ffmpeg_sched.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607
  1. /*
  2. * Inter-thread scheduling/synchronization.
  3. * Copyright (c) 2023 Anton Khirnov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdatomic.h>
  22. #include <stddef.h>
  23. #include <stdint.h>
  24. #include "cmdutils.h"
  25. #include "ffmpeg_sched.h"
  26. #include "ffmpeg_utils.h"
  27. #include "sync_queue.h"
  28. #include "thread_queue.h"
  29. #include "libavcodec/packet.h"
  30. #include "libavutil/avassert.h"
  31. #include "libavutil/error.h"
  32. #include "libavutil/fifo.h"
  33. #include "libavutil/frame.h"
  34. #include "libavutil/mem.h"
  35. #include "libavutil/thread.h"
  36. #include "libavutil/threadmessage.h"
  37. #include "libavutil/time.h"
  38. // 100 ms
  39. // FIXME: some other value? make this dynamic?
  40. #define SCHEDULE_TOLERANCE (100 * 1000)
  41. enum QueueType {
  42. QUEUE_PACKETS,
  43. QUEUE_FRAMES,
  44. };
  45. typedef struct SchWaiter {
  46. pthread_mutex_t lock;
  47. pthread_cond_t cond;
  48. atomic_int choked;
  49. // the following are internal state of schedule_update_locked() and must not
  50. // be accessed outside of it
  51. int choked_prev;
  52. int choked_next;
  53. } SchWaiter;
  54. typedef struct SchTask {
  55. Scheduler *parent;
  56. SchedulerNode node;
  57. SchThreadFunc func;
  58. void *func_arg;
  59. pthread_t thread;
  60. int thread_running;
  61. } SchTask;
  62. typedef struct SchDecOutput {
  63. SchedulerNode *dst;
  64. uint8_t *dst_finished;
  65. unsigned nb_dst;
  66. } SchDecOutput;
  67. typedef struct SchDec {
  68. const AVClass *class;
  69. SchedulerNode src;
  70. SchDecOutput *outputs;
  71. unsigned nb_outputs;
  72. SchTask task;
  73. // Queue for receiving input packets, one stream.
  74. ThreadQueue *queue;
  75. // Queue for sending post-flush end timestamps back to the source
  76. AVThreadMessageQueue *queue_end_ts;
  77. int expect_end_ts;
  78. // temporary storage used by sch_dec_send()
  79. AVFrame *send_frame;
  80. } SchDec;
  81. typedef struct SchSyncQueue {
  82. SyncQueue *sq;
  83. AVFrame *frame;
  84. pthread_mutex_t lock;
  85. unsigned *enc_idx;
  86. unsigned nb_enc_idx;
  87. } SchSyncQueue;
  88. typedef struct SchEnc {
  89. const AVClass *class;
  90. SchedulerNode src;
  91. SchedulerNode *dst;
  92. uint8_t *dst_finished;
  93. unsigned nb_dst;
  94. // [0] - index of the sync queue in Scheduler.sq_enc,
  95. // [1] - index of this encoder in the sq
  96. int sq_idx[2];
  97. /* Opening encoders is somewhat nontrivial due to their interaction with
  98. * sync queues, which are (among other things) responsible for maintaining
  99. * constant audio frame size, when it is required by the encoder.
  100. *
  101. * Opening the encoder requires stream parameters, obtained from the first
  102. * frame. However, that frame cannot be properly chunked by the sync queue
  103. * without knowing the required frame size, which is only available after
  104. * opening the encoder.
  105. *
  106. * This apparent circular dependency is resolved in the following way:
  107. * - the caller creating the encoder gives us a callback which opens the
  108. * encoder and returns the required frame size (if any)
  109. * - when the first frame is sent to the encoder, the sending thread
  110. * - calls this callback, opening the encoder
  111. * - passes the returned frame size to the sync queue
  112. */
  113. int (*open_cb)(void *opaque, const AVFrame *frame);
  114. int opened;
  115. SchTask task;
  116. // Queue for receiving input frames, one stream.
  117. ThreadQueue *queue;
  118. // tq_send() to queue returned EOF
  119. int in_finished;
  120. // temporary storage used by sch_enc_send()
  121. AVPacket *send_pkt;
  122. } SchEnc;
  123. typedef struct SchDemuxStream {
  124. SchedulerNode *dst;
  125. uint8_t *dst_finished;
  126. unsigned nb_dst;
  127. } SchDemuxStream;
  128. typedef struct SchDemux {
  129. const AVClass *class;
  130. SchDemuxStream *streams;
  131. unsigned nb_streams;
  132. SchTask task;
  133. SchWaiter waiter;
  134. // temporary storage used by sch_demux_send()
  135. AVPacket *send_pkt;
  136. // protected by schedule_lock
  137. int task_exited;
  138. } SchDemux;
  139. typedef struct PreMuxQueue {
  140. /**
  141. * Queue for buffering the packets before the muxer task can be started.
  142. */
  143. AVFifo *fifo;
  144. /**
  145. * Maximum number of packets in fifo.
  146. */
  147. int max_packets;
  148. /*
  149. * The size of the AVPackets' buffers in queue.
  150. * Updated when a packet is either pushed or pulled from the queue.
  151. */
  152. size_t data_size;
  153. /* Threshold after which max_packets will be in effect */
  154. size_t data_threshold;
  155. } PreMuxQueue;
  156. typedef struct SchMuxStream {
  157. SchedulerNode src;
  158. SchedulerNode src_sched;
  159. unsigned *sub_heartbeat_dst;
  160. unsigned nb_sub_heartbeat_dst;
  161. PreMuxQueue pre_mux_queue;
  162. // an EOF was generated while flushing the pre-mux queue
  163. int init_eof;
  164. ////////////////////////////////////////////////////////////
  165. // The following are protected by Scheduler.schedule_lock //
  166. /* dts+duration of the last packet sent to this stream
  167. in AV_TIME_BASE_Q */
  168. int64_t last_dts;
  169. // this stream no longer accepts input
  170. int source_finished;
  171. ////////////////////////////////////////////////////////////
  172. } SchMuxStream;
  173. typedef struct SchMux {
  174. const AVClass *class;
  175. SchMuxStream *streams;
  176. unsigned nb_streams;
  177. unsigned nb_streams_ready;
  178. int (*init)(void *arg);
  179. SchTask task;
  180. /**
  181. * Set to 1 after starting the muxer task and flushing the
  182. * pre-muxing queues.
  183. * Set either before any tasks have started, or with
  184. * Scheduler.mux_ready_lock held.
  185. */
  186. atomic_int mux_started;
  187. ThreadQueue *queue;
  188. unsigned queue_size;
  189. AVPacket *sub_heartbeat_pkt;
  190. } SchMux;
  191. typedef struct SchFilterIn {
  192. SchedulerNode src;
  193. SchedulerNode src_sched;
  194. int send_finished;
  195. int receive_finished;
  196. } SchFilterIn;
  197. typedef struct SchFilterOut {
  198. SchedulerNode dst;
  199. } SchFilterOut;
  200. typedef struct SchFilterGraph {
  201. const AVClass *class;
  202. SchFilterIn *inputs;
  203. unsigned nb_inputs;
  204. atomic_uint nb_inputs_finished_send;
  205. unsigned nb_inputs_finished_receive;
  206. SchFilterOut *outputs;
  207. unsigned nb_outputs;
  208. SchTask task;
  209. // input queue, nb_inputs+1 streams
  210. // last stream is control
  211. ThreadQueue *queue;
  212. SchWaiter waiter;
  213. // protected by schedule_lock
  214. unsigned best_input;
  215. int task_exited;
  216. } SchFilterGraph;
  217. enum SchedulerState {
  218. SCH_STATE_UNINIT,
  219. SCH_STATE_STARTED,
  220. SCH_STATE_STOPPED,
  221. };
  222. struct Scheduler {
  223. const AVClass *class;
  224. SchDemux *demux;
  225. unsigned nb_demux;
  226. SchMux *mux;
  227. unsigned nb_mux;
  228. unsigned nb_mux_ready;
  229. pthread_mutex_t mux_ready_lock;
  230. unsigned nb_mux_done;
  231. pthread_mutex_t mux_done_lock;
  232. pthread_cond_t mux_done_cond;
  233. SchDec *dec;
  234. unsigned nb_dec;
  235. SchEnc *enc;
  236. unsigned nb_enc;
  237. SchSyncQueue *sq_enc;
  238. unsigned nb_sq_enc;
  239. SchFilterGraph *filters;
  240. unsigned nb_filters;
  241. char *sdp_filename;
  242. int sdp_auto;
  243. enum SchedulerState state;
  244. atomic_int terminate;
  245. atomic_int task_failed;
  246. pthread_mutex_t schedule_lock;
  247. atomic_int_least64_t last_dts;
  248. };
  249. /**
  250. * Wait until this task is allowed to proceed.
  251. *
  252. * @retval 0 the caller should proceed
  253. * @retval 1 the caller should terminate
  254. */
  255. static int waiter_wait(Scheduler *sch, SchWaiter *w)
  256. {
  257. int terminate;
  258. if (!atomic_load(&w->choked))
  259. return 0;
  260. pthread_mutex_lock(&w->lock);
  261. while (atomic_load(&w->choked) && !atomic_load(&sch->terminate))
  262. pthread_cond_wait(&w->cond, &w->lock);
  263. terminate = atomic_load(&sch->terminate);
  264. pthread_mutex_unlock(&w->lock);
  265. return terminate;
  266. }
  267. static void waiter_set(SchWaiter *w, int choked)
  268. {
  269. pthread_mutex_lock(&w->lock);
  270. atomic_store(&w->choked, choked);
  271. pthread_cond_signal(&w->cond);
  272. pthread_mutex_unlock(&w->lock);
  273. }
  274. static int waiter_init(SchWaiter *w)
  275. {
  276. int ret;
  277. atomic_init(&w->choked, 0);
  278. ret = pthread_mutex_init(&w->lock, NULL);
  279. if (ret)
  280. return AVERROR(ret);
  281. ret = pthread_cond_init(&w->cond, NULL);
  282. if (ret)
  283. return AVERROR(ret);
  284. return 0;
  285. }
  286. static void waiter_uninit(SchWaiter *w)
  287. {
  288. pthread_mutex_destroy(&w->lock);
  289. pthread_cond_destroy(&w->cond);
  290. }
  291. static int queue_alloc(ThreadQueue **ptq, unsigned nb_streams, unsigned queue_size,
  292. enum QueueType type)
  293. {
  294. ThreadQueue *tq;
  295. ObjPool *op;
  296. if (queue_size <= 0) {
  297. if (type == QUEUE_FRAMES)
  298. queue_size = DEFAULT_FRAME_THREAD_QUEUE_SIZE;
  299. else
  300. queue_size = DEFAULT_PACKET_THREAD_QUEUE_SIZE;
  301. }
  302. if (type == QUEUE_FRAMES) {
  303. // This queue length is used in the decoder code to ensure that
  304. // there are enough entries in fixed-size frame pools to account
  305. // for frames held in queues inside the ffmpeg utility. If this
  306. // can ever dynamically change then the corresponding decode
  307. // code needs to be updated as well.
  308. av_assert0(queue_size == DEFAULT_FRAME_THREAD_QUEUE_SIZE);
  309. }
  310. op = (type == QUEUE_PACKETS) ? objpool_alloc_packets() :
  311. objpool_alloc_frames();
  312. if (!op)
  313. return AVERROR(ENOMEM);
  314. tq = tq_alloc(nb_streams, queue_size, op,
  315. (type == QUEUE_PACKETS) ? pkt_move : frame_move);
  316. if (!tq) {
  317. objpool_free(&op);
  318. return AVERROR(ENOMEM);
  319. }
  320. *ptq = tq;
  321. return 0;
  322. }
  323. static void *task_wrapper(void *arg);
  324. static int task_start(SchTask *task)
  325. {
  326. int ret;
  327. av_log(task->func_arg, AV_LOG_VERBOSE, "Starting thread...\n");
  328. av_assert0(!task->thread_running);
  329. ret = pthread_create(&task->thread, NULL, task_wrapper, task);
  330. if (ret) {
  331. av_log(task->func_arg, AV_LOG_ERROR, "pthread_create() failed: %s\n",
  332. strerror(ret));
  333. return AVERROR(ret);
  334. }
  335. task->thread_running = 1;
  336. return 0;
  337. }
  338. static void task_init(Scheduler *sch, SchTask *task, enum SchedulerNodeType type, unsigned idx,
  339. SchThreadFunc func, void *func_arg)
  340. {
  341. task->parent = sch;
  342. task->node.type = type;
  343. task->node.idx = idx;
  344. task->func = func;
  345. task->func_arg = func_arg;
  346. }
  347. static int64_t trailing_dts(const Scheduler *sch, int count_finished)
  348. {
  349. int64_t min_dts = INT64_MAX;
  350. for (unsigned i = 0; i < sch->nb_mux; i++) {
  351. const SchMux *mux = &sch->mux[i];
  352. for (unsigned j = 0; j < mux->nb_streams; j++) {
  353. const SchMuxStream *ms = &mux->streams[j];
  354. if (ms->source_finished && !count_finished)
  355. continue;
  356. if (ms->last_dts == AV_NOPTS_VALUE)
  357. return AV_NOPTS_VALUE;
  358. min_dts = FFMIN(min_dts, ms->last_dts);
  359. }
  360. }
  361. return min_dts == INT64_MAX ? AV_NOPTS_VALUE : min_dts;
  362. }
  363. void sch_free(Scheduler **psch)
  364. {
  365. Scheduler *sch = *psch;
  366. if (!sch)
  367. return;
  368. sch_stop(sch, NULL);
  369. for (unsigned i = 0; i < sch->nb_demux; i++) {
  370. SchDemux *d = &sch->demux[i];
  371. for (unsigned j = 0; j < d->nb_streams; j++) {
  372. SchDemuxStream *ds = &d->streams[j];
  373. av_freep(&ds->dst);
  374. av_freep(&ds->dst_finished);
  375. }
  376. av_freep(&d->streams);
  377. av_packet_free(&d->send_pkt);
  378. waiter_uninit(&d->waiter);
  379. }
  380. av_freep(&sch->demux);
  381. for (unsigned i = 0; i < sch->nb_mux; i++) {
  382. SchMux *mux = &sch->mux[i];
  383. for (unsigned j = 0; j < mux->nb_streams; j++) {
  384. SchMuxStream *ms = &mux->streams[j];
  385. if (ms->pre_mux_queue.fifo) {
  386. AVPacket *pkt;
  387. while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0)
  388. av_packet_free(&pkt);
  389. av_fifo_freep2(&ms->pre_mux_queue.fifo);
  390. }
  391. av_freep(&ms->sub_heartbeat_dst);
  392. }
  393. av_freep(&mux->streams);
  394. av_packet_free(&mux->sub_heartbeat_pkt);
  395. tq_free(&mux->queue);
  396. }
  397. av_freep(&sch->mux);
  398. for (unsigned i = 0; i < sch->nb_dec; i++) {
  399. SchDec *dec = &sch->dec[i];
  400. tq_free(&dec->queue);
  401. av_thread_message_queue_free(&dec->queue_end_ts);
  402. for (unsigned j = 0; j < dec->nb_outputs; j++) {
  403. SchDecOutput *o = &dec->outputs[j];
  404. av_freep(&o->dst);
  405. av_freep(&o->dst_finished);
  406. }
  407. av_freep(&dec->outputs);
  408. av_frame_free(&dec->send_frame);
  409. }
  410. av_freep(&sch->dec);
  411. for (unsigned i = 0; i < sch->nb_enc; i++) {
  412. SchEnc *enc = &sch->enc[i];
  413. tq_free(&enc->queue);
  414. av_packet_free(&enc->send_pkt);
  415. av_freep(&enc->dst);
  416. av_freep(&enc->dst_finished);
  417. }
  418. av_freep(&sch->enc);
  419. for (unsigned i = 0; i < sch->nb_sq_enc; i++) {
  420. SchSyncQueue *sq = &sch->sq_enc[i];
  421. sq_free(&sq->sq);
  422. av_frame_free(&sq->frame);
  423. pthread_mutex_destroy(&sq->lock);
  424. av_freep(&sq->enc_idx);
  425. }
  426. av_freep(&sch->sq_enc);
  427. for (unsigned i = 0; i < sch->nb_filters; i++) {
  428. SchFilterGraph *fg = &sch->filters[i];
  429. tq_free(&fg->queue);
  430. av_freep(&fg->inputs);
  431. av_freep(&fg->outputs);
  432. waiter_uninit(&fg->waiter);
  433. }
  434. av_freep(&sch->filters);
  435. av_freep(&sch->sdp_filename);
  436. pthread_mutex_destroy(&sch->schedule_lock);
  437. pthread_mutex_destroy(&sch->mux_ready_lock);
  438. pthread_mutex_destroy(&sch->mux_done_lock);
  439. pthread_cond_destroy(&sch->mux_done_cond);
  440. av_freep(psch);
  441. }
  442. static const AVClass scheduler_class = {
  443. .class_name = "Scheduler",
  444. .version = LIBAVUTIL_VERSION_INT,
  445. };
  446. Scheduler *sch_alloc(void)
  447. {
  448. Scheduler *sch;
  449. int ret;
  450. sch = av_mallocz(sizeof(*sch));
  451. if (!sch)
  452. return NULL;
  453. sch->class = &scheduler_class;
  454. sch->sdp_auto = 1;
  455. ret = pthread_mutex_init(&sch->schedule_lock, NULL);
  456. if (ret)
  457. goto fail;
  458. ret = pthread_mutex_init(&sch->mux_ready_lock, NULL);
  459. if (ret)
  460. goto fail;
  461. ret = pthread_mutex_init(&sch->mux_done_lock, NULL);
  462. if (ret)
  463. goto fail;
  464. ret = pthread_cond_init(&sch->mux_done_cond, NULL);
  465. if (ret)
  466. goto fail;
  467. return sch;
  468. fail:
  469. sch_free(&sch);
  470. return NULL;
  471. }
  472. int sch_sdp_filename(Scheduler *sch, const char *sdp_filename)
  473. {
  474. av_freep(&sch->sdp_filename);
  475. sch->sdp_filename = av_strdup(sdp_filename);
  476. return sch->sdp_filename ? 0 : AVERROR(ENOMEM);
  477. }
  478. static const AVClass sch_mux_class = {
  479. .class_name = "SchMux",
  480. .version = LIBAVUTIL_VERSION_INT,
  481. .parent_log_context_offset = offsetof(SchMux, task.func_arg),
  482. };
  483. int sch_add_mux(Scheduler *sch, SchThreadFunc func, int (*init)(void *),
  484. void *arg, int sdp_auto, unsigned thread_queue_size)
  485. {
  486. const unsigned idx = sch->nb_mux;
  487. SchMux *mux;
  488. int ret;
  489. ret = GROW_ARRAY(sch->mux, sch->nb_mux);
  490. if (ret < 0)
  491. return ret;
  492. mux = &sch->mux[idx];
  493. mux->class = &sch_mux_class;
  494. mux->init = init;
  495. mux->queue_size = thread_queue_size;
  496. task_init(sch, &mux->task, SCH_NODE_TYPE_MUX, idx, func, arg);
  497. sch->sdp_auto &= sdp_auto;
  498. return idx;
  499. }
  500. int sch_add_mux_stream(Scheduler *sch, unsigned mux_idx)
  501. {
  502. SchMux *mux;
  503. SchMuxStream *ms;
  504. unsigned stream_idx;
  505. int ret;
  506. av_assert0(mux_idx < sch->nb_mux);
  507. mux = &sch->mux[mux_idx];
  508. ret = GROW_ARRAY(mux->streams, mux->nb_streams);
  509. if (ret < 0)
  510. return ret;
  511. stream_idx = mux->nb_streams - 1;
  512. ms = &mux->streams[stream_idx];
  513. ms->pre_mux_queue.fifo = av_fifo_alloc2(8, sizeof(AVPacket*), 0);
  514. if (!ms->pre_mux_queue.fifo)
  515. return AVERROR(ENOMEM);
  516. ms->last_dts = AV_NOPTS_VALUE;
  517. return stream_idx;
  518. }
  519. static const AVClass sch_demux_class = {
  520. .class_name = "SchDemux",
  521. .version = LIBAVUTIL_VERSION_INT,
  522. .parent_log_context_offset = offsetof(SchDemux, task.func_arg),
  523. };
  524. int sch_add_demux(Scheduler *sch, SchThreadFunc func, void *ctx)
  525. {
  526. const unsigned idx = sch->nb_demux;
  527. SchDemux *d;
  528. int ret;
  529. ret = GROW_ARRAY(sch->demux, sch->nb_demux);
  530. if (ret < 0)
  531. return ret;
  532. d = &sch->demux[idx];
  533. task_init(sch, &d->task, SCH_NODE_TYPE_DEMUX, idx, func, ctx);
  534. d->class = &sch_demux_class;
  535. d->send_pkt = av_packet_alloc();
  536. if (!d->send_pkt)
  537. return AVERROR(ENOMEM);
  538. ret = waiter_init(&d->waiter);
  539. if (ret < 0)
  540. return ret;
  541. return idx;
  542. }
  543. int sch_add_demux_stream(Scheduler *sch, unsigned demux_idx)
  544. {
  545. SchDemux *d;
  546. int ret;
  547. av_assert0(demux_idx < sch->nb_demux);
  548. d = &sch->demux[demux_idx];
  549. ret = GROW_ARRAY(d->streams, d->nb_streams);
  550. return ret < 0 ? ret : d->nb_streams - 1;
  551. }
  552. int sch_add_dec_output(Scheduler *sch, unsigned dec_idx)
  553. {
  554. SchDec *dec;
  555. int ret;
  556. av_assert0(dec_idx < sch->nb_dec);
  557. dec = &sch->dec[dec_idx];
  558. ret = GROW_ARRAY(dec->outputs, dec->nb_outputs);
  559. if (ret < 0)
  560. return ret;
  561. return dec->nb_outputs - 1;
  562. }
  563. static const AVClass sch_dec_class = {
  564. .class_name = "SchDec",
  565. .version = LIBAVUTIL_VERSION_INT,
  566. .parent_log_context_offset = offsetof(SchDec, task.func_arg),
  567. };
  568. int sch_add_dec(Scheduler *sch, SchThreadFunc func, void *ctx, int send_end_ts)
  569. {
  570. const unsigned idx = sch->nb_dec;
  571. SchDec *dec;
  572. int ret;
  573. ret = GROW_ARRAY(sch->dec, sch->nb_dec);
  574. if (ret < 0)
  575. return ret;
  576. dec = &sch->dec[idx];
  577. task_init(sch, &dec->task, SCH_NODE_TYPE_DEC, idx, func, ctx);
  578. dec->class = &sch_dec_class;
  579. dec->send_frame = av_frame_alloc();
  580. if (!dec->send_frame)
  581. return AVERROR(ENOMEM);
  582. ret = sch_add_dec_output(sch, idx);
  583. if (ret < 0)
  584. return ret;
  585. ret = queue_alloc(&dec->queue, 1, 0, QUEUE_PACKETS);
  586. if (ret < 0)
  587. return ret;
  588. if (send_end_ts) {
  589. ret = av_thread_message_queue_alloc(&dec->queue_end_ts, 1, sizeof(Timestamp));
  590. if (ret < 0)
  591. return ret;
  592. }
  593. return idx;
  594. }
  595. static const AVClass sch_enc_class = {
  596. .class_name = "SchEnc",
  597. .version = LIBAVUTIL_VERSION_INT,
  598. .parent_log_context_offset = offsetof(SchEnc, task.func_arg),
  599. };
  600. int sch_add_enc(Scheduler *sch, SchThreadFunc func, void *ctx,
  601. int (*open_cb)(void *opaque, const AVFrame *frame))
  602. {
  603. const unsigned idx = sch->nb_enc;
  604. SchEnc *enc;
  605. int ret;
  606. ret = GROW_ARRAY(sch->enc, sch->nb_enc);
  607. if (ret < 0)
  608. return ret;
  609. enc = &sch->enc[idx];
  610. enc->class = &sch_enc_class;
  611. enc->open_cb = open_cb;
  612. enc->sq_idx[0] = -1;
  613. enc->sq_idx[1] = -1;
  614. task_init(sch, &enc->task, SCH_NODE_TYPE_ENC, idx, func, ctx);
  615. enc->send_pkt = av_packet_alloc();
  616. if (!enc->send_pkt)
  617. return AVERROR(ENOMEM);
  618. ret = queue_alloc(&enc->queue, 1, 0, QUEUE_FRAMES);
  619. if (ret < 0)
  620. return ret;
  621. return idx;
  622. }
  623. static const AVClass sch_fg_class = {
  624. .class_name = "SchFilterGraph",
  625. .version = LIBAVUTIL_VERSION_INT,
  626. .parent_log_context_offset = offsetof(SchFilterGraph, task.func_arg),
  627. };
  628. int sch_add_filtergraph(Scheduler *sch, unsigned nb_inputs, unsigned nb_outputs,
  629. SchThreadFunc func, void *ctx)
  630. {
  631. const unsigned idx = sch->nb_filters;
  632. SchFilterGraph *fg;
  633. int ret;
  634. ret = GROW_ARRAY(sch->filters, sch->nb_filters);
  635. if (ret < 0)
  636. return ret;
  637. fg = &sch->filters[idx];
  638. fg->class = &sch_fg_class;
  639. task_init(sch, &fg->task, SCH_NODE_TYPE_FILTER_IN, idx, func, ctx);
  640. if (nb_inputs) {
  641. fg->inputs = av_calloc(nb_inputs, sizeof(*fg->inputs));
  642. if (!fg->inputs)
  643. return AVERROR(ENOMEM);
  644. fg->nb_inputs = nb_inputs;
  645. }
  646. if (nb_outputs) {
  647. fg->outputs = av_calloc(nb_outputs, sizeof(*fg->outputs));
  648. if (!fg->outputs)
  649. return AVERROR(ENOMEM);
  650. fg->nb_outputs = nb_outputs;
  651. }
  652. ret = waiter_init(&fg->waiter);
  653. if (ret < 0)
  654. return ret;
  655. ret = queue_alloc(&fg->queue, fg->nb_inputs + 1, 0, QUEUE_FRAMES);
  656. if (ret < 0)
  657. return ret;
  658. return idx;
  659. }
  660. int sch_add_sq_enc(Scheduler *sch, uint64_t buf_size_us, void *logctx)
  661. {
  662. SchSyncQueue *sq;
  663. int ret;
  664. ret = GROW_ARRAY(sch->sq_enc, sch->nb_sq_enc);
  665. if (ret < 0)
  666. return ret;
  667. sq = &sch->sq_enc[sch->nb_sq_enc - 1];
  668. sq->sq = sq_alloc(SYNC_QUEUE_FRAMES, buf_size_us, logctx);
  669. if (!sq->sq)
  670. return AVERROR(ENOMEM);
  671. sq->frame = av_frame_alloc();
  672. if (!sq->frame)
  673. return AVERROR(ENOMEM);
  674. ret = pthread_mutex_init(&sq->lock, NULL);
  675. if (ret)
  676. return AVERROR(ret);
  677. return sq - sch->sq_enc;
  678. }
  679. int sch_sq_add_enc(Scheduler *sch, unsigned sq_idx, unsigned enc_idx,
  680. int limiting, uint64_t max_frames)
  681. {
  682. SchSyncQueue *sq;
  683. SchEnc *enc;
  684. int ret;
  685. av_assert0(sq_idx < sch->nb_sq_enc);
  686. sq = &sch->sq_enc[sq_idx];
  687. av_assert0(enc_idx < sch->nb_enc);
  688. enc = &sch->enc[enc_idx];
  689. ret = GROW_ARRAY(sq->enc_idx, sq->nb_enc_idx);
  690. if (ret < 0)
  691. return ret;
  692. sq->enc_idx[sq->nb_enc_idx - 1] = enc_idx;
  693. ret = sq_add_stream(sq->sq, limiting);
  694. if (ret < 0)
  695. return ret;
  696. enc->sq_idx[0] = sq_idx;
  697. enc->sq_idx[1] = ret;
  698. if (max_frames != INT64_MAX)
  699. sq_limit_frames(sq->sq, enc->sq_idx[1], max_frames);
  700. return 0;
  701. }
  702. int sch_connect(Scheduler *sch, SchedulerNode src, SchedulerNode dst)
  703. {
  704. int ret;
  705. switch (src.type) {
  706. case SCH_NODE_TYPE_DEMUX: {
  707. SchDemuxStream *ds;
  708. av_assert0(src.idx < sch->nb_demux &&
  709. src.idx_stream < sch->demux[src.idx].nb_streams);
  710. ds = &sch->demux[src.idx].streams[src.idx_stream];
  711. ret = GROW_ARRAY(ds->dst, ds->nb_dst);
  712. if (ret < 0)
  713. return ret;
  714. ds->dst[ds->nb_dst - 1] = dst;
  715. // demuxed packets go to decoding or streamcopy
  716. switch (dst.type) {
  717. case SCH_NODE_TYPE_DEC: {
  718. SchDec *dec;
  719. av_assert0(dst.idx < sch->nb_dec);
  720. dec = &sch->dec[dst.idx];
  721. av_assert0(!dec->src.type);
  722. dec->src = src;
  723. break;
  724. }
  725. case SCH_NODE_TYPE_MUX: {
  726. SchMuxStream *ms;
  727. av_assert0(dst.idx < sch->nb_mux &&
  728. dst.idx_stream < sch->mux[dst.idx].nb_streams);
  729. ms = &sch->mux[dst.idx].streams[dst.idx_stream];
  730. av_assert0(!ms->src.type);
  731. ms->src = src;
  732. break;
  733. }
  734. default: av_assert0(0);
  735. }
  736. break;
  737. }
  738. case SCH_NODE_TYPE_DEC: {
  739. SchDec *dec;
  740. SchDecOutput *o;
  741. av_assert0(src.idx < sch->nb_dec);
  742. dec = &sch->dec[src.idx];
  743. av_assert0(src.idx_stream < dec->nb_outputs);
  744. o = &dec->outputs[src.idx_stream];
  745. ret = GROW_ARRAY(o->dst, o->nb_dst);
  746. if (ret < 0)
  747. return ret;
  748. o->dst[o->nb_dst - 1] = dst;
  749. // decoded frames go to filters or encoding
  750. switch (dst.type) {
  751. case SCH_NODE_TYPE_FILTER_IN: {
  752. SchFilterIn *fi;
  753. av_assert0(dst.idx < sch->nb_filters &&
  754. dst.idx_stream < sch->filters[dst.idx].nb_inputs);
  755. fi = &sch->filters[dst.idx].inputs[dst.idx_stream];
  756. av_assert0(!fi->src.type);
  757. fi->src = src;
  758. break;
  759. }
  760. case SCH_NODE_TYPE_ENC: {
  761. SchEnc *enc;
  762. av_assert0(dst.idx < sch->nb_enc);
  763. enc = &sch->enc[dst.idx];
  764. av_assert0(!enc->src.type);
  765. enc->src = src;
  766. break;
  767. }
  768. default: av_assert0(0);
  769. }
  770. break;
  771. }
  772. case SCH_NODE_TYPE_FILTER_OUT: {
  773. SchFilterOut *fo;
  774. av_assert0(src.idx < sch->nb_filters &&
  775. src.idx_stream < sch->filters[src.idx].nb_outputs);
  776. fo = &sch->filters[src.idx].outputs[src.idx_stream];
  777. av_assert0(!fo->dst.type);
  778. fo->dst = dst;
  779. // filtered frames go to encoding or another filtergraph
  780. switch (dst.type) {
  781. case SCH_NODE_TYPE_ENC: {
  782. SchEnc *enc;
  783. av_assert0(dst.idx < sch->nb_enc);
  784. enc = &sch->enc[dst.idx];
  785. av_assert0(!enc->src.type);
  786. enc->src = src;
  787. break;
  788. }
  789. case SCH_NODE_TYPE_FILTER_IN: {
  790. SchFilterIn *fi;
  791. av_assert0(dst.idx < sch->nb_filters &&
  792. dst.idx_stream < sch->filters[dst.idx].nb_inputs);
  793. fi = &sch->filters[dst.idx].inputs[dst.idx_stream];
  794. av_assert0(!fi->src.type);
  795. fi->src = src;
  796. break;
  797. }
  798. default: av_assert0(0);
  799. }
  800. break;
  801. }
  802. case SCH_NODE_TYPE_ENC: {
  803. SchEnc *enc;
  804. av_assert0(src.idx < sch->nb_enc);
  805. enc = &sch->enc[src.idx];
  806. ret = GROW_ARRAY(enc->dst, enc->nb_dst);
  807. if (ret < 0)
  808. return ret;
  809. enc->dst[enc->nb_dst - 1] = dst;
  810. // encoding packets go to muxing or decoding
  811. switch (dst.type) {
  812. case SCH_NODE_TYPE_MUX: {
  813. SchMuxStream *ms;
  814. av_assert0(dst.idx < sch->nb_mux &&
  815. dst.idx_stream < sch->mux[dst.idx].nb_streams);
  816. ms = &sch->mux[dst.idx].streams[dst.idx_stream];
  817. av_assert0(!ms->src.type);
  818. ms->src = src;
  819. break;
  820. }
  821. case SCH_NODE_TYPE_DEC: {
  822. SchDec *dec;
  823. av_assert0(dst.idx < sch->nb_dec);
  824. dec = &sch->dec[dst.idx];
  825. av_assert0(!dec->src.type);
  826. dec->src = src;
  827. break;
  828. }
  829. default: av_assert0(0);
  830. }
  831. break;
  832. }
  833. default: av_assert0(0);
  834. }
  835. return 0;
  836. }
  837. static int mux_task_start(SchMux *mux)
  838. {
  839. int ret = 0;
  840. ret = task_start(&mux->task);
  841. if (ret < 0)
  842. return ret;
  843. /* flush the pre-muxing queues */
  844. for (unsigned i = 0; i < mux->nb_streams; i++) {
  845. SchMuxStream *ms = &mux->streams[i];
  846. AVPacket *pkt;
  847. while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0) {
  848. if (pkt) {
  849. if (!ms->init_eof)
  850. ret = tq_send(mux->queue, i, pkt);
  851. av_packet_free(&pkt);
  852. if (ret == AVERROR_EOF)
  853. ms->init_eof = 1;
  854. else if (ret < 0)
  855. return ret;
  856. } else
  857. tq_send_finish(mux->queue, i);
  858. }
  859. }
  860. atomic_store(&mux->mux_started, 1);
  861. return 0;
  862. }
  863. int print_sdp(const char *filename);
  864. static int mux_init(Scheduler *sch, SchMux *mux)
  865. {
  866. int ret;
  867. ret = mux->init(mux->task.func_arg);
  868. if (ret < 0)
  869. return ret;
  870. sch->nb_mux_ready++;
  871. if (sch->sdp_filename || sch->sdp_auto) {
  872. if (sch->nb_mux_ready < sch->nb_mux)
  873. return 0;
  874. ret = print_sdp(sch->sdp_filename);
  875. if (ret < 0) {
  876. av_log(sch, AV_LOG_ERROR, "Error writing the SDP.\n");
  877. return ret;
  878. }
  879. /* SDP is written only after all the muxers are ready, so now we
  880. * start ALL the threads */
  881. for (unsigned i = 0; i < sch->nb_mux; i++) {
  882. ret = mux_task_start(&sch->mux[i]);
  883. if (ret < 0)
  884. return ret;
  885. }
  886. } else {
  887. ret = mux_task_start(mux);
  888. if (ret < 0)
  889. return ret;
  890. }
  891. return 0;
  892. }
  893. void sch_mux_stream_buffering(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
  894. size_t data_threshold, int max_packets)
  895. {
  896. SchMux *mux;
  897. SchMuxStream *ms;
  898. av_assert0(mux_idx < sch->nb_mux);
  899. mux = &sch->mux[mux_idx];
  900. av_assert0(stream_idx < mux->nb_streams);
  901. ms = &mux->streams[stream_idx];
  902. ms->pre_mux_queue.max_packets = max_packets;
  903. ms->pre_mux_queue.data_threshold = data_threshold;
  904. }
  905. int sch_mux_stream_ready(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
  906. {
  907. SchMux *mux;
  908. int ret = 0;
  909. av_assert0(mux_idx < sch->nb_mux);
  910. mux = &sch->mux[mux_idx];
  911. av_assert0(stream_idx < mux->nb_streams);
  912. pthread_mutex_lock(&sch->mux_ready_lock);
  913. av_assert0(mux->nb_streams_ready < mux->nb_streams);
  914. // this may be called during initialization - do not start
  915. // threads before sch_start() is called
  916. if (++mux->nb_streams_ready == mux->nb_streams &&
  917. sch->state >= SCH_STATE_STARTED)
  918. ret = mux_init(sch, mux);
  919. pthread_mutex_unlock(&sch->mux_ready_lock);
  920. return ret;
  921. }
  922. int sch_mux_sub_heartbeat_add(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
  923. unsigned dec_idx)
  924. {
  925. SchMux *mux;
  926. SchMuxStream *ms;
  927. int ret = 0;
  928. av_assert0(mux_idx < sch->nb_mux);
  929. mux = &sch->mux[mux_idx];
  930. av_assert0(stream_idx < mux->nb_streams);
  931. ms = &mux->streams[stream_idx];
  932. ret = GROW_ARRAY(ms->sub_heartbeat_dst, ms->nb_sub_heartbeat_dst);
  933. if (ret < 0)
  934. return ret;
  935. av_assert0(dec_idx < sch->nb_dec);
  936. ms->sub_heartbeat_dst[ms->nb_sub_heartbeat_dst - 1] = dec_idx;
  937. if (!mux->sub_heartbeat_pkt) {
  938. mux->sub_heartbeat_pkt = av_packet_alloc();
  939. if (!mux->sub_heartbeat_pkt)
  940. return AVERROR(ENOMEM);
  941. }
  942. return 0;
  943. }
  944. static void unchoke_for_stream(Scheduler *sch, SchedulerNode src)
  945. {
  946. while (1) {
  947. SchFilterGraph *fg;
  948. // fed directly by a demuxer (i.e. not through a filtergraph)
  949. if (src.type == SCH_NODE_TYPE_DEMUX) {
  950. sch->demux[src.idx].waiter.choked_next = 0;
  951. return;
  952. }
  953. av_assert0(src.type == SCH_NODE_TYPE_FILTER_OUT);
  954. fg = &sch->filters[src.idx];
  955. // the filtergraph contains internal sources and
  956. // requested to be scheduled directly
  957. if (fg->best_input == fg->nb_inputs) {
  958. fg->waiter.choked_next = 0;
  959. return;
  960. }
  961. src = fg->inputs[fg->best_input].src_sched;
  962. }
  963. }
  964. static void schedule_update_locked(Scheduler *sch)
  965. {
  966. int64_t dts;
  967. int have_unchoked = 0;
  968. // on termination request all waiters are choked,
  969. // we are not to unchoke them
  970. if (atomic_load(&sch->terminate))
  971. return;
  972. dts = trailing_dts(sch, 0);
  973. atomic_store(&sch->last_dts, dts);
  974. // initialize our internal state
  975. for (unsigned type = 0; type < 2; type++)
  976. for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
  977. SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
  978. w->choked_prev = atomic_load(&w->choked);
  979. w->choked_next = 1;
  980. }
  981. // figure out the sources that are allowed to proceed
  982. for (unsigned i = 0; i < sch->nb_mux; i++) {
  983. SchMux *mux = &sch->mux[i];
  984. for (unsigned j = 0; j < mux->nb_streams; j++) {
  985. SchMuxStream *ms = &mux->streams[j];
  986. // unblock sources for output streams that are not finished
  987. // and not too far ahead of the trailing stream
  988. if (ms->source_finished)
  989. continue;
  990. if (dts == AV_NOPTS_VALUE && ms->last_dts != AV_NOPTS_VALUE)
  991. continue;
  992. if (dts != AV_NOPTS_VALUE && ms->last_dts - dts >= SCHEDULE_TOLERANCE)
  993. continue;
  994. // resolve the source to unchoke
  995. unchoke_for_stream(sch, ms->src_sched);
  996. have_unchoked = 1;
  997. }
  998. }
  999. // make sure to unchoke at least one source, if still available
  1000. for (unsigned type = 0; !have_unchoked && type < 2; type++)
  1001. for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
  1002. int exited = type ? sch->filters[i].task_exited : sch->demux[i].task_exited;
  1003. SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
  1004. if (!exited) {
  1005. w->choked_next = 0;
  1006. have_unchoked = 1;
  1007. break;
  1008. }
  1009. }
  1010. for (unsigned type = 0; type < 2; type++)
  1011. for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
  1012. SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
  1013. if (w->choked_prev != w->choked_next)
  1014. waiter_set(w, w->choked_next);
  1015. }
  1016. }
  1017. enum {
  1018. CYCLE_NODE_NEW = 0,
  1019. CYCLE_NODE_STARTED,
  1020. CYCLE_NODE_DONE,
  1021. };
  1022. static int
  1023. check_acyclic_for_output(const Scheduler *sch, SchedulerNode src,
  1024. uint8_t *filters_visited, SchedulerNode *filters_stack)
  1025. {
  1026. unsigned nb_filters_stack = 0;
  1027. memset(filters_visited, 0, sch->nb_filters * sizeof(*filters_visited));
  1028. while (1) {
  1029. const SchFilterGraph *fg = &sch->filters[src.idx];
  1030. filters_visited[src.idx] = CYCLE_NODE_STARTED;
  1031. // descend into every input, depth first
  1032. if (src.idx_stream < fg->nb_inputs) {
  1033. const SchFilterIn *fi = &fg->inputs[src.idx_stream++];
  1034. // connected to demuxer, no cycles possible
  1035. if (fi->src_sched.type == SCH_NODE_TYPE_DEMUX)
  1036. continue;
  1037. // otherwise connected to another filtergraph
  1038. av_assert0(fi->src_sched.type == SCH_NODE_TYPE_FILTER_OUT);
  1039. // found a cycle
  1040. if (filters_visited[fi->src_sched.idx] == CYCLE_NODE_STARTED)
  1041. return AVERROR(EINVAL);
  1042. // place current position on stack and descend
  1043. av_assert0(nb_filters_stack < sch->nb_filters);
  1044. filters_stack[nb_filters_stack++] = src;
  1045. src = (SchedulerNode){ .idx = fi->src_sched.idx, .idx_stream = 0 };
  1046. continue;
  1047. }
  1048. filters_visited[src.idx] = CYCLE_NODE_DONE;
  1049. // previous search finished,
  1050. if (nb_filters_stack) {
  1051. src = filters_stack[--nb_filters_stack];
  1052. continue;
  1053. }
  1054. return 0;
  1055. }
  1056. }
  1057. static int check_acyclic(Scheduler *sch)
  1058. {
  1059. uint8_t *filters_visited = NULL;
  1060. SchedulerNode *filters_stack = NULL;
  1061. int ret = 0;
  1062. if (!sch->nb_filters)
  1063. return 0;
  1064. filters_visited = av_malloc_array(sch->nb_filters, sizeof(*filters_visited));
  1065. if (!filters_visited)
  1066. return AVERROR(ENOMEM);
  1067. filters_stack = av_malloc_array(sch->nb_filters, sizeof(*filters_stack));
  1068. if (!filters_stack) {
  1069. ret = AVERROR(ENOMEM);
  1070. goto fail;
  1071. }
  1072. // trace the transcoding graph upstream from every filtegraph
  1073. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1074. ret = check_acyclic_for_output(sch, (SchedulerNode){ .idx = i },
  1075. filters_visited, filters_stack);
  1076. if (ret < 0) {
  1077. av_log(&sch->filters[i], AV_LOG_ERROR, "Transcoding graph has a cycle\n");
  1078. goto fail;
  1079. }
  1080. }
  1081. fail:
  1082. av_freep(&filters_visited);
  1083. av_freep(&filters_stack);
  1084. return ret;
  1085. }
  1086. static int start_prepare(Scheduler *sch)
  1087. {
  1088. int ret;
  1089. for (unsigned i = 0; i < sch->nb_demux; i++) {
  1090. SchDemux *d = &sch->demux[i];
  1091. for (unsigned j = 0; j < d->nb_streams; j++) {
  1092. SchDemuxStream *ds = &d->streams[j];
  1093. if (!ds->nb_dst) {
  1094. av_log(d, AV_LOG_ERROR,
  1095. "Demuxer stream %u not connected to any sink\n", j);
  1096. return AVERROR(EINVAL);
  1097. }
  1098. ds->dst_finished = av_calloc(ds->nb_dst, sizeof(*ds->dst_finished));
  1099. if (!ds->dst_finished)
  1100. return AVERROR(ENOMEM);
  1101. }
  1102. }
  1103. for (unsigned i = 0; i < sch->nb_dec; i++) {
  1104. SchDec *dec = &sch->dec[i];
  1105. if (!dec->src.type) {
  1106. av_log(dec, AV_LOG_ERROR,
  1107. "Decoder not connected to a source\n");
  1108. return AVERROR(EINVAL);
  1109. }
  1110. for (unsigned j = 0; j < dec->nb_outputs; j++) {
  1111. SchDecOutput *o = &dec->outputs[j];
  1112. if (!o->nb_dst) {
  1113. av_log(dec, AV_LOG_ERROR,
  1114. "Decoder output %u not connected to any sink\n", j);
  1115. return AVERROR(EINVAL);
  1116. }
  1117. o->dst_finished = av_calloc(o->nb_dst, sizeof(*o->dst_finished));
  1118. if (!o->dst_finished)
  1119. return AVERROR(ENOMEM);
  1120. }
  1121. }
  1122. for (unsigned i = 0; i < sch->nb_enc; i++) {
  1123. SchEnc *enc = &sch->enc[i];
  1124. if (!enc->src.type) {
  1125. av_log(enc, AV_LOG_ERROR,
  1126. "Encoder not connected to a source\n");
  1127. return AVERROR(EINVAL);
  1128. }
  1129. if (!enc->nb_dst) {
  1130. av_log(enc, AV_LOG_ERROR,
  1131. "Encoder not connected to any sink\n");
  1132. return AVERROR(EINVAL);
  1133. }
  1134. enc->dst_finished = av_calloc(enc->nb_dst, sizeof(*enc->dst_finished));
  1135. if (!enc->dst_finished)
  1136. return AVERROR(ENOMEM);
  1137. }
  1138. for (unsigned i = 0; i < sch->nb_mux; i++) {
  1139. SchMux *mux = &sch->mux[i];
  1140. for (unsigned j = 0; j < mux->nb_streams; j++) {
  1141. SchMuxStream *ms = &mux->streams[j];
  1142. switch (ms->src.type) {
  1143. case SCH_NODE_TYPE_ENC: {
  1144. SchEnc *enc = &sch->enc[ms->src.idx];
  1145. if (enc->src.type == SCH_NODE_TYPE_DEC) {
  1146. ms->src_sched = sch->dec[enc->src.idx].src;
  1147. av_assert0(ms->src_sched.type == SCH_NODE_TYPE_DEMUX);
  1148. } else {
  1149. ms->src_sched = enc->src;
  1150. av_assert0(ms->src_sched.type == SCH_NODE_TYPE_FILTER_OUT);
  1151. }
  1152. break;
  1153. }
  1154. case SCH_NODE_TYPE_DEMUX:
  1155. ms->src_sched = ms->src;
  1156. break;
  1157. default:
  1158. av_log(mux, AV_LOG_ERROR,
  1159. "Muxer stream #%u not connected to a source\n", j);
  1160. return AVERROR(EINVAL);
  1161. }
  1162. }
  1163. ret = queue_alloc(&mux->queue, mux->nb_streams, mux->queue_size,
  1164. QUEUE_PACKETS);
  1165. if (ret < 0)
  1166. return ret;
  1167. }
  1168. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1169. SchFilterGraph *fg = &sch->filters[i];
  1170. for (unsigned j = 0; j < fg->nb_inputs; j++) {
  1171. SchFilterIn *fi = &fg->inputs[j];
  1172. SchDec *dec;
  1173. if (!fi->src.type) {
  1174. av_log(fg, AV_LOG_ERROR,
  1175. "Filtergraph input %u not connected to a source\n", j);
  1176. return AVERROR(EINVAL);
  1177. }
  1178. if (fi->src.type == SCH_NODE_TYPE_FILTER_OUT)
  1179. fi->src_sched = fi->src;
  1180. else {
  1181. av_assert0(fi->src.type == SCH_NODE_TYPE_DEC);
  1182. dec = &sch->dec[fi->src.idx];
  1183. switch (dec->src.type) {
  1184. case SCH_NODE_TYPE_DEMUX: fi->src_sched = dec->src; break;
  1185. case SCH_NODE_TYPE_ENC: fi->src_sched = sch->enc[dec->src.idx].src; break;
  1186. default: av_assert0(0);
  1187. }
  1188. }
  1189. }
  1190. for (unsigned j = 0; j < fg->nb_outputs; j++) {
  1191. SchFilterOut *fo = &fg->outputs[j];
  1192. if (!fo->dst.type) {
  1193. av_log(fg, AV_LOG_ERROR,
  1194. "Filtergraph %u output %u not connected to a sink\n", i, j);
  1195. return AVERROR(EINVAL);
  1196. }
  1197. }
  1198. }
  1199. // Check that the transcoding graph has no cycles.
  1200. ret = check_acyclic(sch);
  1201. if (ret < 0)
  1202. return ret;
  1203. return 0;
  1204. }
  1205. int sch_start(Scheduler *sch)
  1206. {
  1207. int ret;
  1208. ret = start_prepare(sch);
  1209. if (ret < 0)
  1210. return ret;
  1211. av_assert0(sch->state == SCH_STATE_UNINIT);
  1212. sch->state = SCH_STATE_STARTED;
  1213. for (unsigned i = 0; i < sch->nb_mux; i++) {
  1214. SchMux *mux = &sch->mux[i];
  1215. if (mux->nb_streams_ready == mux->nb_streams) {
  1216. ret = mux_init(sch, mux);
  1217. if (ret < 0)
  1218. goto fail;
  1219. }
  1220. }
  1221. for (unsigned i = 0; i < sch->nb_enc; i++) {
  1222. SchEnc *enc = &sch->enc[i];
  1223. ret = task_start(&enc->task);
  1224. if (ret < 0)
  1225. goto fail;
  1226. }
  1227. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1228. SchFilterGraph *fg = &sch->filters[i];
  1229. ret = task_start(&fg->task);
  1230. if (ret < 0)
  1231. goto fail;
  1232. }
  1233. for (unsigned i = 0; i < sch->nb_dec; i++) {
  1234. SchDec *dec = &sch->dec[i];
  1235. ret = task_start(&dec->task);
  1236. if (ret < 0)
  1237. goto fail;
  1238. }
  1239. for (unsigned i = 0; i < sch->nb_demux; i++) {
  1240. SchDemux *d = &sch->demux[i];
  1241. if (!d->nb_streams)
  1242. continue;
  1243. ret = task_start(&d->task);
  1244. if (ret < 0)
  1245. goto fail;
  1246. }
  1247. pthread_mutex_lock(&sch->schedule_lock);
  1248. schedule_update_locked(sch);
  1249. pthread_mutex_unlock(&sch->schedule_lock);
  1250. return 0;
  1251. fail:
  1252. sch_stop(sch, NULL);
  1253. return ret;
  1254. }
  1255. int sch_wait(Scheduler *sch, uint64_t timeout_us, int64_t *transcode_ts)
  1256. {
  1257. int ret, err;
  1258. // convert delay to absolute timestamp
  1259. timeout_us += av_gettime();
  1260. pthread_mutex_lock(&sch->mux_done_lock);
  1261. if (sch->nb_mux_done < sch->nb_mux) {
  1262. struct timespec tv = { .tv_sec = timeout_us / 1000000,
  1263. .tv_nsec = (timeout_us % 1000000) * 1000 };
  1264. pthread_cond_timedwait(&sch->mux_done_cond, &sch->mux_done_lock, &tv);
  1265. }
  1266. ret = sch->nb_mux_done == sch->nb_mux;
  1267. pthread_mutex_unlock(&sch->mux_done_lock);
  1268. *transcode_ts = atomic_load(&sch->last_dts);
  1269. // abort transcoding if any task failed
  1270. err = atomic_load(&sch->task_failed);
  1271. return ret || err;
  1272. }
  1273. static int enc_open(Scheduler *sch, SchEnc *enc, const AVFrame *frame)
  1274. {
  1275. int ret;
  1276. ret = enc->open_cb(enc->task.func_arg, frame);
  1277. if (ret < 0)
  1278. return ret;
  1279. // ret>0 signals audio frame size, which means sync queue must
  1280. // have been enabled during encoder creation
  1281. if (ret > 0) {
  1282. SchSyncQueue *sq;
  1283. av_assert0(enc->sq_idx[0] >= 0);
  1284. sq = &sch->sq_enc[enc->sq_idx[0]];
  1285. pthread_mutex_lock(&sq->lock);
  1286. sq_frame_samples(sq->sq, enc->sq_idx[1], ret);
  1287. pthread_mutex_unlock(&sq->lock);
  1288. }
  1289. return 0;
  1290. }
  1291. static int send_to_enc_thread(Scheduler *sch, SchEnc *enc, AVFrame *frame)
  1292. {
  1293. int ret;
  1294. if (!frame) {
  1295. tq_send_finish(enc->queue, 0);
  1296. return 0;
  1297. }
  1298. if (enc->in_finished)
  1299. return AVERROR_EOF;
  1300. ret = tq_send(enc->queue, 0, frame);
  1301. if (ret < 0)
  1302. enc->in_finished = 1;
  1303. return ret;
  1304. }
  1305. static int send_to_enc_sq(Scheduler *sch, SchEnc *enc, AVFrame *frame)
  1306. {
  1307. SchSyncQueue *sq = &sch->sq_enc[enc->sq_idx[0]];
  1308. int ret = 0;
  1309. // inform the scheduling code that no more input will arrive along this path;
  1310. // this is necessary because the sync queue may not send an EOF downstream
  1311. // until other streams finish
  1312. // TODO: consider a cleaner way of passing this information through
  1313. // the pipeline
  1314. if (!frame) {
  1315. for (unsigned i = 0; i < enc->nb_dst; i++) {
  1316. SchMux *mux;
  1317. SchMuxStream *ms;
  1318. if (enc->dst[i].type != SCH_NODE_TYPE_MUX)
  1319. continue;
  1320. mux = &sch->mux[enc->dst[i].idx];
  1321. ms = &mux->streams[enc->dst[i].idx_stream];
  1322. pthread_mutex_lock(&sch->schedule_lock);
  1323. ms->source_finished = 1;
  1324. schedule_update_locked(sch);
  1325. pthread_mutex_unlock(&sch->schedule_lock);
  1326. }
  1327. }
  1328. pthread_mutex_lock(&sq->lock);
  1329. ret = sq_send(sq->sq, enc->sq_idx[1], SQFRAME(frame));
  1330. if (ret < 0)
  1331. goto finish;
  1332. while (1) {
  1333. SchEnc *enc;
  1334. // TODO: the SQ API should be extended to allow returning EOF
  1335. // for individual streams
  1336. ret = sq_receive(sq->sq, -1, SQFRAME(sq->frame));
  1337. if (ret < 0) {
  1338. ret = (ret == AVERROR(EAGAIN)) ? 0 : ret;
  1339. break;
  1340. }
  1341. enc = &sch->enc[sq->enc_idx[ret]];
  1342. ret = send_to_enc_thread(sch, enc, sq->frame);
  1343. if (ret < 0) {
  1344. av_frame_unref(sq->frame);
  1345. if (ret != AVERROR_EOF)
  1346. break;
  1347. sq_send(sq->sq, enc->sq_idx[1], SQFRAME(NULL));
  1348. continue;
  1349. }
  1350. }
  1351. if (ret < 0) {
  1352. // close all encoders fed from this sync queue
  1353. for (unsigned i = 0; i < sq->nb_enc_idx; i++) {
  1354. int err = send_to_enc_thread(sch, &sch->enc[sq->enc_idx[i]], NULL);
  1355. // if the sync queue error is EOF and closing the encoder
  1356. // produces a more serious error, make sure to pick the latter
  1357. ret = err_merge((ret == AVERROR_EOF && err < 0) ? 0 : ret, err);
  1358. }
  1359. }
  1360. finish:
  1361. pthread_mutex_unlock(&sq->lock);
  1362. return ret;
  1363. }
  1364. static int send_to_enc(Scheduler *sch, SchEnc *enc, AVFrame *frame)
  1365. {
  1366. if (enc->open_cb && frame && !enc->opened) {
  1367. int ret = enc_open(sch, enc, frame);
  1368. if (ret < 0)
  1369. return ret;
  1370. enc->opened = 1;
  1371. // discard empty frames that only carry encoder init parameters
  1372. if (!frame->buf[0]) {
  1373. av_frame_unref(frame);
  1374. return 0;
  1375. }
  1376. }
  1377. return (enc->sq_idx[0] >= 0) ?
  1378. send_to_enc_sq (sch, enc, frame) :
  1379. send_to_enc_thread(sch, enc, frame);
  1380. }
  1381. static int mux_queue_packet(SchMux *mux, SchMuxStream *ms, AVPacket *pkt)
  1382. {
  1383. PreMuxQueue *q = &ms->pre_mux_queue;
  1384. AVPacket *tmp_pkt = NULL;
  1385. int ret;
  1386. if (!av_fifo_can_write(q->fifo)) {
  1387. size_t packets = av_fifo_can_read(q->fifo);
  1388. size_t pkt_size = pkt ? pkt->size : 0;
  1389. int thresh_reached = (q->data_size + pkt_size) > q->data_threshold;
  1390. size_t max_packets = thresh_reached ? q->max_packets : SIZE_MAX;
  1391. size_t new_size = FFMIN(2 * packets, max_packets);
  1392. if (new_size <= packets) {
  1393. av_log(mux, AV_LOG_ERROR,
  1394. "Too many packets buffered for output stream.\n");
  1395. return AVERROR(ENOSPC);
  1396. }
  1397. ret = av_fifo_grow2(q->fifo, new_size - packets);
  1398. if (ret < 0)
  1399. return ret;
  1400. }
  1401. if (pkt) {
  1402. tmp_pkt = av_packet_alloc();
  1403. if (!tmp_pkt)
  1404. return AVERROR(ENOMEM);
  1405. av_packet_move_ref(tmp_pkt, pkt);
  1406. q->data_size += tmp_pkt->size;
  1407. }
  1408. av_fifo_write(q->fifo, &tmp_pkt, 1);
  1409. return 0;
  1410. }
  1411. static int send_to_mux(Scheduler *sch, SchMux *mux, unsigned stream_idx,
  1412. AVPacket *pkt)
  1413. {
  1414. SchMuxStream *ms = &mux->streams[stream_idx];
  1415. int64_t dts = (pkt && pkt->dts != AV_NOPTS_VALUE) ?
  1416. av_rescale_q(pkt->dts + pkt->duration, pkt->time_base, AV_TIME_BASE_Q) :
  1417. AV_NOPTS_VALUE;
  1418. // queue the packet if the muxer cannot be started yet
  1419. if (!atomic_load(&mux->mux_started)) {
  1420. int queued = 0;
  1421. // the muxer could have started between the above atomic check and
  1422. // locking the mutex, then this block falls through to normal send path
  1423. pthread_mutex_lock(&sch->mux_ready_lock);
  1424. if (!atomic_load(&mux->mux_started)) {
  1425. int ret = mux_queue_packet(mux, ms, pkt);
  1426. queued = ret < 0 ? ret : 1;
  1427. }
  1428. pthread_mutex_unlock(&sch->mux_ready_lock);
  1429. if (queued < 0)
  1430. return queued;
  1431. else if (queued)
  1432. goto update_schedule;
  1433. }
  1434. if (pkt) {
  1435. int ret;
  1436. if (ms->init_eof)
  1437. return AVERROR_EOF;
  1438. ret = tq_send(mux->queue, stream_idx, pkt);
  1439. if (ret < 0)
  1440. return ret;
  1441. } else
  1442. tq_send_finish(mux->queue, stream_idx);
  1443. update_schedule:
  1444. // TODO: use atomics to check whether this changes trailing dts
  1445. // to avoid locking unnecesarily
  1446. if (dts != AV_NOPTS_VALUE || !pkt) {
  1447. pthread_mutex_lock(&sch->schedule_lock);
  1448. if (pkt) ms->last_dts = dts;
  1449. else ms->source_finished = 1;
  1450. schedule_update_locked(sch);
  1451. pthread_mutex_unlock(&sch->schedule_lock);
  1452. }
  1453. return 0;
  1454. }
  1455. static int
  1456. demux_stream_send_to_dst(Scheduler *sch, const SchedulerNode dst,
  1457. uint8_t *dst_finished, AVPacket *pkt, unsigned flags)
  1458. {
  1459. int ret;
  1460. if (*dst_finished)
  1461. return AVERROR_EOF;
  1462. if (pkt && dst.type == SCH_NODE_TYPE_MUX &&
  1463. (flags & DEMUX_SEND_STREAMCOPY_EOF)) {
  1464. av_packet_unref(pkt);
  1465. pkt = NULL;
  1466. }
  1467. if (!pkt)
  1468. goto finish;
  1469. ret = (dst.type == SCH_NODE_TYPE_MUX) ?
  1470. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
  1471. tq_send(sch->dec[dst.idx].queue, 0, pkt);
  1472. if (ret == AVERROR_EOF)
  1473. goto finish;
  1474. return ret;
  1475. finish:
  1476. if (dst.type == SCH_NODE_TYPE_MUX)
  1477. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
  1478. else
  1479. tq_send_finish(sch->dec[dst.idx].queue, 0);
  1480. *dst_finished = 1;
  1481. return AVERROR_EOF;
  1482. }
  1483. static int demux_send_for_stream(Scheduler *sch, SchDemux *d, SchDemuxStream *ds,
  1484. AVPacket *pkt, unsigned flags)
  1485. {
  1486. unsigned nb_done = 0;
  1487. for (unsigned i = 0; i < ds->nb_dst; i++) {
  1488. AVPacket *to_send = pkt;
  1489. uint8_t *finished = &ds->dst_finished[i];
  1490. int ret;
  1491. // sending a packet consumes it, so make a temporary reference if needed
  1492. if (pkt && i < ds->nb_dst - 1) {
  1493. to_send = d->send_pkt;
  1494. ret = av_packet_ref(to_send, pkt);
  1495. if (ret < 0)
  1496. return ret;
  1497. }
  1498. ret = demux_stream_send_to_dst(sch, ds->dst[i], finished, to_send, flags);
  1499. if (to_send)
  1500. av_packet_unref(to_send);
  1501. if (ret == AVERROR_EOF)
  1502. nb_done++;
  1503. else if (ret < 0)
  1504. return ret;
  1505. }
  1506. return (nb_done == ds->nb_dst) ? AVERROR_EOF : 0;
  1507. }
  1508. static int demux_flush(Scheduler *sch, SchDemux *d, AVPacket *pkt)
  1509. {
  1510. Timestamp max_end_ts = (Timestamp){ .ts = AV_NOPTS_VALUE };
  1511. av_assert0(!pkt->buf && !pkt->data && !pkt->side_data_elems);
  1512. for (unsigned i = 0; i < d->nb_streams; i++) {
  1513. SchDemuxStream *ds = &d->streams[i];
  1514. for (unsigned j = 0; j < ds->nb_dst; j++) {
  1515. const SchedulerNode *dst = &ds->dst[j];
  1516. SchDec *dec;
  1517. int ret;
  1518. if (ds->dst_finished[j] || dst->type != SCH_NODE_TYPE_DEC)
  1519. continue;
  1520. dec = &sch->dec[dst->idx];
  1521. ret = tq_send(dec->queue, 0, pkt);
  1522. if (ret < 0)
  1523. return ret;
  1524. if (dec->queue_end_ts) {
  1525. Timestamp ts;
  1526. ret = av_thread_message_queue_recv(dec->queue_end_ts, &ts, 0);
  1527. if (ret < 0)
  1528. return ret;
  1529. if (max_end_ts.ts == AV_NOPTS_VALUE ||
  1530. (ts.ts != AV_NOPTS_VALUE &&
  1531. av_compare_ts(max_end_ts.ts, max_end_ts.tb, ts.ts, ts.tb) < 0))
  1532. max_end_ts = ts;
  1533. }
  1534. }
  1535. }
  1536. pkt->pts = max_end_ts.ts;
  1537. pkt->time_base = max_end_ts.tb;
  1538. return 0;
  1539. }
  1540. int sch_demux_send(Scheduler *sch, unsigned demux_idx, AVPacket *pkt,
  1541. unsigned flags)
  1542. {
  1543. SchDemux *d;
  1544. int terminate;
  1545. av_assert0(demux_idx < sch->nb_demux);
  1546. d = &sch->demux[demux_idx];
  1547. terminate = waiter_wait(sch, &d->waiter);
  1548. if (terminate)
  1549. return AVERROR_EXIT;
  1550. // flush the downstreams after seek
  1551. if (pkt->stream_index == -1)
  1552. return demux_flush(sch, d, pkt);
  1553. av_assert0(pkt->stream_index < d->nb_streams);
  1554. return demux_send_for_stream(sch, d, &d->streams[pkt->stream_index], pkt, flags);
  1555. }
  1556. static int demux_done(Scheduler *sch, unsigned demux_idx)
  1557. {
  1558. SchDemux *d = &sch->demux[demux_idx];
  1559. int ret = 0;
  1560. for (unsigned i = 0; i < d->nb_streams; i++) {
  1561. int err = demux_send_for_stream(sch, d, &d->streams[i], NULL, 0);
  1562. if (err != AVERROR_EOF)
  1563. ret = err_merge(ret, err);
  1564. }
  1565. pthread_mutex_lock(&sch->schedule_lock);
  1566. d->task_exited = 1;
  1567. schedule_update_locked(sch);
  1568. pthread_mutex_unlock(&sch->schedule_lock);
  1569. return ret;
  1570. }
  1571. int sch_mux_receive(Scheduler *sch, unsigned mux_idx, AVPacket *pkt)
  1572. {
  1573. SchMux *mux;
  1574. int ret, stream_idx;
  1575. av_assert0(mux_idx < sch->nb_mux);
  1576. mux = &sch->mux[mux_idx];
  1577. ret = tq_receive(mux->queue, &stream_idx, pkt);
  1578. pkt->stream_index = stream_idx;
  1579. return ret;
  1580. }
  1581. void sch_mux_receive_finish(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
  1582. {
  1583. SchMux *mux;
  1584. av_assert0(mux_idx < sch->nb_mux);
  1585. mux = &sch->mux[mux_idx];
  1586. av_assert0(stream_idx < mux->nb_streams);
  1587. tq_receive_finish(mux->queue, stream_idx);
  1588. pthread_mutex_lock(&sch->schedule_lock);
  1589. mux->streams[stream_idx].source_finished = 1;
  1590. schedule_update_locked(sch);
  1591. pthread_mutex_unlock(&sch->schedule_lock);
  1592. }
  1593. int sch_mux_sub_heartbeat(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
  1594. const AVPacket *pkt)
  1595. {
  1596. SchMux *mux;
  1597. SchMuxStream *ms;
  1598. av_assert0(mux_idx < sch->nb_mux);
  1599. mux = &sch->mux[mux_idx];
  1600. av_assert0(stream_idx < mux->nb_streams);
  1601. ms = &mux->streams[stream_idx];
  1602. for (unsigned i = 0; i < ms->nb_sub_heartbeat_dst; i++) {
  1603. SchDec *dst = &sch->dec[ms->sub_heartbeat_dst[i]];
  1604. int ret;
  1605. ret = av_packet_copy_props(mux->sub_heartbeat_pkt, pkt);
  1606. if (ret < 0)
  1607. return ret;
  1608. tq_send(dst->queue, 0, mux->sub_heartbeat_pkt);
  1609. }
  1610. return 0;
  1611. }
  1612. static int mux_done(Scheduler *sch, unsigned mux_idx)
  1613. {
  1614. SchMux *mux = &sch->mux[mux_idx];
  1615. pthread_mutex_lock(&sch->schedule_lock);
  1616. for (unsigned i = 0; i < mux->nb_streams; i++) {
  1617. tq_receive_finish(mux->queue, i);
  1618. mux->streams[i].source_finished = 1;
  1619. }
  1620. schedule_update_locked(sch);
  1621. pthread_mutex_unlock(&sch->schedule_lock);
  1622. pthread_mutex_lock(&sch->mux_done_lock);
  1623. av_assert0(sch->nb_mux_done < sch->nb_mux);
  1624. sch->nb_mux_done++;
  1625. pthread_cond_signal(&sch->mux_done_cond);
  1626. pthread_mutex_unlock(&sch->mux_done_lock);
  1627. return 0;
  1628. }
  1629. int sch_dec_receive(Scheduler *sch, unsigned dec_idx, AVPacket *pkt)
  1630. {
  1631. SchDec *dec;
  1632. int ret, dummy;
  1633. av_assert0(dec_idx < sch->nb_dec);
  1634. dec = &sch->dec[dec_idx];
  1635. // the decoder should have given us post-flush end timestamp in pkt
  1636. if (dec->expect_end_ts) {
  1637. Timestamp ts = (Timestamp){ .ts = pkt->pts, .tb = pkt->time_base };
  1638. ret = av_thread_message_queue_send(dec->queue_end_ts, &ts, 0);
  1639. if (ret < 0)
  1640. return ret;
  1641. dec->expect_end_ts = 0;
  1642. }
  1643. ret = tq_receive(dec->queue, &dummy, pkt);
  1644. av_assert0(dummy <= 0);
  1645. // got a flush packet, on the next call to this function the decoder
  1646. // will give us post-flush end timestamp
  1647. if (ret >= 0 && !pkt->data && !pkt->side_data_elems && dec->queue_end_ts)
  1648. dec->expect_end_ts = 1;
  1649. return ret;
  1650. }
  1651. static int send_to_filter(Scheduler *sch, SchFilterGraph *fg,
  1652. unsigned in_idx, AVFrame *frame)
  1653. {
  1654. if (frame)
  1655. return tq_send(fg->queue, in_idx, frame);
  1656. if (!fg->inputs[in_idx].send_finished) {
  1657. fg->inputs[in_idx].send_finished = 1;
  1658. tq_send_finish(fg->queue, in_idx);
  1659. // close the control stream when all actual inputs are done
  1660. if (atomic_fetch_add(&fg->nb_inputs_finished_send, 1) == fg->nb_inputs - 1)
  1661. tq_send_finish(fg->queue, fg->nb_inputs);
  1662. }
  1663. return 0;
  1664. }
  1665. static int dec_send_to_dst(Scheduler *sch, const SchedulerNode dst,
  1666. uint8_t *dst_finished, AVFrame *frame)
  1667. {
  1668. int ret;
  1669. if (*dst_finished)
  1670. return AVERROR_EOF;
  1671. if (!frame)
  1672. goto finish;
  1673. ret = (dst.type == SCH_NODE_TYPE_FILTER_IN) ?
  1674. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame) :
  1675. send_to_enc(sch, &sch->enc[dst.idx], frame);
  1676. if (ret == AVERROR_EOF)
  1677. goto finish;
  1678. return ret;
  1679. finish:
  1680. if (dst.type == SCH_NODE_TYPE_FILTER_IN)
  1681. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
  1682. else
  1683. send_to_enc(sch, &sch->enc[dst.idx], NULL);
  1684. *dst_finished = 1;
  1685. return AVERROR_EOF;
  1686. }
  1687. int sch_dec_send(Scheduler *sch, unsigned dec_idx,
  1688. unsigned out_idx, AVFrame *frame)
  1689. {
  1690. SchDec *dec;
  1691. SchDecOutput *o;
  1692. int ret;
  1693. unsigned nb_done = 0;
  1694. av_assert0(dec_idx < sch->nb_dec);
  1695. dec = &sch->dec[dec_idx];
  1696. av_assert0(out_idx < dec->nb_outputs);
  1697. o = &dec->outputs[out_idx];
  1698. for (unsigned i = 0; i < o->nb_dst; i++) {
  1699. uint8_t *finished = &o->dst_finished[i];
  1700. AVFrame *to_send = frame;
  1701. // sending a frame consumes it, so make a temporary reference if needed
  1702. if (i < o->nb_dst - 1) {
  1703. to_send = dec->send_frame;
  1704. // frame may sometimes contain props only,
  1705. // e.g. to signal EOF timestamp
  1706. ret = frame->buf[0] ? av_frame_ref(to_send, frame) :
  1707. av_frame_copy_props(to_send, frame);
  1708. if (ret < 0)
  1709. return ret;
  1710. }
  1711. ret = dec_send_to_dst(sch, o->dst[i], finished, to_send);
  1712. if (ret < 0) {
  1713. av_frame_unref(to_send);
  1714. if (ret == AVERROR_EOF) {
  1715. nb_done++;
  1716. continue;
  1717. }
  1718. return ret;
  1719. }
  1720. }
  1721. return (nb_done == o->nb_dst) ? AVERROR_EOF : 0;
  1722. }
  1723. static int dec_done(Scheduler *sch, unsigned dec_idx)
  1724. {
  1725. SchDec *dec = &sch->dec[dec_idx];
  1726. int ret = 0;
  1727. tq_receive_finish(dec->queue, 0);
  1728. // make sure our source does not get stuck waiting for end timestamps
  1729. // that will never arrive
  1730. if (dec->queue_end_ts)
  1731. av_thread_message_queue_set_err_recv(dec->queue_end_ts, AVERROR_EOF);
  1732. for (unsigned i = 0; i < dec->nb_outputs; i++) {
  1733. SchDecOutput *o = &dec->outputs[i];
  1734. for (unsigned j = 0; j < o->nb_dst; j++) {
  1735. int err = dec_send_to_dst(sch, o->dst[j], &o->dst_finished[j], NULL);
  1736. if (err < 0 && err != AVERROR_EOF)
  1737. ret = err_merge(ret, err);
  1738. }
  1739. }
  1740. return ret;
  1741. }
  1742. int sch_enc_receive(Scheduler *sch, unsigned enc_idx, AVFrame *frame)
  1743. {
  1744. SchEnc *enc;
  1745. int ret, dummy;
  1746. av_assert0(enc_idx < sch->nb_enc);
  1747. enc = &sch->enc[enc_idx];
  1748. ret = tq_receive(enc->queue, &dummy, frame);
  1749. av_assert0(dummy <= 0);
  1750. return ret;
  1751. }
  1752. static int enc_send_to_dst(Scheduler *sch, const SchedulerNode dst,
  1753. uint8_t *dst_finished, AVPacket *pkt)
  1754. {
  1755. int ret;
  1756. if (*dst_finished)
  1757. return AVERROR_EOF;
  1758. if (!pkt)
  1759. goto finish;
  1760. ret = (dst.type == SCH_NODE_TYPE_MUX) ?
  1761. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
  1762. tq_send(sch->dec[dst.idx].queue, 0, pkt);
  1763. if (ret == AVERROR_EOF)
  1764. goto finish;
  1765. return ret;
  1766. finish:
  1767. if (dst.type == SCH_NODE_TYPE_MUX)
  1768. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
  1769. else
  1770. tq_send_finish(sch->dec[dst.idx].queue, 0);
  1771. *dst_finished = 1;
  1772. return AVERROR_EOF;
  1773. }
  1774. int sch_enc_send(Scheduler *sch, unsigned enc_idx, AVPacket *pkt)
  1775. {
  1776. SchEnc *enc;
  1777. int ret;
  1778. av_assert0(enc_idx < sch->nb_enc);
  1779. enc = &sch->enc[enc_idx];
  1780. for (unsigned i = 0; i < enc->nb_dst; i++) {
  1781. uint8_t *finished = &enc->dst_finished[i];
  1782. AVPacket *to_send = pkt;
  1783. // sending a packet consumes it, so make a temporary reference if needed
  1784. if (i < enc->nb_dst - 1) {
  1785. to_send = enc->send_pkt;
  1786. ret = av_packet_ref(to_send, pkt);
  1787. if (ret < 0)
  1788. return ret;
  1789. }
  1790. ret = enc_send_to_dst(sch, enc->dst[i], finished, to_send);
  1791. if (ret < 0) {
  1792. av_packet_unref(to_send);
  1793. if (ret == AVERROR_EOF)
  1794. continue;
  1795. return ret;
  1796. }
  1797. }
  1798. return 0;
  1799. }
  1800. static int enc_done(Scheduler *sch, unsigned enc_idx)
  1801. {
  1802. SchEnc *enc = &sch->enc[enc_idx];
  1803. int ret = 0;
  1804. tq_receive_finish(enc->queue, 0);
  1805. for (unsigned i = 0; i < enc->nb_dst; i++) {
  1806. int err = enc_send_to_dst(sch, enc->dst[i], &enc->dst_finished[i], NULL);
  1807. if (err < 0 && err != AVERROR_EOF)
  1808. ret = err_merge(ret, err);
  1809. }
  1810. return ret;
  1811. }
  1812. int sch_filter_receive(Scheduler *sch, unsigned fg_idx,
  1813. unsigned *in_idx, AVFrame *frame)
  1814. {
  1815. SchFilterGraph *fg;
  1816. av_assert0(fg_idx < sch->nb_filters);
  1817. fg = &sch->filters[fg_idx];
  1818. av_assert0(*in_idx <= fg->nb_inputs);
  1819. // update scheduling to account for desired input stream, if it changed
  1820. //
  1821. // this check needs no locking because only the filtering thread
  1822. // updates this value
  1823. if (*in_idx != fg->best_input) {
  1824. pthread_mutex_lock(&sch->schedule_lock);
  1825. fg->best_input = *in_idx;
  1826. schedule_update_locked(sch);
  1827. pthread_mutex_unlock(&sch->schedule_lock);
  1828. }
  1829. if (*in_idx == fg->nb_inputs) {
  1830. int terminate = waiter_wait(sch, &fg->waiter);
  1831. return terminate ? AVERROR_EOF : AVERROR(EAGAIN);
  1832. }
  1833. while (1) {
  1834. int ret, idx;
  1835. ret = tq_receive(fg->queue, &idx, frame);
  1836. if (idx < 0)
  1837. return AVERROR_EOF;
  1838. else if (ret >= 0) {
  1839. *in_idx = idx;
  1840. return 0;
  1841. }
  1842. // disregard EOFs for specific streams - they should always be
  1843. // preceded by an EOF frame
  1844. }
  1845. }
  1846. void sch_filter_receive_finish(Scheduler *sch, unsigned fg_idx, unsigned in_idx)
  1847. {
  1848. SchFilterGraph *fg;
  1849. SchFilterIn *fi;
  1850. av_assert0(fg_idx < sch->nb_filters);
  1851. fg = &sch->filters[fg_idx];
  1852. av_assert0(in_idx < fg->nb_inputs);
  1853. fi = &fg->inputs[in_idx];
  1854. if (!fi->receive_finished) {
  1855. fi->receive_finished = 1;
  1856. tq_receive_finish(fg->queue, in_idx);
  1857. // close the control stream when all actual inputs are done
  1858. if (++fg->nb_inputs_finished_receive == fg->nb_inputs)
  1859. tq_receive_finish(fg->queue, fg->nb_inputs);
  1860. }
  1861. }
  1862. int sch_filter_send(Scheduler *sch, unsigned fg_idx, unsigned out_idx, AVFrame *frame)
  1863. {
  1864. SchFilterGraph *fg;
  1865. SchedulerNode dst;
  1866. av_assert0(fg_idx < sch->nb_filters);
  1867. fg = &sch->filters[fg_idx];
  1868. av_assert0(out_idx < fg->nb_outputs);
  1869. dst = fg->outputs[out_idx].dst;
  1870. return (dst.type == SCH_NODE_TYPE_ENC) ?
  1871. send_to_enc (sch, &sch->enc[dst.idx], frame) :
  1872. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame);
  1873. }
  1874. static int filter_done(Scheduler *sch, unsigned fg_idx)
  1875. {
  1876. SchFilterGraph *fg = &sch->filters[fg_idx];
  1877. int ret = 0;
  1878. for (unsigned i = 0; i <= fg->nb_inputs; i++)
  1879. tq_receive_finish(fg->queue, i);
  1880. for (unsigned i = 0; i < fg->nb_outputs; i++) {
  1881. SchedulerNode dst = fg->outputs[i].dst;
  1882. int err = (dst.type == SCH_NODE_TYPE_ENC) ?
  1883. send_to_enc (sch, &sch->enc[dst.idx], NULL) :
  1884. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
  1885. if (err < 0 && err != AVERROR_EOF)
  1886. ret = err_merge(ret, err);
  1887. }
  1888. pthread_mutex_lock(&sch->schedule_lock);
  1889. fg->task_exited = 1;
  1890. schedule_update_locked(sch);
  1891. pthread_mutex_unlock(&sch->schedule_lock);
  1892. return ret;
  1893. }
  1894. int sch_filter_command(Scheduler *sch, unsigned fg_idx, AVFrame *frame)
  1895. {
  1896. SchFilterGraph *fg;
  1897. av_assert0(fg_idx < sch->nb_filters);
  1898. fg = &sch->filters[fg_idx];
  1899. return send_to_filter(sch, fg, fg->nb_inputs, frame);
  1900. }
  1901. static int task_cleanup(Scheduler *sch, SchedulerNode node)
  1902. {
  1903. switch (node.type) {
  1904. case SCH_NODE_TYPE_DEMUX: return demux_done (sch, node.idx);
  1905. case SCH_NODE_TYPE_MUX: return mux_done (sch, node.idx);
  1906. case SCH_NODE_TYPE_DEC: return dec_done (sch, node.idx);
  1907. case SCH_NODE_TYPE_ENC: return enc_done (sch, node.idx);
  1908. case SCH_NODE_TYPE_FILTER_IN: return filter_done(sch, node.idx);
  1909. default: av_assert0(0);
  1910. }
  1911. }
  1912. static void *task_wrapper(void *arg)
  1913. {
  1914. SchTask *task = arg;
  1915. Scheduler *sch = task->parent;
  1916. int ret;
  1917. int err = 0;
  1918. ret = task->func(task->func_arg);
  1919. if (ret < 0)
  1920. av_log(task->func_arg, AV_LOG_ERROR,
  1921. "Task finished with error code: %d (%s)\n", ret, av_err2str(ret));
  1922. err = task_cleanup(sch, task->node);
  1923. ret = err_merge(ret, err);
  1924. // EOF is considered normal termination
  1925. if (ret == AVERROR_EOF)
  1926. ret = 0;
  1927. if (ret < 0)
  1928. atomic_store(&sch->task_failed, 1);
  1929. av_log(task->func_arg, ret < 0 ? AV_LOG_ERROR : AV_LOG_VERBOSE,
  1930. "Terminating thread with return code %d (%s)\n", ret,
  1931. ret < 0 ? av_err2str(ret) : "success");
  1932. return (void*)(intptr_t)ret;
  1933. }
  1934. static int task_stop(Scheduler *sch, SchTask *task)
  1935. {
  1936. int ret;
  1937. void *thread_ret;
  1938. if (!task->thread_running)
  1939. return task_cleanup(sch, task->node);
  1940. ret = pthread_join(task->thread, &thread_ret);
  1941. av_assert0(ret == 0);
  1942. task->thread_running = 0;
  1943. return (intptr_t)thread_ret;
  1944. }
  1945. int sch_stop(Scheduler *sch, int64_t *finish_ts)
  1946. {
  1947. int ret = 0, err;
  1948. if (sch->state != SCH_STATE_STARTED)
  1949. return 0;
  1950. atomic_store(&sch->terminate, 1);
  1951. for (unsigned type = 0; type < 2; type++)
  1952. for (unsigned i = 0; i < (type ? sch->nb_demux : sch->nb_filters); i++) {
  1953. SchWaiter *w = type ? &sch->demux[i].waiter : &sch->filters[i].waiter;
  1954. waiter_set(w, 1);
  1955. }
  1956. for (unsigned i = 0; i < sch->nb_demux; i++) {
  1957. SchDemux *d = &sch->demux[i];
  1958. err = task_stop(sch, &d->task);
  1959. ret = err_merge(ret, err);
  1960. }
  1961. for (unsigned i = 0; i < sch->nb_dec; i++) {
  1962. SchDec *dec = &sch->dec[i];
  1963. err = task_stop(sch, &dec->task);
  1964. ret = err_merge(ret, err);
  1965. }
  1966. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1967. SchFilterGraph *fg = &sch->filters[i];
  1968. err = task_stop(sch, &fg->task);
  1969. ret = err_merge(ret, err);
  1970. }
  1971. for (unsigned i = 0; i < sch->nb_enc; i++) {
  1972. SchEnc *enc = &sch->enc[i];
  1973. err = task_stop(sch, &enc->task);
  1974. ret = err_merge(ret, err);
  1975. }
  1976. for (unsigned i = 0; i < sch->nb_mux; i++) {
  1977. SchMux *mux = &sch->mux[i];
  1978. err = task_stop(sch, &mux->task);
  1979. ret = err_merge(ret, err);
  1980. }
  1981. if (finish_ts)
  1982. *finish_ts = trailing_dts(sch, 1);
  1983. sch->state = SCH_STATE_STOPPED;
  1984. return ret;
  1985. }