mpegvideo_altivec.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * dct_unquantize_h263_altivec:
  5. * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "libavcodec/dsputil.h"
  26. #include "libavcodec/mpegvideo.h"
  27. #include "gcc_fixes.h"
  28. #include "dsputil_ppc.h"
  29. #include "util_altivec.h"
  30. // Swaps two variables (used for altivec registers)
  31. #define SWAP(a,b) \
  32. do { \
  33. __typeof__(a) swap_temp=a; \
  34. a=b; \
  35. b=swap_temp; \
  36. } while (0)
  37. // transposes a matrix consisting of four vectors with four elements each
  38. #define TRANSPOSE4(a,b,c,d) \
  39. do { \
  40. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  41. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  42. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  43. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  44. \
  45. a = vec_mergeh(_trans_ach, _trans_bdh); \
  46. b = vec_mergel(_trans_ach, _trans_bdh); \
  47. c = vec_mergeh(_trans_acl, _trans_bdl); \
  48. d = vec_mergel(_trans_acl, _trans_bdl); \
  49. } while (0)
  50. // Loads a four-byte value (int or float) from the target address
  51. // into every element in the target vector. Only works if the
  52. // target address is four-byte aligned (which should be always).
  53. #define LOAD4(vec, address) \
  54. { \
  55. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  56. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  57. vec = vec_ld(0, _load_addr); \
  58. vec = vec_perm(vec, vec, _perm_vec); \
  59. vec = vec_splat(vec, 0); \
  60. }
  61. #define FOUROF(a) {a,a,a,a}
  62. int dct_quantize_altivec(MpegEncContext* s,
  63. DCTELEM* data, int n,
  64. int qscale, int* overflow)
  65. {
  66. int lastNonZero;
  67. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  68. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  69. const vector float zero = (const vector float)FOUROF(0.);
  70. // used after quantize step
  71. int oldBaseValue = 0;
  72. // Load the data into the row/alt vectors
  73. {
  74. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  75. data0 = vec_ld(0, data);
  76. data1 = vec_ld(16, data);
  77. data2 = vec_ld(32, data);
  78. data3 = vec_ld(48, data);
  79. data4 = vec_ld(64, data);
  80. data5 = vec_ld(80, data);
  81. data6 = vec_ld(96, data);
  82. data7 = vec_ld(112, data);
  83. // Transpose the data before we start
  84. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  85. // load the data into floating point vectors. We load
  86. // the high half of each row into the main row vectors
  87. // and the low half into the alt vectors.
  88. row0 = vec_ctf(vec_unpackh(data0), 0);
  89. alt0 = vec_ctf(vec_unpackl(data0), 0);
  90. row1 = vec_ctf(vec_unpackh(data1), 0);
  91. alt1 = vec_ctf(vec_unpackl(data1), 0);
  92. row2 = vec_ctf(vec_unpackh(data2), 0);
  93. alt2 = vec_ctf(vec_unpackl(data2), 0);
  94. row3 = vec_ctf(vec_unpackh(data3), 0);
  95. alt3 = vec_ctf(vec_unpackl(data3), 0);
  96. row4 = vec_ctf(vec_unpackh(data4), 0);
  97. alt4 = vec_ctf(vec_unpackl(data4), 0);
  98. row5 = vec_ctf(vec_unpackh(data5), 0);
  99. alt5 = vec_ctf(vec_unpackl(data5), 0);
  100. row6 = vec_ctf(vec_unpackh(data6), 0);
  101. alt6 = vec_ctf(vec_unpackl(data6), 0);
  102. row7 = vec_ctf(vec_unpackh(data7), 0);
  103. alt7 = vec_ctf(vec_unpackl(data7), 0);
  104. }
  105. // The following block could exist as a separate an altivec dct
  106. // function. However, if we put it inline, the DCT data can remain
  107. // in the vector local variables, as floats, which we'll use during the
  108. // quantize step...
  109. {
  110. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  111. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  112. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  113. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  114. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  115. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  116. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  117. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  118. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  119. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  120. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  121. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  122. int whichPass, whichHalf;
  123. for(whichPass = 1; whichPass<=2; whichPass++) {
  124. for(whichHalf = 1; whichHalf<=2; whichHalf++) {
  125. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  126. vector float tmp10, tmp11, tmp12, tmp13;
  127. vector float z1, z2, z3, z4, z5;
  128. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  129. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  130. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  131. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  132. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  133. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  134. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  135. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  136. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  137. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  138. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  139. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  140. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  141. row0 = vec_add(tmp10, tmp11);
  142. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  143. row4 = vec_sub(tmp10, tmp11);
  144. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  145. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  146. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  147. // CONST_BITS-PASS1_BITS);
  148. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  149. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  150. // CONST_BITS-PASS1_BITS);
  151. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  152. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  153. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  154. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  155. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  156. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  157. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  158. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  159. z3 = vec_madd(z3, vec_1_961570560, z5);
  160. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  161. z4 = vec_madd(z4, vec_0_390180644, z5);
  162. // The following adds are rolled into the multiplies above
  163. // z3 = vec_add(z3, z5); // z3 += z5;
  164. // z4 = vec_add(z4, z5); // z4 += z5;
  165. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  166. // Wow! It's actually more efficient to roll this multiply
  167. // into the adds below, even thought the multiply gets done twice!
  168. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  169. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  170. // Same with this one...
  171. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  172. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  173. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  174. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  175. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  176. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  177. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  178. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  179. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  180. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  181. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  182. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  183. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  184. // Swap the row values with the alts. If this is the first half,
  185. // this sets up the low values to be acted on in the second half.
  186. // If this is the second half, it puts the high values back in
  187. // the row values where they are expected to be when we're done.
  188. SWAP(row0, alt0);
  189. SWAP(row1, alt1);
  190. SWAP(row2, alt2);
  191. SWAP(row3, alt3);
  192. SWAP(row4, alt4);
  193. SWAP(row5, alt5);
  194. SWAP(row6, alt6);
  195. SWAP(row7, alt7);
  196. }
  197. if (whichPass == 1) {
  198. // transpose the data for the second pass
  199. // First, block transpose the upper right with lower left.
  200. SWAP(row4, alt0);
  201. SWAP(row5, alt1);
  202. SWAP(row6, alt2);
  203. SWAP(row7, alt3);
  204. // Now, transpose each block of four
  205. TRANSPOSE4(row0, row1, row2, row3);
  206. TRANSPOSE4(row4, row5, row6, row7);
  207. TRANSPOSE4(alt0, alt1, alt2, alt3);
  208. TRANSPOSE4(alt4, alt5, alt6, alt7);
  209. }
  210. }
  211. }
  212. // perform the quantize step, using the floating point data
  213. // still in the row/alt registers
  214. {
  215. const int* biasAddr;
  216. const vector signed int* qmat;
  217. vector float bias, negBias;
  218. if (s->mb_intra) {
  219. vector signed int baseVector;
  220. // We must cache element 0 in the intra case
  221. // (it needs special handling).
  222. baseVector = vec_cts(vec_splat(row0, 0), 0);
  223. vec_ste(baseVector, 0, &oldBaseValue);
  224. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  225. biasAddr = &(s->intra_quant_bias);
  226. } else {
  227. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  228. biasAddr = &(s->inter_quant_bias);
  229. }
  230. // Load the bias vector (We add 0.5 to the bias so that we're
  231. // rounding when we convert to int, instead of flooring.)
  232. {
  233. vector signed int biasInt;
  234. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  235. LOAD4(biasInt, biasAddr);
  236. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  237. negBias = vec_madd(bias, negOneFloat, zero);
  238. }
  239. {
  240. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  241. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  242. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  243. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  244. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  245. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  246. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  247. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  248. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  249. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  250. vec_cmpgt(row0, zero));
  251. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  252. vec_cmpgt(row1, zero));
  253. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  254. vec_cmpgt(row2, zero));
  255. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  256. vec_cmpgt(row3, zero));
  257. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  258. vec_cmpgt(row4, zero));
  259. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  260. vec_cmpgt(row5, zero));
  261. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  262. vec_cmpgt(row6, zero));
  263. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  264. vec_cmpgt(row7, zero));
  265. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  266. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  267. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  268. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  269. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  270. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  271. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  272. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  273. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  274. vec_cmpgt(alt0, zero));
  275. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  276. vec_cmpgt(alt1, zero));
  277. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  278. vec_cmpgt(alt2, zero));
  279. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  280. vec_cmpgt(alt3, zero));
  281. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  282. vec_cmpgt(alt4, zero));
  283. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  284. vec_cmpgt(alt5, zero));
  285. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  286. vec_cmpgt(alt6, zero));
  287. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  288. vec_cmpgt(alt7, zero));
  289. }
  290. }
  291. // Store the data back into the original block
  292. {
  293. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  294. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  295. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  296. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  297. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  298. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  299. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  300. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  301. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  302. {
  303. // Clamp for overflow
  304. vector signed int max_q_int, min_q_int;
  305. vector signed short max_q, min_q;
  306. LOAD4(max_q_int, &(s->max_qcoeff));
  307. LOAD4(min_q_int, &(s->min_qcoeff));
  308. max_q = vec_pack(max_q_int, max_q_int);
  309. min_q = vec_pack(min_q_int, min_q_int);
  310. data0 = vec_max(vec_min(data0, max_q), min_q);
  311. data1 = vec_max(vec_min(data1, max_q), min_q);
  312. data2 = vec_max(vec_min(data2, max_q), min_q);
  313. data4 = vec_max(vec_min(data4, max_q), min_q);
  314. data5 = vec_max(vec_min(data5, max_q), min_q);
  315. data6 = vec_max(vec_min(data6, max_q), min_q);
  316. data7 = vec_max(vec_min(data7, max_q), min_q);
  317. }
  318. {
  319. vector bool char zero_01, zero_23, zero_45, zero_67;
  320. vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
  321. vector signed char negOne = vec_splat_s8(-1);
  322. vector signed char* scanPtr =
  323. (vector signed char*)(s->intra_scantable.inverse);
  324. signed char lastNonZeroChar;
  325. // Determine the largest non-zero index.
  326. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
  327. vec_cmpeq(data1, (vector signed short)zero));
  328. zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
  329. vec_cmpeq(data3, (vector signed short)zero));
  330. zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
  331. vec_cmpeq(data5, (vector signed short)zero));
  332. zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
  333. vec_cmpeq(data7, (vector signed short)zero));
  334. // 64 biggest values
  335. scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
  336. scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
  337. scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
  338. scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
  339. // 32 largest values
  340. scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
  341. scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
  342. // 16 largest values
  343. scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
  344. // 8 largest values
  345. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  346. vec_mergel(scanIndexes_01, negOne));
  347. // 4 largest values
  348. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  349. vec_mergel(scanIndexes_01, negOne));
  350. // 2 largest values
  351. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  352. vec_mergel(scanIndexes_01, negOne));
  353. // largest value
  354. scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
  355. vec_mergel(scanIndexes_01, negOne));
  356. scanIndexes_01 = vec_splat(scanIndexes_01, 0);
  357. vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
  358. lastNonZero = lastNonZeroChar;
  359. // While the data is still in vectors we check for the transpose IDCT permute
  360. // and handle it using the vector unit if we can. This is the permute used
  361. // by the altivec idct, so it is common when using the altivec dct.
  362. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
  363. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  364. }
  365. vec_st(data0, 0, data);
  366. vec_st(data1, 16, data);
  367. vec_st(data2, 32, data);
  368. vec_st(data3, 48, data);
  369. vec_st(data4, 64, data);
  370. vec_st(data5, 80, data);
  371. vec_st(data6, 96, data);
  372. vec_st(data7, 112, data);
  373. }
  374. }
  375. // special handling of block[0]
  376. if (s->mb_intra) {
  377. if (!s->h263_aic) {
  378. if (n < 4)
  379. oldBaseValue /= s->y_dc_scale;
  380. else
  381. oldBaseValue /= s->c_dc_scale;
  382. }
  383. // Divide by 8, rounding the result
  384. data[0] = (oldBaseValue + 4) >> 3;
  385. }
  386. // We handled the transpose permutation above and we don't
  387. // need to permute the "no" permutation case.
  388. if ((lastNonZero > 0) &&
  389. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  390. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
  391. ff_block_permute(data, s->dsp.idct_permutation,
  392. s->intra_scantable.scantable, lastNonZero);
  393. }
  394. return lastNonZero;
  395. }
  396. /* AltiVec version of dct_unquantize_h263
  397. this code assumes `block' is 16 bytes-aligned */
  398. void dct_unquantize_h263_altivec(MpegEncContext *s,
  399. DCTELEM *block, int n, int qscale)
  400. {
  401. POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
  402. int i, level, qmul, qadd;
  403. int nCoeffs;
  404. assert(s->block_last_index[n]>=0);
  405. POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
  406. qadd = (qscale - 1) | 1;
  407. qmul = qscale << 1;
  408. if (s->mb_intra) {
  409. if (!s->h263_aic) {
  410. if (n < 4)
  411. block[0] = block[0] * s->y_dc_scale;
  412. else
  413. block[0] = block[0] * s->c_dc_scale;
  414. }else
  415. qadd = 0;
  416. i = 1;
  417. nCoeffs= 63; //does not always use zigzag table
  418. } else {
  419. i = 0;
  420. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  421. }
  422. {
  423. register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
  424. DECLARE_ALIGNED_16(short, qmul8[]) =
  425. {
  426. qmul, qmul, qmul, qmul,
  427. qmul, qmul, qmul, qmul
  428. };
  429. DECLARE_ALIGNED_16(short, qadd8[]) =
  430. {
  431. qadd, qadd, qadd, qadd,
  432. qadd, qadd, qadd, qadd
  433. };
  434. DECLARE_ALIGNED_16(short, nqadd8[]) =
  435. {
  436. -qadd, -qadd, -qadd, -qadd,
  437. -qadd, -qadd, -qadd, -qadd
  438. };
  439. register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
  440. register vector bool short blockv_null, blockv_neg;
  441. register short backup_0 = block[0];
  442. register int j = 0;
  443. qmulv = vec_ld(0, qmul8);
  444. qaddv = vec_ld(0, qadd8);
  445. nqaddv = vec_ld(0, nqadd8);
  446. #if 0 // block *is* 16 bytes-aligned, it seems.
  447. // first make sure block[j] is 16 bytes-aligned
  448. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  449. level = block[j];
  450. if (level) {
  451. if (level < 0) {
  452. level = level * qmul - qadd;
  453. } else {
  454. level = level * qmul + qadd;
  455. }
  456. block[j] = level;
  457. }
  458. }
  459. #endif
  460. // vectorize all the 16 bytes-aligned blocks
  461. // of 8 elements
  462. for(; (j + 7) <= nCoeffs ; j+=8) {
  463. blockv = vec_ld(j << 1, block);
  464. blockv_neg = vec_cmplt(blockv, vczero);
  465. blockv_null = vec_cmpeq(blockv, vczero);
  466. // choose between +qadd or -qadd as the third operand
  467. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  468. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  469. temp1 = vec_mladd(blockv, qmulv, temp1);
  470. // put 0 where block[{i,i+7} used to have 0
  471. blockv = vec_sel(temp1, blockv, blockv_null);
  472. vec_st(blockv, j << 1, block);
  473. }
  474. // if nCoeffs isn't a multiple of 8, finish the job
  475. // using good old scalar units.
  476. // (we could do it using a truncated vector,
  477. // but I'm not sure it's worth the hassle)
  478. for(; j <= nCoeffs ; j++) {
  479. level = block[j];
  480. if (level) {
  481. if (level < 0) {
  482. level = level * qmul - qadd;
  483. } else {
  484. level = level * qmul + qadd;
  485. }
  486. block[j] = level;
  487. }
  488. }
  489. if (i == 1) {
  490. // cheat. this avoid special-casing the first iteration
  491. block[0] = backup_0;
  492. }
  493. }
  494. POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
  495. }
  496. void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
  497. void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
  498. void MPV_common_init_altivec(MpegEncContext *s)
  499. {
  500. if ((mm_flags & FF_MM_ALTIVEC) == 0) return;
  501. if (s->avctx->lowres==0) {
  502. if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
  503. (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
  504. s->dsp.idct_put = idct_put_altivec;
  505. s->dsp.idct_add = idct_add_altivec;
  506. s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
  507. }
  508. }
  509. // Test to make sure that the dct required alignments are met.
  510. if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
  511. (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
  512. av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
  513. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  514. return;
  515. }
  516. if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
  517. av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
  518. "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
  519. return;
  520. }
  521. if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
  522. (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
  523. #if 0 /* seems to cause trouble under some circumstances */
  524. s->dct_quantize = dct_quantize_altivec;
  525. #endif
  526. s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
  527. s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
  528. }
  529. }