mdct.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file libavcodec/mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. av_cold void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
  47. DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
  48. DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
  49. DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
  50. DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
  51. DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
  52. float *ff_sine_windows[6] = {
  53. ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
  54. };
  55. // Generate a sine window.
  56. av_cold void ff_sine_window_init(float *window, int n) {
  57. int i;
  58. for(i = 0; i < n; i++)
  59. window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
  60. }
  61. /**
  62. * init MDCT or IMDCT computation.
  63. */
  64. av_cold int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
  65. {
  66. int n, n4, i;
  67. double alpha;
  68. memset(s, 0, sizeof(*s));
  69. n = 1 << nbits;
  70. s->nbits = nbits;
  71. s->n = n;
  72. n4 = n >> 2;
  73. s->tcos = av_malloc(n4 * sizeof(FFTSample));
  74. if (!s->tcos)
  75. goto fail;
  76. s->tsin = av_malloc(n4 * sizeof(FFTSample));
  77. if (!s->tsin)
  78. goto fail;
  79. for(i=0;i<n4;i++) {
  80. alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
  81. s->tcos[i] = -cos(alpha);
  82. s->tsin[i] = -sin(alpha);
  83. }
  84. if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
  85. goto fail;
  86. return 0;
  87. fail:
  88. av_freep(&s->tcos);
  89. av_freep(&s->tsin);
  90. return -1;
  91. }
  92. /* complex multiplication: p = a * b */
  93. #define CMUL(pre, pim, are, aim, bre, bim) \
  94. {\
  95. FFTSample _are = (are);\
  96. FFTSample _aim = (aim);\
  97. FFTSample _bre = (bre);\
  98. FFTSample _bim = (bim);\
  99. (pre) = _are * _bre - _aim * _bim;\
  100. (pim) = _are * _bim + _aim * _bre;\
  101. }
  102. /**
  103. * Compute the middle half of the inverse MDCT of size N = 2^nbits,
  104. * thus excluding the parts that can be derived by symmetry
  105. * @param output N/2 samples
  106. * @param input N/2 samples
  107. */
  108. void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
  109. {
  110. int k, n8, n4, n2, n, j;
  111. const uint16_t *revtab = s->fft.revtab;
  112. const FFTSample *tcos = s->tcos;
  113. const FFTSample *tsin = s->tsin;
  114. const FFTSample *in1, *in2;
  115. FFTComplex *z = (FFTComplex *)output;
  116. n = 1 << s->nbits;
  117. n2 = n >> 1;
  118. n4 = n >> 2;
  119. n8 = n >> 3;
  120. /* pre rotation */
  121. in1 = input;
  122. in2 = input + n2 - 1;
  123. for(k = 0; k < n4; k++) {
  124. j=revtab[k];
  125. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  126. in1 += 2;
  127. in2 -= 2;
  128. }
  129. ff_fft_calc(&s->fft, z);
  130. /* post rotation + reordering */
  131. output += n4;
  132. for(k = 0; k < n8; k++) {
  133. FFTSample r0, i0, r1, i1;
  134. CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
  135. CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
  136. z[n8-k-1].re = r0;
  137. z[n8-k-1].im = i0;
  138. z[n8+k ].re = r1;
  139. z[n8+k ].im = i1;
  140. }
  141. }
  142. /**
  143. * Compute inverse MDCT of size N = 2^nbits
  144. * @param output N samples
  145. * @param input N/2 samples
  146. */
  147. void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
  148. {
  149. int k;
  150. int n = 1 << s->nbits;
  151. int n2 = n >> 1;
  152. int n4 = n >> 2;
  153. ff_imdct_half_c(s, output+n4, input);
  154. for(k = 0; k < n4; k++) {
  155. output[k] = -output[n2-k-1];
  156. output[n-k-1] = output[n2+k];
  157. }
  158. }
  159. /**
  160. * Compute MDCT of size N = 2^nbits
  161. * @param input N samples
  162. * @param out N/2 samples
  163. */
  164. void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input)
  165. {
  166. int i, j, n, n8, n4, n2, n3;
  167. FFTSample re, im;
  168. const uint16_t *revtab = s->fft.revtab;
  169. const FFTSample *tcos = s->tcos;
  170. const FFTSample *tsin = s->tsin;
  171. FFTComplex *x = (FFTComplex *)out;
  172. n = 1 << s->nbits;
  173. n2 = n >> 1;
  174. n4 = n >> 2;
  175. n8 = n >> 3;
  176. n3 = 3 * n4;
  177. /* pre rotation */
  178. for(i=0;i<n8;i++) {
  179. re = -input[2*i+3*n4] - input[n3-1-2*i];
  180. im = -input[n4+2*i] + input[n4-1-2*i];
  181. j = revtab[i];
  182. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  183. re = input[2*i] - input[n2-1-2*i];
  184. im = -(input[n2+2*i] + input[n-1-2*i]);
  185. j = revtab[n8 + i];
  186. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  187. }
  188. ff_fft_calc(&s->fft, x);
  189. /* post rotation */
  190. for(i=0;i<n8;i++) {
  191. FFTSample r0, i0, r1, i1;
  192. CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
  193. CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
  194. x[n8-i-1].re = r0;
  195. x[n8-i-1].im = i0;
  196. x[n8+i ].re = r1;
  197. x[n8+i ].im = i1;
  198. }
  199. }
  200. av_cold void ff_mdct_end(MDCTContext *s)
  201. {
  202. av_freep(&s->tcos);
  203. av_freep(&s->tsin);
  204. ff_fft_end(&s->fft);
  205. }