123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- /*
- * rational numbers
- * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file libavutil/rational.c
- * rational numbers
- * @author Michael Niedermayer <michaelni@gmx.at>
- */
- #include <assert.h>
- //#include <math.h>
- #include <limits.h>
- #include "common.h"
- #include "mathematics.h"
- #include "rational.h"
- int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max){
- AVRational a0={0,1}, a1={1,0};
- int sign= (num<0) ^ (den<0);
- int64_t gcd= av_gcd(FFABS(num), FFABS(den));
- if(gcd){
- num = FFABS(num)/gcd;
- den = FFABS(den)/gcd;
- }
- if(num<=max && den<=max){
- a1= (AVRational){num, den};
- den=0;
- }
- while(den){
- uint64_t x = num / den;
- int64_t next_den= num - den*x;
- int64_t a2n= x*a1.num + a0.num;
- int64_t a2d= x*a1.den + a0.den;
- if(a2n > max || a2d > max){
- if(a1.num) x= (max - a0.num) / a1.num;
- if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den);
- if (den*(2*x*a1.den + a0.den) > num*a1.den)
- a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den};
- break;
- }
- a0= a1;
- a1= (AVRational){a2n, a2d};
- num= den;
- den= next_den;
- }
- assert(av_gcd(a1.num, a1.den) <= 1U);
- *dst_num = sign ? -a1.num : a1.num;
- *dst_den = a1.den;
- return den==0;
- }
- AVRational av_mul_q(AVRational b, AVRational c){
- av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX);
- return b;
- }
- AVRational av_div_q(AVRational b, AVRational c){
- return av_mul_q(b, (AVRational){c.den, c.num});
- }
- AVRational av_add_q(AVRational b, AVRational c){
- av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX);
- return b;
- }
- AVRational av_sub_q(AVRational b, AVRational c){
- return av_add_q(b, (AVRational){-c.num, c.den});
- }
- AVRational av_d2q(double d, int max){
- AVRational a;
- #define LOG2 0.69314718055994530941723212145817656807550013436025
- int exponent= FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
- int64_t den= 1LL << (61 - exponent);
- av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
- return a;
- }
- int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
- {
- /* n/d is q, a/b is the median between q1 and q2 */
- int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
- int64_t b = 2 * (int64_t)q1.den * q2.den;
- /* rnd_up(a*d/b) > n => a*d/b > n */
- int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
- /* rnd_down(a*d/b) < n => a*d/b < n */
- int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
- return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
- }
- int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
- {
- int i, nearest_q_idx = 0;
- for(i=0; q_list[i].den; i++)
- if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
- nearest_q_idx = i;
- return nearest_q_idx;
- }
|