fft.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file libavcodec/fft.c
  25. * FFT/IFFT transforms.
  26. */
  27. #include "dsputil.h"
  28. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  29. DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
  30. DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
  31. DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
  32. DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
  33. DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
  34. DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
  35. DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
  36. DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
  37. DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
  38. DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
  39. DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
  40. DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
  41. DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
  42. FFTSample *ff_cos_tabs[] = {
  43. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  44. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  45. };
  46. static int split_radix_permutation(int i, int n, int inverse)
  47. {
  48. int m;
  49. if(n <= 2) return i&1;
  50. m = n >> 1;
  51. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  52. m >>= 1;
  53. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  54. else return split_radix_permutation(i, m, inverse)*4 - 1;
  55. }
  56. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  57. {
  58. int i, j, m, n;
  59. float alpha, c1, s1, s2;
  60. int split_radix = 1;
  61. int av_unused has_vectors;
  62. if (nbits < 2 || nbits > 16)
  63. goto fail;
  64. s->nbits = nbits;
  65. n = 1 << nbits;
  66. s->tmp_buf = NULL;
  67. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  68. if (!s->exptab)
  69. goto fail;
  70. s->revtab = av_malloc(n * sizeof(uint16_t));
  71. if (!s->revtab)
  72. goto fail;
  73. s->inverse = inverse;
  74. s2 = inverse ? 1.0 : -1.0;
  75. s->fft_permute = ff_fft_permute_c;
  76. s->fft_calc = ff_fft_calc_c;
  77. s->imdct_calc = ff_imdct_calc_c;
  78. s->imdct_half = ff_imdct_half_c;
  79. s->exptab1 = NULL;
  80. #if HAVE_MMX && HAVE_YASM
  81. has_vectors = mm_support();
  82. if (has_vectors & FF_MM_SSE && HAVE_SSE) {
  83. /* SSE for P3/P4/K8 */
  84. s->imdct_calc = ff_imdct_calc_sse;
  85. s->imdct_half = ff_imdct_half_sse;
  86. s->fft_permute = ff_fft_permute_sse;
  87. s->fft_calc = ff_fft_calc_sse;
  88. } else if (has_vectors & FF_MM_3DNOWEXT && HAVE_AMD3DNOWEXT) {
  89. /* 3DNowEx for K7 */
  90. s->imdct_calc = ff_imdct_calc_3dn2;
  91. s->imdct_half = ff_imdct_half_3dn2;
  92. s->fft_calc = ff_fft_calc_3dn2;
  93. } else if (has_vectors & FF_MM_3DNOW && HAVE_AMD3DNOW) {
  94. /* 3DNow! for K6-2/3 */
  95. s->imdct_calc = ff_imdct_calc_3dn;
  96. s->imdct_half = ff_imdct_half_3dn;
  97. s->fft_calc = ff_fft_calc_3dn;
  98. }
  99. #elif HAVE_ALTIVEC && !defined ALTIVEC_USE_REFERENCE_C_CODE
  100. has_vectors = mm_support();
  101. if (has_vectors & FF_MM_ALTIVEC) {
  102. s->fft_calc = ff_fft_calc_altivec;
  103. split_radix = 0;
  104. }
  105. #endif
  106. if (split_radix) {
  107. for(j=4; j<=nbits; j++) {
  108. int m = 1<<j;
  109. double freq = 2*M_PI/m;
  110. FFTSample *tab = ff_cos_tabs[j-4];
  111. for(i=0; i<=m/4; i++)
  112. tab[i] = cos(i*freq);
  113. for(i=1; i<m/4; i++)
  114. tab[m/2-i] = tab[i];
  115. }
  116. for(i=0; i<n; i++)
  117. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  118. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  119. } else {
  120. int np, nblocks, np2, l;
  121. FFTComplex *q;
  122. for(i=0; i<(n/2); i++) {
  123. alpha = 2 * M_PI * (float)i / (float)n;
  124. c1 = cos(alpha);
  125. s1 = sin(alpha) * s2;
  126. s->exptab[i].re = c1;
  127. s->exptab[i].im = s1;
  128. }
  129. np = 1 << nbits;
  130. nblocks = np >> 3;
  131. np2 = np >> 1;
  132. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  133. if (!s->exptab1)
  134. goto fail;
  135. q = s->exptab1;
  136. do {
  137. for(l = 0; l < np2; l += 2 * nblocks) {
  138. *q++ = s->exptab[l];
  139. *q++ = s->exptab[l + nblocks];
  140. q->re = -s->exptab[l].im;
  141. q->im = s->exptab[l].re;
  142. q++;
  143. q->re = -s->exptab[l + nblocks].im;
  144. q->im = s->exptab[l + nblocks].re;
  145. q++;
  146. }
  147. nblocks = nblocks >> 1;
  148. } while (nblocks != 0);
  149. av_freep(&s->exptab);
  150. /* compute bit reverse table */
  151. for(i=0;i<n;i++) {
  152. m=0;
  153. for(j=0;j<nbits;j++) {
  154. m |= ((i >> j) & 1) << (nbits-j-1);
  155. }
  156. s->revtab[i]=m;
  157. }
  158. }
  159. return 0;
  160. fail:
  161. av_freep(&s->revtab);
  162. av_freep(&s->exptab);
  163. av_freep(&s->exptab1);
  164. av_freep(&s->tmp_buf);
  165. return -1;
  166. }
  167. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  168. {
  169. int j, k, np;
  170. FFTComplex tmp;
  171. const uint16_t *revtab = s->revtab;
  172. np = 1 << s->nbits;
  173. if (s->tmp_buf) {
  174. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  175. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  176. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  177. return;
  178. }
  179. /* reverse */
  180. for(j=0;j<np;j++) {
  181. k = revtab[j];
  182. if (k < j) {
  183. tmp = z[k];
  184. z[k] = z[j];
  185. z[j] = tmp;
  186. }
  187. }
  188. }
  189. av_cold void ff_fft_end(FFTContext *s)
  190. {
  191. av_freep(&s->revtab);
  192. av_freep(&s->exptab);
  193. av_freep(&s->exptab1);
  194. av_freep(&s->tmp_buf);
  195. }
  196. #define sqrthalf (float)M_SQRT1_2
  197. #define BF(x,y,a,b) {\
  198. x = a - b;\
  199. y = a + b;\
  200. }
  201. #define BUTTERFLIES(a0,a1,a2,a3) {\
  202. BF(t3, t5, t5, t1);\
  203. BF(a2.re, a0.re, a0.re, t5);\
  204. BF(a3.im, a1.im, a1.im, t3);\
  205. BF(t4, t6, t2, t6);\
  206. BF(a3.re, a1.re, a1.re, t4);\
  207. BF(a2.im, a0.im, a0.im, t6);\
  208. }
  209. // force loading all the inputs before storing any.
  210. // this is slightly slower for small data, but avoids store->load aliasing
  211. // for addresses separated by large powers of 2.
  212. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  213. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  214. BF(t3, t5, t5, t1);\
  215. BF(a2.re, a0.re, r0, t5);\
  216. BF(a3.im, a1.im, i1, t3);\
  217. BF(t4, t6, t2, t6);\
  218. BF(a3.re, a1.re, r1, t4);\
  219. BF(a2.im, a0.im, i0, t6);\
  220. }
  221. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  222. t1 = a2.re * wre + a2.im * wim;\
  223. t2 = a2.im * wre - a2.re * wim;\
  224. t5 = a3.re * wre - a3.im * wim;\
  225. t6 = a3.im * wre + a3.re * wim;\
  226. BUTTERFLIES(a0,a1,a2,a3)\
  227. }
  228. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  229. t1 = a2.re;\
  230. t2 = a2.im;\
  231. t5 = a3.re;\
  232. t6 = a3.im;\
  233. BUTTERFLIES(a0,a1,a2,a3)\
  234. }
  235. /* z[0...8n-1], w[1...2n-1] */
  236. #define PASS(name)\
  237. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  238. {\
  239. FFTSample t1, t2, t3, t4, t5, t6;\
  240. int o1 = 2*n;\
  241. int o2 = 4*n;\
  242. int o3 = 6*n;\
  243. const FFTSample *wim = wre+o1;\
  244. n--;\
  245. \
  246. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  247. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  248. do {\
  249. z += 2;\
  250. wre += 2;\
  251. wim -= 2;\
  252. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  253. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  254. } while(--n);\
  255. }
  256. PASS(pass)
  257. #undef BUTTERFLIES
  258. #define BUTTERFLIES BUTTERFLIES_BIG
  259. PASS(pass_big)
  260. #define DECL_FFT(n,n2,n4)\
  261. static void fft##n(FFTComplex *z)\
  262. {\
  263. fft##n2(z);\
  264. fft##n4(z+n4*2);\
  265. fft##n4(z+n4*3);\
  266. pass(z,ff_cos_##n,n4/2);\
  267. }
  268. static void fft4(FFTComplex *z)
  269. {
  270. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  271. BF(t3, t1, z[0].re, z[1].re);
  272. BF(t8, t6, z[3].re, z[2].re);
  273. BF(z[2].re, z[0].re, t1, t6);
  274. BF(t4, t2, z[0].im, z[1].im);
  275. BF(t7, t5, z[2].im, z[3].im);
  276. BF(z[3].im, z[1].im, t4, t8);
  277. BF(z[3].re, z[1].re, t3, t7);
  278. BF(z[2].im, z[0].im, t2, t5);
  279. }
  280. static void fft8(FFTComplex *z)
  281. {
  282. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  283. fft4(z);
  284. BF(t1, z[5].re, z[4].re, -z[5].re);
  285. BF(t2, z[5].im, z[4].im, -z[5].im);
  286. BF(t3, z[7].re, z[6].re, -z[7].re);
  287. BF(t4, z[7].im, z[6].im, -z[7].im);
  288. BF(t8, t1, t3, t1);
  289. BF(t7, t2, t2, t4);
  290. BF(z[4].re, z[0].re, z[0].re, t1);
  291. BF(z[4].im, z[0].im, z[0].im, t2);
  292. BF(z[6].re, z[2].re, z[2].re, t7);
  293. BF(z[6].im, z[2].im, z[2].im, t8);
  294. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  295. }
  296. #if !CONFIG_SMALL
  297. static void fft16(FFTComplex *z)
  298. {
  299. FFTSample t1, t2, t3, t4, t5, t6;
  300. fft8(z);
  301. fft4(z+8);
  302. fft4(z+12);
  303. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  304. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  305. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  306. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  307. }
  308. #else
  309. DECL_FFT(16,8,4)
  310. #endif
  311. DECL_FFT(32,16,8)
  312. DECL_FFT(64,32,16)
  313. DECL_FFT(128,64,32)
  314. DECL_FFT(256,128,64)
  315. DECL_FFT(512,256,128)
  316. #if !CONFIG_SMALL
  317. #define pass pass_big
  318. #endif
  319. DECL_FFT(1024,512,256)
  320. DECL_FFT(2048,1024,512)
  321. DECL_FFT(4096,2048,1024)
  322. DECL_FFT(8192,4096,2048)
  323. DECL_FFT(16384,8192,4096)
  324. DECL_FFT(32768,16384,8192)
  325. DECL_FFT(65536,32768,16384)
  326. static void (*fft_dispatch[])(FFTComplex*) = {
  327. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  328. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  329. };
  330. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  331. {
  332. fft_dispatch[s->nbits-2](z);
  333. }