123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- /*
- * FFT/IFFT transforms
- * AltiVec-enabled
- * Copyright (c) 2009 Loren Merritt
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- #include "libavcodec/fft.h"
- #include "util_altivec.h"
- #include "types_altivec.h"
- /**
- * Do a complex FFT with the parameters defined in ff_fft_init(). The
- * input data must be permuted before with s->revtab table. No
- * 1.0/sqrt(n) normalization is done.
- * AltiVec-enabled
- * This code assumes that the 'z' pointer is 16 bytes-aligned
- * It also assumes all FFTComplex are 8 bytes-aligned pair of float
- */
- void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
- void ff_fft_calc_interleave_altivec(FFTContext *s, FFTComplex *z);
- #if HAVE_GNU_AS
- static void ff_imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
- {
- int j, k;
- int n = 1 << s->mdct_bits;
- int n4 = n >> 2;
- int n8 = n >> 3;
- int n32 = n >> 5;
- const uint16_t *revtabj = s->revtab;
- const uint16_t *revtabk = s->revtab+n4;
- const vec_f *tcos = (const vec_f*)(s->tcos+n8);
- const vec_f *tsin = (const vec_f*)(s->tsin+n8);
- const vec_f *pin = (const vec_f*)(input+n4);
- vec_f *pout = (vec_f*)(output+n4);
- /* pre rotation */
- k = n32-1;
- do {
- vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
- #define CMULA(p,o0,o1,o2,o3)\
- a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
- b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
- re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
- im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
- cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
- sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
- r##p = im*cos - re*sin;\
- i##p = re*cos + im*sin;
- #define STORE2(v,dst)\
- j = dst;\
- vec_ste(v, 0, output+j*2);\
- vec_ste(v, 4, output+j*2);
- #define STORE8(p)\
- a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
- b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
- c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
- d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
- STORE2(a, revtabk[ p*2-4]);\
- STORE2(b, revtabk[ p*2-3]);\
- STORE2(c, revtabj[-p*2+2]);\
- STORE2(d, revtabj[-p*2+3]);
- cos0 = tcos[k];
- sin0 = tsin[k];
- cos1 = tcos[-k-1];
- sin1 = tsin[-k-1];
- CMULA(0, 0,1,2,3);
- CMULA(1, 2,3,0,1);
- STORE8(0);
- STORE8(1);
- revtabj += 4;
- revtabk -= 4;
- k--;
- } while(k >= 0);
- ff_fft_calc_altivec(s, (FFTComplex*)output);
- /* post rotation + reordering */
- j = -n32;
- k = n32-1;
- do {
- vec_f cos,sin,re,im,a,b,c,d;
- #define CMULB(d0,d1,o)\
- re = pout[o*2];\
- im = pout[o*2+1];\
- cos = tcos[o];\
- sin = tsin[o];\
- d0 = im*sin - re*cos;\
- d1 = re*sin + im*cos;
- CMULB(a,b,j);
- CMULB(c,d,k);
- pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
- pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
- pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
- pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
- j++;
- k--;
- } while(k >= 0);
- }
- static void ff_imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
- {
- int k;
- int n = 1 << s->mdct_bits;
- int n4 = n >> 2;
- int n16 = n >> 4;
- vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
- vec_u32 *p0 = (vec_u32*)(output+n4);
- vec_u32 *p1 = (vec_u32*)(output+n4*3);
- ff_imdct_half_altivec(s, output+n4, input);
- for (k = 0; k < n16; k++) {
- vec_u32 a = p0[k] ^ sign;
- vec_u32 b = p1[-k-1];
- p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
- p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
- }
- }
- #endif /* HAVE_GNU_AS */
- av_cold void ff_fft_init_altivec(FFTContext *s)
- {
- #if HAVE_GNU_AS
- s->fft_calc = ff_fft_calc_interleave_altivec;
- if (s->mdct_bits >= 5) {
- s->imdct_calc = ff_imdct_calc_altivec;
- s->imdct_half = ff_imdct_half_altivec;
- }
- #endif
- }
|