fft_altivec.c 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. /*
  2. * FFT/IFFT transforms
  3. * AltiVec-enabled
  4. * Copyright (c) 2009 Loren Merritt
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavcodec/fft.h"
  23. #include "util_altivec.h"
  24. #include "types_altivec.h"
  25. /**
  26. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  27. * input data must be permuted before with s->revtab table. No
  28. * 1.0/sqrt(n) normalization is done.
  29. * AltiVec-enabled
  30. * This code assumes that the 'z' pointer is 16 bytes-aligned
  31. * It also assumes all FFTComplex are 8 bytes-aligned pair of float
  32. */
  33. void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
  34. void ff_fft_calc_interleave_altivec(FFTContext *s, FFTComplex *z);
  35. #if HAVE_GNU_AS
  36. static void ff_imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  37. {
  38. int j, k;
  39. int n = 1 << s->mdct_bits;
  40. int n4 = n >> 2;
  41. int n8 = n >> 3;
  42. int n32 = n >> 5;
  43. const uint16_t *revtabj = s->revtab;
  44. const uint16_t *revtabk = s->revtab+n4;
  45. const vec_f *tcos = (const vec_f*)(s->tcos+n8);
  46. const vec_f *tsin = (const vec_f*)(s->tsin+n8);
  47. const vec_f *pin = (const vec_f*)(input+n4);
  48. vec_f *pout = (vec_f*)(output+n4);
  49. /* pre rotation */
  50. k = n32-1;
  51. do {
  52. vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
  53. #define CMULA(p,o0,o1,o2,o3)\
  54. a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
  55. b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
  56. re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
  57. im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
  58. cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
  59. sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
  60. r##p = im*cos - re*sin;\
  61. i##p = re*cos + im*sin;
  62. #define STORE2(v,dst)\
  63. j = dst;\
  64. vec_ste(v, 0, output+j*2);\
  65. vec_ste(v, 4, output+j*2);
  66. #define STORE8(p)\
  67. a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
  68. b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
  69. c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
  70. d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
  71. STORE2(a, revtabk[ p*2-4]);\
  72. STORE2(b, revtabk[ p*2-3]);\
  73. STORE2(c, revtabj[-p*2+2]);\
  74. STORE2(d, revtabj[-p*2+3]);
  75. cos0 = tcos[k];
  76. sin0 = tsin[k];
  77. cos1 = tcos[-k-1];
  78. sin1 = tsin[-k-1];
  79. CMULA(0, 0,1,2,3);
  80. CMULA(1, 2,3,0,1);
  81. STORE8(0);
  82. STORE8(1);
  83. revtabj += 4;
  84. revtabk -= 4;
  85. k--;
  86. } while(k >= 0);
  87. ff_fft_calc_altivec(s, (FFTComplex*)output);
  88. /* post rotation + reordering */
  89. j = -n32;
  90. k = n32-1;
  91. do {
  92. vec_f cos,sin,re,im,a,b,c,d;
  93. #define CMULB(d0,d1,o)\
  94. re = pout[o*2];\
  95. im = pout[o*2+1];\
  96. cos = tcos[o];\
  97. sin = tsin[o];\
  98. d0 = im*sin - re*cos;\
  99. d1 = re*sin + im*cos;
  100. CMULB(a,b,j);
  101. CMULB(c,d,k);
  102. pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
  103. pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
  104. pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
  105. pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
  106. j++;
  107. k--;
  108. } while(k >= 0);
  109. }
  110. static void ff_imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  111. {
  112. int k;
  113. int n = 1 << s->mdct_bits;
  114. int n4 = n >> 2;
  115. int n16 = n >> 4;
  116. vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
  117. vec_u32 *p0 = (vec_u32*)(output+n4);
  118. vec_u32 *p1 = (vec_u32*)(output+n4*3);
  119. ff_imdct_half_altivec(s, output+n4, input);
  120. for (k = 0; k < n16; k++) {
  121. vec_u32 a = p0[k] ^ sign;
  122. vec_u32 b = p1[-k-1];
  123. p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
  124. p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
  125. }
  126. }
  127. #endif /* HAVE_GNU_AS */
  128. av_cold void ff_fft_init_altivec(FFTContext *s)
  129. {
  130. #if HAVE_GNU_AS
  131. s->fft_calc = ff_fft_calc_interleave_altivec;
  132. if (s->mdct_bits >= 5) {
  133. s->imdct_calc = ff_imdct_calc_altivec;
  134. s->imdct_half = ff_imdct_half_altivec;
  135. }
  136. #endif
  137. }