rdft.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. /*
  2. * (I)RDFT transforms
  3. * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <math.h>
  22. #include "dsputil.h"
  23. /**
  24. * @file libavcodec/rdft.c
  25. * (Inverse) Real Discrete Fourier Transforms.
  26. */
  27. /* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
  28. DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]);
  29. DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]);
  30. DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]);
  31. DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]);
  32. DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]);
  33. DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]);
  34. DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]);
  35. DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]);
  36. DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]);
  37. DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]);
  38. DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]);
  39. DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]);
  40. DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]);
  41. FFTSample *ff_sin_tabs[] = {
  42. ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
  43. ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
  44. };
  45. av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
  46. {
  47. int n = 1 << nbits;
  48. int i;
  49. const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n;
  50. s->nbits = nbits;
  51. s->inverse = trans == IRDFT || trans == IRIDFT;
  52. s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1;
  53. if (nbits < 4 || nbits > 16)
  54. return -1;
  55. if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0)
  56. return -1;
  57. s->tcos = ff_cos_tabs[nbits-4];
  58. s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2);
  59. for (i = 0; i < (n>>2); i++) {
  60. s->tcos[i] = cos(i*theta);
  61. s->tsin[i] = sin(i*theta);
  62. }
  63. return 0;
  64. }
  65. /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
  66. * the two real FFTs into one complex FFT. Unmangle the results.
  67. * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
  68. */
  69. void ff_rdft_calc_c(RDFTContext* s, FFTSample* data)
  70. {
  71. int i, i1, i2;
  72. FFTComplex ev, od;
  73. const int n = 1 << s->nbits;
  74. const float k1 = 0.5;
  75. const float k2 = 0.5 - s->inverse;
  76. const FFTSample *tcos = s->tcos;
  77. const FFTSample *tsin = s->tsin;
  78. if (!s->inverse) {
  79. ff_fft_permute(&s->fft, (FFTComplex*)data);
  80. ff_fft_calc(&s->fft, (FFTComplex*)data);
  81. }
  82. /* i=0 is a special case because of packing, the DC term is real, so we
  83. are going to throw the N/2 term (also real) in with it. */
  84. ev.re = data[0];
  85. data[0] = ev.re+data[1];
  86. data[1] = ev.re-data[1];
  87. for (i = 1; i < (n>>2); i++) {
  88. i1 = 2*i;
  89. i2 = n-i1;
  90. /* Separate even and odd FFTs */
  91. ev.re = k1*(data[i1 ]+data[i2 ]);
  92. od.im = -k2*(data[i1 ]-data[i2 ]);
  93. ev.im = k1*(data[i1+1]-data[i2+1]);
  94. od.re = k2*(data[i1+1]+data[i2+1]);
  95. /* Apply twiddle factors to the odd FFT and add to the even FFT */
  96. data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
  97. data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
  98. data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
  99. data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
  100. }
  101. data[2*i+1]=s->sign_convention*data[2*i+1];
  102. if (s->inverse) {
  103. data[0] *= k1;
  104. data[1] *= k1;
  105. ff_fft_permute(&s->fft, (FFTComplex*)data);
  106. ff_fft_calc(&s->fft, (FFTComplex*)data);
  107. }
  108. }
  109. void ff_rdft_calc(RDFTContext *s, FFTSample *data)
  110. {
  111. ff_rdft_calc_c(s, data);
  112. }
  113. av_cold void ff_rdft_end(RDFTContext *s)
  114. {
  115. ff_fft_end(&s->fft);
  116. }