123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617 |
- /*
- * audio resampling
- * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
- * bessel function: Copyright (c) 2006 Xiaogang Zhang
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * audio resampling
- * @author Michael Niedermayer <michaelni@gmx.at>
- */
- #include "libavutil/avassert.h"
- #include "libavutil/cpu.h"
- #include "resample.h"
- static inline double eval_poly(const double *coeff, int size, double x) {
- double sum = coeff[size-1];
- int i;
- for (i = size-2; i >= 0; --i) {
- sum *= x;
- sum += coeff[i];
- }
- return sum;
- }
- /**
- * 0th order modified bessel function of the first kind.
- * Algorithm taken from the Boost project, source:
- * https://searchcode.com/codesearch/view/14918379/
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0 (see notice below).
- * Boost Software License - Version 1.0 - August 17th, 2003
- Permission is hereby granted, free of charge, to any person or organization
- obtaining a copy of the software and accompanying documentation covered by
- this license (the "Software") to use, reproduce, display, distribute,
- execute, and transmit the Software, and to prepare derivative works of the
- Software, and to permit third-parties to whom the Software is furnished to
- do so, all subject to the following:
- The copyright notices in the Software and this entire statement, including
- the above license grant, this restriction and the following disclaimer,
- must be included in all copies of the Software, in whole or in part, and
- all derivative works of the Software, unless such copies or derivative
- works are solely in the form of machine-executable object code generated by
- a source language processor.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
- SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
- FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
- ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- DEALINGS IN THE SOFTWARE.
- */
- static double bessel(double x) {
- // Modified Bessel function of the first kind of order zero
- // minimax rational approximations on intervals, see
- // Blair and Edwards, Chalk River Report AECL-4928, 1974
- static const double p1[] = {
- -2.2335582639474375249e+15,
- -5.5050369673018427753e+14,
- -3.2940087627407749166e+13,
- -8.4925101247114157499e+11,
- -1.1912746104985237192e+10,
- -1.0313066708737980747e+08,
- -5.9545626019847898221e+05,
- -2.4125195876041896775e+03,
- -7.0935347449210549190e+00,
- -1.5453977791786851041e-02,
- -2.5172644670688975051e-05,
- -3.0517226450451067446e-08,
- -2.6843448573468483278e-11,
- -1.5982226675653184646e-14,
- -5.2487866627945699800e-18,
- };
- static const double q1[] = {
- -2.2335582639474375245e+15,
- 7.8858692566751002988e+12,
- -1.2207067397808979846e+10,
- 1.0377081058062166144e+07,
- -4.8527560179962773045e+03,
- 1.0,
- };
- static const double p2[] = {
- -2.2210262233306573296e-04,
- 1.3067392038106924055e-02,
- -4.4700805721174453923e-01,
- 5.5674518371240761397e+00,
- -2.3517945679239481621e+01,
- 3.1611322818701131207e+01,
- -9.6090021968656180000e+00,
- };
- static const double q2[] = {
- -5.5194330231005480228e-04,
- 3.2547697594819615062e-02,
- -1.1151759188741312645e+00,
- 1.3982595353892851542e+01,
- -6.0228002066743340583e+01,
- 8.5539563258012929600e+01,
- -3.1446690275135491500e+01,
- 1.0,
- };
- double y, r, factor;
- if (x == 0)
- return 1.0;
- x = fabs(x);
- if (x <= 15) {
- y = x * x;
- return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
- }
- else {
- y = 1 / x - 1.0 / 15;
- r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
- factor = exp(x) / sqrt(x);
- return factor * r;
- }
- }
- /**
- * builds a polyphase filterbank.
- * @param factor resampling factor
- * @param scale wanted sum of coefficients for each filter
- * @param filter_type filter type
- * @param kaiser_beta kaiser window beta
- * @return 0 on success, negative on error
- */
- static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
- int filter_type, double kaiser_beta){
- int ph, i;
- int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
- double x, y, w, t, s;
- double *tab = av_malloc_array(tap_count+1, sizeof(*tab));
- double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
- const int center= (tap_count-1)/2;
- double norm = 0;
- int ret = AVERROR(ENOMEM);
- if (!tab || !sin_lut)
- goto fail;
- av_assert0(tap_count == 1 || tap_count % 2 == 0);
- /* if upsampling, only need to interpolate, no filter */
- if (factor > 1.0)
- factor = 1.0;
- if (factor == 1.0) {
- for (ph = 0; ph < ph_nb; ph++)
- sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
- }
- for(ph = 0; ph < ph_nb; ph++) {
- s = sin_lut[ph];
- for(i=0;i<tap_count;i++) {
- x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
- if (x == 0) y = 1.0;
- else if (factor == 1.0)
- y = s / x;
- else
- y = sin(x) / x;
- switch(filter_type){
- case SWR_FILTER_TYPE_CUBIC:{
- const float d= -0.5; //first order derivative = -0.5
- x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
- if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
- else y= d*(-4 + 8*x - 5*x*x + x*x*x);
- break;}
- case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
- w = 2.0*x / (factor*tap_count);
- t = -cos(w);
- y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
- break;
- case SWR_FILTER_TYPE_KAISER:
- w = 2.0*x / (factor*tap_count*M_PI);
- y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
- break;
- default:
- av_assert0(0);
- }
- tab[i] = y;
- s = -s;
- if (!ph)
- norm += y;
- }
- /* normalize so that an uniform color remains the same */
- switch(c->format){
- case AV_SAMPLE_FMT_S16P:
- for(i=0;i<tap_count;i++)
- ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
- if (phase_count % 2) break;
- for (i = 0; i < tap_count; i++)
- ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
- break;
- case AV_SAMPLE_FMT_S32P:
- for(i=0;i<tap_count;i++)
- ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
- if (phase_count % 2) break;
- for (i = 0; i < tap_count; i++)
- ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
- break;
- case AV_SAMPLE_FMT_FLTP:
- for(i=0;i<tap_count;i++)
- ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
- if (phase_count % 2) break;
- for (i = 0; i < tap_count; i++)
- ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
- break;
- case AV_SAMPLE_FMT_DBLP:
- for(i=0;i<tap_count;i++)
- ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
- if (phase_count % 2) break;
- for (i = 0; i < tap_count; i++)
- ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
- break;
- }
- }
- #if 0
- {
- #define LEN 1024
- int j,k;
- double sine[LEN + tap_count];
- double filtered[LEN];
- double maxff=-2, minff=2, maxsf=-2, minsf=2;
- for(i=0; i<LEN; i++){
- double ss=0, sf=0, ff=0;
- for(j=0; j<LEN+tap_count; j++)
- sine[j]= cos(i*j*M_PI/LEN);
- for(j=0; j<LEN; j++){
- double sum=0;
- ph=0;
- for(k=0; k<tap_count; k++)
- sum += filter[ph * tap_count + k] * sine[k+j];
- filtered[j]= sum / (1<<FILTER_SHIFT);
- ss+= sine[j + center] * sine[j + center];
- ff+= filtered[j] * filtered[j];
- sf+= sine[j + center] * filtered[j];
- }
- ss= sqrt(2*ss/LEN);
- ff= sqrt(2*ff/LEN);
- sf= 2*sf/LEN;
- maxff= FFMAX(maxff, ff);
- minff= FFMIN(minff, ff);
- maxsf= FFMAX(maxsf, sf);
- minsf= FFMIN(minsf, sf);
- if(i%11==0){
- av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
- minff=minsf= 2;
- maxff=maxsf= -2;
- }
- }
- }
- #endif
- ret = 0;
- fail:
- av_free(tab);
- av_free(sin_lut);
- return ret;
- }
- static void resample_free(ResampleContext **cc){
- ResampleContext *c = *cc;
- if(!c)
- return;
- av_freep(&c->filter_bank);
- av_freep(cc);
- }
- static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
- double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
- double precision, int cheby, int exact_rational)
- {
- double cutoff = cutoff0? cutoff0 : 0.97;
- double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
- int phase_count= 1<<phase_shift;
- int phase_count_compensation = phase_count;
- int filter_length = FFMAX((int)ceil(filter_size/factor), 1);
- if (filter_length > 1)
- filter_length = FFALIGN(filter_length, 2);
- if (exact_rational) {
- int phase_count_exact, phase_count_exact_den;
- av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
- if (phase_count_exact <= phase_count) {
- phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
- phase_count = phase_count_exact;
- }
- }
- if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
- || c->filter_length != filter_length || c->format != format
- || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
- resample_free(&c);
- c = av_mallocz(sizeof(*c));
- if (!c)
- return NULL;
- c->format= format;
- c->felem_size= av_get_bytes_per_sample(c->format);
- switch(c->format){
- case AV_SAMPLE_FMT_S16P:
- c->filter_shift = 15;
- break;
- case AV_SAMPLE_FMT_S32P:
- c->filter_shift = 30;
- break;
- case AV_SAMPLE_FMT_FLTP:
- case AV_SAMPLE_FMT_DBLP:
- c->filter_shift = 0;
- break;
- default:
- av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
- av_assert0(0);
- }
- if (filter_size/factor > INT32_MAX/256) {
- av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
- goto error;
- }
- c->phase_count = phase_count;
- c->linear = linear;
- c->factor = factor;
- c->filter_length = filter_length;
- c->filter_alloc = FFALIGN(c->filter_length, 8);
- c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
- c->filter_type = filter_type;
- c->kaiser_beta = kaiser_beta;
- c->phase_count_compensation = phase_count_compensation;
- if (!c->filter_bank)
- goto error;
- if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
- goto error;
- memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
- memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
- }
- c->compensation_distance= 0;
- if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
- goto error;
- while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
- c->dst_incr *= 2;
- c->src_incr *= 2;
- }
- c->ideal_dst_incr = c->dst_incr;
- c->dst_incr_div = c->dst_incr / c->src_incr;
- c->dst_incr_mod = c->dst_incr % c->src_incr;
- c->index= -phase_count*((c->filter_length-1)/2);
- c->frac= 0;
- swri_resample_dsp_init(c);
- return c;
- error:
- av_freep(&c->filter_bank);
- av_free(c);
- return NULL;
- }
- static int rebuild_filter_bank_with_compensation(ResampleContext *c)
- {
- uint8_t *new_filter_bank;
- int new_src_incr, new_dst_incr;
- int phase_count = c->phase_count_compensation;
- int ret;
- if (phase_count == c->phase_count)
- return 0;
- av_assert0(!c->frac && !c->dst_incr_mod);
- new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
- if (!new_filter_bank)
- return AVERROR(ENOMEM);
- ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
- phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
- if (ret < 0) {
- av_freep(&new_filter_bank);
- return ret;
- }
- memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
- memcpy(new_filter_bank + (c->filter_alloc*phase_count )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
- if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
- c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
- {
- av_freep(&new_filter_bank);
- return AVERROR(EINVAL);
- }
- c->src_incr = new_src_incr;
- c->dst_incr = new_dst_incr;
- while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
- c->dst_incr *= 2;
- c->src_incr *= 2;
- }
- c->ideal_dst_incr = c->dst_incr;
- c->dst_incr_div = c->dst_incr / c->src_incr;
- c->dst_incr_mod = c->dst_incr % c->src_incr;
- c->index *= phase_count / c->phase_count;
- c->phase_count = phase_count;
- av_freep(&c->filter_bank);
- c->filter_bank = new_filter_bank;
- return 0;
- }
- static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
- int ret;
- if (compensation_distance && sample_delta) {
- ret = rebuild_filter_bank_with_compensation(c);
- if (ret < 0)
- return ret;
- }
- c->compensation_distance= compensation_distance;
- if (compensation_distance)
- c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
- else
- c->dst_incr = c->ideal_dst_incr;
- c->dst_incr_div = c->dst_incr / c->src_incr;
- c->dst_incr_mod = c->dst_incr % c->src_incr;
- return 0;
- }
- static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
- int i;
- int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
- if (c->compensation_distance)
- dst_size = FFMIN(dst_size, c->compensation_distance);
- src_size = FFMIN(src_size, max_src_size);
- *consumed = 0;
- if (c->filter_length == 1 && c->phase_count == 1) {
- int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index + 1;
- int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr + 1;
- int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;
- dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
- if (dst_size > 0) {
- for (i = 0; i < dst->ch_count; i++) {
- c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
- if (i+1 == dst->ch_count) {
- c->index += dst_size * c->dst_incr_div;
- c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
- av_assert2(c->index >= 0);
- *consumed = c->index;
- c->frac = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
- c->index = 0;
- }
- }
- }
- } else {
- int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
- int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
- int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
- int (*resample_func)(struct ResampleContext *c, void *dst,
- const void *src, int n, int update_ctx);
- dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
- if (dst_size > 0) {
- /* resample_linear and resample_common should have same behavior
- * when frac and dst_incr_mod are zero */
- resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
- c->dsp.resample_linear : c->dsp.resample_common;
- for (i = 0; i < dst->ch_count; i++)
- *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
- }
- }
- if (c->compensation_distance) {
- c->compensation_distance -= dst_size;
- if (!c->compensation_distance) {
- c->dst_incr = c->ideal_dst_incr;
- c->dst_incr_div = c->dst_incr / c->src_incr;
- c->dst_incr_mod = c->dst_incr % c->src_incr;
- }
- }
- return dst_size;
- }
- static int64_t get_delay(struct SwrContext *s, int64_t base){
- ResampleContext *c = s->resample;
- int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
- num *= c->phase_count;
- num -= c->index;
- num *= c->src_incr;
- num -= c->frac;
- return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
- }
- static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
- ResampleContext *c = s->resample;
- // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
- // They also make it easier to proof that changes and optimizations do not
- // break the upper bound.
- int64_t num = s->in_buffer_count + 2LL + in_samples;
- num *= c->phase_count;
- num -= c->index;
- num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
- if (c->compensation_distance) {
- if (num > INT_MAX)
- return AVERROR(EINVAL);
- num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
- }
- return num;
- }
- static int resample_flush(struct SwrContext *s) {
- ResampleContext *c = s->resample;
- AudioData *a= &s->in_buffer;
- int i, j, ret;
- int reflection = (FFMIN(s->in_buffer_count, c->filter_length) + 1) / 2;
- if((ret = swri_realloc_audio(a, s->in_buffer_index + s->in_buffer_count + reflection)) < 0)
- return ret;
- av_assert0(a->planar);
- for(i=0; i<a->ch_count; i++){
- for(j=0; j<reflection; j++){
- memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
- a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
- }
- }
- s->in_buffer_count += reflection;
- return 0;
- }
- // in fact the whole handle multiple ridiculously small buffers might need more thinking...
- static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
- int in_count, int *out_idx, int *out_sz)
- {
- int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
- if (c->index >= 0)
- return 0;
- if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
- return res;
- // copy
- for (n = *out_sz; n < num; n++) {
- for (ch = 0; ch < src->ch_count; ch++) {
- memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
- src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
- }
- }
- // if not enough data is in, return and wait for more
- if (num < c->filter_length + 1) {
- *out_sz = num;
- *out_idx = c->filter_length;
- return INT_MAX;
- }
- // else invert
- for (n = 1; n <= c->filter_length; n++) {
- for (ch = 0; ch < src->ch_count; ch++) {
- memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
- dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
- c->felem_size);
- }
- }
- res = num - *out_sz;
- *out_idx = c->filter_length;
- while (c->index < 0) {
- --*out_idx;
- c->index += c->phase_count;
- }
- *out_sz = FFMAX(*out_sz + c->filter_length,
- 1 + c->filter_length * 2) - *out_idx;
- return FFMAX(res, 0);
- }
- struct Resampler const swri_resampler={
- resample_init,
- resample_free,
- multiple_resample,
- resample_flush,
- set_compensation,
- get_delay,
- invert_initial_buffer,
- get_out_samples,
- };
|