = AV_CODEC_ID_DNXHD,
  1209. .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
  1210. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
  1211. .priv_data_size = sizeof(DNXHDEncContext),
  1212. .init = dnxhd_encode_init,
  1213. FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
  1214. .close = dnxhd_encode_end,
  1215. .p.pix_fmts = (const enum AVPixelFormat[]) {
  1216. AV_PIX_FMT_YUV422P,
  1217. AV_PIX_FMT_YUV422P10,
  1218. AV_PIX_FMT_YUV444P10,
  1219. AV_PIX_FMT_GBRP10,
  1220. AV_PIX_FMT_NONE
  1221. },
  1222. .p.priv_class = &dnxhd_class,
  1223. .defaults = dnxhd_defaults,
  1224. .p.profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
  1225. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1226. };
  1227. void ff_dnxhdenc_init(DNXHDEncContext *ctx)
  1228. {
  1229. #if ARCH_X86
  1230. ff_dnxhdenc_init_x86(ctx);
  1231. #endif
  1232. }