resample2.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/resample2.c
  23. * audio resampling
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #ifndef CONFIG_RESAMPLE_HP
  29. #define FILTER_SHIFT 15
  30. #define FELEM int16_t
  31. #define FELEM2 int32_t
  32. #define FELEML int64_t
  33. #define FELEM_MAX INT16_MAX
  34. #define FELEM_MIN INT16_MIN
  35. #define WINDOW_TYPE 9
  36. #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
  37. #define FILTER_SHIFT 30
  38. #define FELEM int32_t
  39. #define FELEM2 int64_t
  40. #define FELEML int64_t
  41. #define FELEM_MAX INT32_MAX
  42. #define FELEM_MIN INT32_MIN
  43. #define WINDOW_TYPE 12
  44. #else
  45. #define FILTER_SHIFT 0
  46. #define FELEM double
  47. #define FELEM2 double
  48. #define FELEML double
  49. #define WINDOW_TYPE 24
  50. #endif
  51. typedef struct AVResampleContext{
  52. FELEM *filter_bank;
  53. int filter_length;
  54. int ideal_dst_incr;
  55. int dst_incr;
  56. int index;
  57. int frac;
  58. int src_incr;
  59. int compensation_distance;
  60. int phase_shift;
  61. int phase_mask;
  62. int linear;
  63. }AVResampleContext;
  64. /**
  65. * 0th order modified bessel function of the first kind.
  66. */
  67. static double bessel(double x){
  68. double v=1;
  69. double t=1;
  70. int i;
  71. x= x*x/4;
  72. for(i=1; i<50; i++){
  73. t *= x/(i*i);
  74. v += t;
  75. }
  76. return v;
  77. }
  78. /**
  79. * builds a polyphase filterbank.
  80. * @param factor resampling factor
  81. * @param scale wanted sum of coefficients for each filter
  82. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
  83. */
  84. void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
  85. int ph, i;
  86. double x, y, w, tab[tap_count];
  87. const int center= (tap_count-1)/2;
  88. /* if upsampling, only need to interpolate, no filter */
  89. if (factor > 1.0)
  90. factor = 1.0;
  91. for(ph=0;ph<phase_count;ph++) {
  92. double norm = 0;
  93. for(i=0;i<tap_count;i++) {
  94. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  95. if (x == 0) y = 1.0;
  96. else y = sin(x) / x;
  97. switch(type){
  98. case 0:{
  99. const float d= -0.5; //first order derivative = -0.5
  100. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  101. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  102. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  103. break;}
  104. case 1:
  105. w = 2.0*x / (factor*tap_count) + M_PI;
  106. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  107. break;
  108. default:
  109. w = 2.0*x / (factor*tap_count*M_PI);
  110. y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
  111. break;
  112. }
  113. tab[i] = y;
  114. norm += y;
  115. }
  116. /* normalize so that an uniform color remains the same */
  117. for(i=0;i<tap_count;i++) {
  118. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  119. filter[ph * tap_count + i] = tab[i] / norm;
  120. #else
  121. filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
  122. #endif
  123. }
  124. }
  125. #if 0
  126. {
  127. #define LEN 1024
  128. int j,k;
  129. double sine[LEN + tap_count];
  130. double filtered[LEN];
  131. double maxff=-2, minff=2, maxsf=-2, minsf=2;
  132. for(i=0; i<LEN; i++){
  133. double ss=0, sf=0, ff=0;
  134. for(j=0; j<LEN+tap_count; j++)
  135. sine[j]= cos(i*j*M_PI/LEN);
  136. for(j=0; j<LEN; j++){
  137. double sum=0;
  138. ph=0;
  139. for(k=0; k<tap_count; k++)
  140. sum += filter[ph * tap_count + k] * sine[k+j];
  141. filtered[j]= sum / (1<<FILTER_SHIFT);
  142. ss+= sine[j + center] * sine[j + center];
  143. ff+= filtered[j] * filtered[j];
  144. sf+= sine[j + center] * filtered[j];
  145. }
  146. ss= sqrt(2*ss/LEN);
  147. ff= sqrt(2*ff/LEN);
  148. sf= 2*sf/LEN;
  149. maxff= FFMAX(maxff, ff);
  150. minff= FFMIN(minff, ff);
  151. maxsf= FFMAX(maxsf, sf);
  152. minsf= FFMIN(minsf, sf);
  153. if(i%11==0){
  154. av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
  155. minff=minsf= 2;
  156. maxff=maxsf= -2;
  157. }
  158. }
  159. }
  160. #endif
  161. }
  162. AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
  163. AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
  164. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  165. int phase_count= 1<<phase_shift;
  166. c->phase_shift= phase_shift;
  167. c->phase_mask= phase_count-1;
  168. c->linear= linear;
  169. c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
  170. c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
  171. av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE);
  172. memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
  173. c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
  174. if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
  175. return NULL;
  176. c->ideal_dst_incr= c->dst_incr;
  177. c->index= -phase_count*((c->filter_length-1)/2);
  178. return c;
  179. }
  180. void av_resample_close(AVResampleContext *c){
  181. av_freep(&c->filter_bank);
  182. av_freep(&c);
  183. }
  184. void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
  185. // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
  186. c->compensation_distance= compensation_distance;
  187. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  188. }
  189. int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
  190. int dst_index, i;
  191. int index= c->index;
  192. int frac= c->frac;
  193. int dst_incr_frac= c->dst_incr % c->src_incr;
  194. int dst_incr= c->dst_incr / c->src_incr;
  195. int compensation_distance= c->compensation_distance;
  196. if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
  197. int64_t index2= ((int64_t)index)<<32;
  198. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  199. dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
  200. for(dst_index=0; dst_index < dst_size; dst_index++){
  201. dst[dst_index] = src[index2>>32];
  202. index2 += incr;
  203. }
  204. index += dst_index * dst_incr;
  205. index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
  206. frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
  207. }else{
  208. for(dst_index=0; dst_index < dst_size; dst_index++){
  209. FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
  210. int sample_index= index >> c->phase_shift;
  211. FELEM2 val=0;
  212. if(sample_index < 0){
  213. for(i=0; i<c->filter_length; i++)
  214. val += src[FFABS(sample_index + i) % src_size] * filter[i];
  215. }else if(sample_index + c->filter_length > src_size){
  216. break;
  217. }else if(c->linear){
  218. FELEM2 v2=0;
  219. for(i=0; i<c->filter_length; i++){
  220. val += src[sample_index + i] * (FELEM2)filter[i];
  221. v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
  222. }
  223. val+=(v2-val)*(FELEML)frac / c->src_incr;
  224. }else{
  225. for(i=0; i<c->filter_length; i++){
  226. val += src[sample_index + i] * (FELEM2)filter[i];
  227. }
  228. }
  229. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  230. dst[dst_index] = av_clip_int16(lrintf(val));
  231. #else
  232. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  233. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  234. #endif
  235. frac += dst_incr_frac;
  236. index += dst_incr;
  237. if(frac >= c->src_incr){
  238. frac -= c->src_incr;
  239. index++;
  240. }
  241. if(dst_index + 1 == compensation_distance){
  242. compensation_distance= 0;
  243. dst_incr_frac= c->ideal_dst_incr % c->src_incr;
  244. dst_incr= c->ideal_dst_incr / c->src_incr;
  245. }
  246. }
  247. }
  248. *consumed= FFMAX(index, 0) >> c->phase_shift;
  249. if(index>=0) index &= c->phase_mask;
  250. if(compensation_distance){
  251. compensation_distance -= dst_index;
  252. assert(compensation_distance > 0);
  253. }
  254. if(update_ctx){
  255. c->frac= frac;
  256. c->index= index;
  257. c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
  258. c->compensation_distance= compensation_distance;
  259. }
  260. #if 0
  261. if(update_ctx && !c->compensation_distance){
  262. #undef rand
  263. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  264. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  265. }
  266. #endif
  267. return dst_index;
  268. }