vc1dec.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427
  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. static const uint16_t vlc_offs[] = {
  47. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  48. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  49. 9262, 10202, 10756, 11310, 12228, 15078
  50. };
  51. /**
  52. * Init VC-1 specific tables and VC1Context members
  53. * @param v The VC1Context to initialize
  54. * @return Status
  55. */
  56. static int vc1_init_common(VC1Context *v)
  57. {
  58. static int done = 0;
  59. int i = 0;
  60. static VLC_TYPE vlc_table[15078][2];
  61. v->hrd_rate = v->hrd_buffer = NULL;
  62. /* VLC tables */
  63. if(!done)
  64. {
  65. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  66. ff_vc1_bfraction_bits, 1, 1,
  67. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  68. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  69. ff_vc1_norm2_bits, 1, 1,
  70. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  71. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  72. ff_vc1_norm6_bits, 1, 1,
  73. ff_vc1_norm6_codes, 2, 2, 556);
  74. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  75. ff_vc1_imode_bits, 1, 1,
  76. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  77. for (i=0; i<3; i++)
  78. {
  79. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  80. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  81. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  82. ff_vc1_ttmb_bits[i], 1, 1,
  83. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  84. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  85. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  86. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  87. ff_vc1_ttblk_bits[i], 1, 1,
  88. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  89. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  90. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  91. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  92. ff_vc1_subblkpat_bits[i], 1, 1,
  93. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  94. }
  95. for(i=0; i<4; i++)
  96. {
  97. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  98. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  99. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  100. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  101. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  102. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  103. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  104. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  105. ff_vc1_cbpcy_p_bits[i], 1, 1,
  106. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  107. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  108. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  109. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  110. ff_vc1_mv_diff_bits[i], 1, 1,
  111. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. for(i=0; i<8; i++){
  114. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  115. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  116. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  117. &vc1_ac_tables[i][0][1], 8, 4,
  118. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  119. }
  120. done = 1;
  121. }
  122. /* Other defaults */
  123. v->pq = -1;
  124. v->mvrange = 0; /* 7.1.1.18, p80 */
  125. return 0;
  126. }
  127. /***********************************************************************/
  128. /**
  129. * @defgroup vc1bitplane VC-1 Bitplane decoding
  130. * @see 8.7, p56
  131. * @{
  132. */
  133. /**
  134. * Imode types
  135. * @{
  136. */
  137. enum Imode {
  138. IMODE_RAW,
  139. IMODE_NORM2,
  140. IMODE_DIFF2,
  141. IMODE_NORM6,
  142. IMODE_DIFF6,
  143. IMODE_ROWSKIP,
  144. IMODE_COLSKIP
  145. };
  146. /** @} */ //imode defines
  147. /** @} */ //Bitplane group
  148. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  149. {
  150. MpegEncContext *s = &v->s;
  151. int j;
  152. if (!s->first_slice_line) {
  153. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  154. if (s->mb_x)
  155. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
  156. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
  157. for(j = 0; j < 2; j++){
  158. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  159. if (s->mb_x)
  160. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
  161. }
  162. }
  163. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  164. if (s->mb_y == s->mb_height-1) {
  165. if (s->mb_x) {
  166. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  167. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  168. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  169. }
  170. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  171. }
  172. }
  173. /** Put block onto picture
  174. */
  175. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  176. {
  177. uint8_t *Y;
  178. int ys, us, vs;
  179. DSPContext *dsp = &v->s.dsp;
  180. if(v->rangeredfrm) {
  181. int i, j, k;
  182. for(k = 0; k < 6; k++)
  183. for(j = 0; j < 8; j++)
  184. for(i = 0; i < 8; i++)
  185. block[k][i + j*8] = (block[k][i + j*8] - 64) << 1;
  186. }
  187. ys = v->s.current_picture.linesize[0];
  188. us = v->s.current_picture.linesize[1];
  189. vs = v->s.current_picture.linesize[2];
  190. Y = v->s.dest[0];
  191. dsp->put_pixels_clamped(block[0], Y, ys);
  192. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  193. Y += ys * 8;
  194. dsp->put_pixels_clamped(block[2], Y, ys);
  195. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  196. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  197. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  198. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  199. }
  200. }
  201. /** Do motion compensation over 1 macroblock
  202. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  203. */
  204. static void vc1_mc_1mv(VC1Context *v, int dir)
  205. {
  206. MpegEncContext *s = &v->s;
  207. DSPContext *dsp = &v->s.dsp;
  208. uint8_t *srcY, *srcU, *srcV;
  209. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  210. if(!v->s.last_picture.data[0])return;
  211. mx = s->mv[dir][0][0];
  212. my = s->mv[dir][0][1];
  213. // store motion vectors for further use in B frames
  214. if(s->pict_type == FF_P_TYPE) {
  215. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  216. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  217. }
  218. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  219. uvmy = (my + ((my & 3) == 3)) >> 1;
  220. if(v->fastuvmc) {
  221. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  222. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  223. }
  224. if(!dir) {
  225. srcY = s->last_picture.data[0];
  226. srcU = s->last_picture.data[1];
  227. srcV = s->last_picture.data[2];
  228. } else {
  229. srcY = s->next_picture.data[0];
  230. srcU = s->next_picture.data[1];
  231. srcV = s->next_picture.data[2];
  232. }
  233. src_x = s->mb_x * 16 + (mx >> 2);
  234. src_y = s->mb_y * 16 + (my >> 2);
  235. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  236. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  237. if(v->profile != PROFILE_ADVANCED){
  238. src_x = av_clip( src_x, -16, s->mb_width * 16);
  239. src_y = av_clip( src_y, -16, s->mb_height * 16);
  240. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  241. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  242. }else{
  243. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  244. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  245. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  246. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  247. }
  248. srcY += src_y * s->linesize + src_x;
  249. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  250. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  251. /* for grayscale we should not try to read from unknown area */
  252. if(s->flags & CODEC_FLAG_GRAY) {
  253. srcU = s->edge_emu_buffer + 18 * s->linesize;
  254. srcV = s->edge_emu_buffer + 18 * s->linesize;
  255. }
  256. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  257. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  258. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  259. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  260. srcY -= s->mspel * (1 + s->linesize);
  261. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  262. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  263. srcY = s->edge_emu_buffer;
  264. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  265. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  266. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  267. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  268. srcU = uvbuf;
  269. srcV = uvbuf + 16;
  270. /* if we deal with range reduction we need to scale source blocks */
  271. if(v->rangeredfrm) {
  272. int i, j;
  273. uint8_t *src, *src2;
  274. src = srcY;
  275. for(j = 0; j < 17 + s->mspel*2; j++) {
  276. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  277. src += s->linesize;
  278. }
  279. src = srcU; src2 = srcV;
  280. for(j = 0; j < 9; j++) {
  281. for(i = 0; i < 9; i++) {
  282. src[i] = ((src[i] - 128) >> 1) + 128;
  283. src2[i] = ((src2[i] - 128) >> 1) + 128;
  284. }
  285. src += s->uvlinesize;
  286. src2 += s->uvlinesize;
  287. }
  288. }
  289. /* if we deal with intensity compensation we need to scale source blocks */
  290. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  291. int i, j;
  292. uint8_t *src, *src2;
  293. src = srcY;
  294. for(j = 0; j < 17 + s->mspel*2; j++) {
  295. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  296. src += s->linesize;
  297. }
  298. src = srcU; src2 = srcV;
  299. for(j = 0; j < 9; j++) {
  300. for(i = 0; i < 9; i++) {
  301. src[i] = v->lutuv[src[i]];
  302. src2[i] = v->lutuv[src2[i]];
  303. }
  304. src += s->uvlinesize;
  305. src2 += s->uvlinesize;
  306. }
  307. }
  308. srcY += s->mspel * (1 + s->linesize);
  309. }
  310. if(s->mspel) {
  311. dxy = ((my & 3) << 2) | (mx & 3);
  312. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  313. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  314. srcY += s->linesize * 8;
  315. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  316. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  317. } else { // hpel mc - always used for luma
  318. dxy = (my & 2) | ((mx & 2) >> 1);
  319. if(!v->rnd)
  320. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  321. else
  322. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  323. }
  324. if(s->flags & CODEC_FLAG_GRAY) return;
  325. /* Chroma MC always uses qpel bilinear */
  326. uvmx = (uvmx&3)<<1;
  327. uvmy = (uvmy&3)<<1;
  328. if(!v->rnd){
  329. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  330. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  331. }else{
  332. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  333. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  334. }
  335. }
  336. /** Do motion compensation for 4-MV macroblock - luminance block
  337. */
  338. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  339. {
  340. MpegEncContext *s = &v->s;
  341. DSPContext *dsp = &v->s.dsp;
  342. uint8_t *srcY;
  343. int dxy, mx, my, src_x, src_y;
  344. int off;
  345. if(!v->s.last_picture.data[0])return;
  346. mx = s->mv[0][n][0];
  347. my = s->mv[0][n][1];
  348. srcY = s->last_picture.data[0];
  349. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  350. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  351. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  352. if(v->profile != PROFILE_ADVANCED){
  353. src_x = av_clip( src_x, -16, s->mb_width * 16);
  354. src_y = av_clip( src_y, -16, s->mb_height * 16);
  355. }else{
  356. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  357. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  358. }
  359. srcY += src_y * s->linesize + src_x;
  360. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  361. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  362. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  363. srcY -= s->mspel * (1 + s->linesize);
  364. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  365. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  366. srcY = s->edge_emu_buffer;
  367. /* if we deal with range reduction we need to scale source blocks */
  368. if(v->rangeredfrm) {
  369. int i, j;
  370. uint8_t *src;
  371. src = srcY;
  372. for(j = 0; j < 9 + s->mspel*2; j++) {
  373. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  374. src += s->linesize;
  375. }
  376. }
  377. /* if we deal with intensity compensation we need to scale source blocks */
  378. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  379. int i, j;
  380. uint8_t *src;
  381. src = srcY;
  382. for(j = 0; j < 9 + s->mspel*2; j++) {
  383. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  384. src += s->linesize;
  385. }
  386. }
  387. srcY += s->mspel * (1 + s->linesize);
  388. }
  389. if(s->mspel) {
  390. dxy = ((my & 3) << 2) | (mx & 3);
  391. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  392. } else { // hpel mc - always used for luma
  393. dxy = (my & 2) | ((mx & 2) >> 1);
  394. if(!v->rnd)
  395. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  396. else
  397. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  398. }
  399. }
  400. static inline int median4(int a, int b, int c, int d)
  401. {
  402. if(a < b) {
  403. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  404. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  405. } else {
  406. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  407. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  408. }
  409. }
  410. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  411. */
  412. static void vc1_mc_4mv_chroma(VC1Context *v)
  413. {
  414. MpegEncContext *s = &v->s;
  415. DSPContext *dsp = &v->s.dsp;
  416. uint8_t *srcU, *srcV;
  417. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  418. int i, idx, tx = 0, ty = 0;
  419. int mvx[4], mvy[4], intra[4];
  420. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  421. if(!v->s.last_picture.data[0])return;
  422. if(s->flags & CODEC_FLAG_GRAY) return;
  423. for(i = 0; i < 4; i++) {
  424. mvx[i] = s->mv[0][i][0];
  425. mvy[i] = s->mv[0][i][1];
  426. intra[i] = v->mb_type[0][s->block_index[i]];
  427. }
  428. /* calculate chroma MV vector from four luma MVs */
  429. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  430. if(!idx) { // all blocks are inter
  431. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  432. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  433. } else if(count[idx] == 1) { // 3 inter blocks
  434. switch(idx) {
  435. case 0x1:
  436. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  437. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  438. break;
  439. case 0x2:
  440. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  441. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  442. break;
  443. case 0x4:
  444. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  445. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  446. break;
  447. case 0x8:
  448. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  449. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  450. break;
  451. }
  452. } else if(count[idx] == 2) {
  453. int t1 = 0, t2 = 0;
  454. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  455. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  456. tx = (mvx[t1] + mvx[t2]) / 2;
  457. ty = (mvy[t1] + mvy[t2]) / 2;
  458. } else {
  459. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  460. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  461. return; //no need to do MC for inter blocks
  462. }
  463. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  464. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  465. uvmx = (tx + ((tx&3) == 3)) >> 1;
  466. uvmy = (ty + ((ty&3) == 3)) >> 1;
  467. if(v->fastuvmc) {
  468. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  469. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  470. }
  471. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  472. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  473. if(v->profile != PROFILE_ADVANCED){
  474. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  475. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  476. }else{
  477. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  478. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  479. }
  480. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  481. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  482. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  483. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  484. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  485. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  486. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  487. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  488. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  489. srcU = s->edge_emu_buffer;
  490. srcV = s->edge_emu_buffer + 16;
  491. /* if we deal with range reduction we need to scale source blocks */
  492. if(v->rangeredfrm) {
  493. int i, j;
  494. uint8_t *src, *src2;
  495. src = srcU; src2 = srcV;
  496. for(j = 0; j < 9; j++) {
  497. for(i = 0; i < 9; i++) {
  498. src[i] = ((src[i] - 128) >> 1) + 128;
  499. src2[i] = ((src2[i] - 128) >> 1) + 128;
  500. }
  501. src += s->uvlinesize;
  502. src2 += s->uvlinesize;
  503. }
  504. }
  505. /* if we deal with intensity compensation we need to scale source blocks */
  506. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  507. int i, j;
  508. uint8_t *src, *src2;
  509. src = srcU; src2 = srcV;
  510. for(j = 0; j < 9; j++) {
  511. for(i = 0; i < 9; i++) {
  512. src[i] = v->lutuv[src[i]];
  513. src2[i] = v->lutuv[src2[i]];
  514. }
  515. src += s->uvlinesize;
  516. src2 += s->uvlinesize;
  517. }
  518. }
  519. }
  520. /* Chroma MC always uses qpel bilinear */
  521. uvmx = (uvmx&3)<<1;
  522. uvmy = (uvmy&3)<<1;
  523. if(!v->rnd){
  524. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  525. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  526. }else{
  527. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  528. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  529. }
  530. }
  531. /***********************************************************************/
  532. /**
  533. * @defgroup vc1block VC-1 Block-level functions
  534. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  535. * @{
  536. */
  537. /**
  538. * @def GET_MQUANT
  539. * @brief Get macroblock-level quantizer scale
  540. */
  541. #define GET_MQUANT() \
  542. if (v->dquantfrm) \
  543. { \
  544. int edges = 0; \
  545. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  546. { \
  547. if (v->dqbilevel) \
  548. { \
  549. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  550. } \
  551. else \
  552. { \
  553. mqdiff = get_bits(gb, 3); \
  554. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  555. else mquant = get_bits(gb, 5); \
  556. } \
  557. } \
  558. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  559. edges = 1 << v->dqsbedge; \
  560. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  561. edges = (3 << v->dqsbedge) % 15; \
  562. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  563. edges = 15; \
  564. if((edges&1) && !s->mb_x) \
  565. mquant = v->altpq; \
  566. if((edges&2) && s->first_slice_line) \
  567. mquant = v->altpq; \
  568. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  569. mquant = v->altpq; \
  570. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  571. mquant = v->altpq; \
  572. }
  573. /**
  574. * @def GET_MVDATA(_dmv_x, _dmv_y)
  575. * @brief Get MV differentials
  576. * @see MVDATA decoding from 8.3.5.2, p(1)20
  577. * @param _dmv_x Horizontal differential for decoded MV
  578. * @param _dmv_y Vertical differential for decoded MV
  579. */
  580. #define GET_MVDATA(_dmv_x, _dmv_y) \
  581. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  582. VC1_MV_DIFF_VLC_BITS, 2); \
  583. if (index > 36) \
  584. { \
  585. mb_has_coeffs = 1; \
  586. index -= 37; \
  587. } \
  588. else mb_has_coeffs = 0; \
  589. s->mb_intra = 0; \
  590. if (!index) { _dmv_x = _dmv_y = 0; } \
  591. else if (index == 35) \
  592. { \
  593. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  594. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  595. } \
  596. else if (index == 36) \
  597. { \
  598. _dmv_x = 0; \
  599. _dmv_y = 0; \
  600. s->mb_intra = 1; \
  601. } \
  602. else \
  603. { \
  604. index1 = index%6; \
  605. if (!s->quarter_sample && index1 == 5) val = 1; \
  606. else val = 0; \
  607. if(size_table[index1] - val > 0) \
  608. val = get_bits(gb, size_table[index1] - val); \
  609. else val = 0; \
  610. sign = 0 - (val&1); \
  611. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  612. \
  613. index1 = index/6; \
  614. if (!s->quarter_sample && index1 == 5) val = 1; \
  615. else val = 0; \
  616. if(size_table[index1] - val > 0) \
  617. val = get_bits(gb, size_table[index1] - val); \
  618. else val = 0; \
  619. sign = 0 - (val&1); \
  620. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  621. }
  622. /** Predict and set motion vector
  623. */
  624. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  625. {
  626. int xy, wrap, off = 0;
  627. int16_t *A, *B, *C;
  628. int px, py;
  629. int sum;
  630. /* scale MV difference to be quad-pel */
  631. dmv_x <<= 1 - s->quarter_sample;
  632. dmv_y <<= 1 - s->quarter_sample;
  633. wrap = s->b8_stride;
  634. xy = s->block_index[n];
  635. if(s->mb_intra){
  636. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  637. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  638. s->current_picture.motion_val[1][xy][0] = 0;
  639. s->current_picture.motion_val[1][xy][1] = 0;
  640. if(mv1) { /* duplicate motion data for 1-MV block */
  641. s->current_picture.motion_val[0][xy + 1][0] = 0;
  642. s->current_picture.motion_val[0][xy + 1][1] = 0;
  643. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  644. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  645. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  646. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  647. s->current_picture.motion_val[1][xy + 1][0] = 0;
  648. s->current_picture.motion_val[1][xy + 1][1] = 0;
  649. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  650. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  651. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  652. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  653. }
  654. return;
  655. }
  656. C = s->current_picture.motion_val[0][xy - 1];
  657. A = s->current_picture.motion_val[0][xy - wrap];
  658. if(mv1)
  659. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  660. else {
  661. //in 4-MV mode different blocks have different B predictor position
  662. switch(n){
  663. case 0:
  664. off = (s->mb_x > 0) ? -1 : 1;
  665. break;
  666. case 1:
  667. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  668. break;
  669. case 2:
  670. off = 1;
  671. break;
  672. case 3:
  673. off = -1;
  674. }
  675. }
  676. B = s->current_picture.motion_val[0][xy - wrap + off];
  677. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  678. if(s->mb_width == 1) {
  679. px = A[0];
  680. py = A[1];
  681. } else {
  682. px = mid_pred(A[0], B[0], C[0]);
  683. py = mid_pred(A[1], B[1], C[1]);
  684. }
  685. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  686. px = C[0];
  687. py = C[1];
  688. } else {
  689. px = py = 0;
  690. }
  691. /* Pullback MV as specified in 8.3.5.3.4 */
  692. {
  693. int qx, qy, X, Y;
  694. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  695. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  696. X = (s->mb_width << 6) - 4;
  697. Y = (s->mb_height << 6) - 4;
  698. if(mv1) {
  699. if(qx + px < -60) px = -60 - qx;
  700. if(qy + py < -60) py = -60 - qy;
  701. } else {
  702. if(qx + px < -28) px = -28 - qx;
  703. if(qy + py < -28) py = -28 - qy;
  704. }
  705. if(qx + px > X) px = X - qx;
  706. if(qy + py > Y) py = Y - qy;
  707. }
  708. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  709. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  710. if(is_intra[xy - wrap])
  711. sum = FFABS(px) + FFABS(py);
  712. else
  713. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  714. if(sum > 32) {
  715. if(get_bits1(&s->gb)) {
  716. px = A[0];
  717. py = A[1];
  718. } else {
  719. px = C[0];
  720. py = C[1];
  721. }
  722. } else {
  723. if(is_intra[xy - 1])
  724. sum = FFABS(px) + FFABS(py);
  725. else
  726. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  727. if(sum > 32) {
  728. if(get_bits1(&s->gb)) {
  729. px = A[0];
  730. py = A[1];
  731. } else {
  732. px = C[0];
  733. py = C[1];
  734. }
  735. }
  736. }
  737. }
  738. /* store MV using signed modulus of MV range defined in 4.11 */
  739. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  740. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  741. if(mv1) { /* duplicate motion data for 1-MV block */
  742. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  743. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  744. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  745. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  746. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  747. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  748. }
  749. }
  750. /** Motion compensation for direct or interpolated blocks in B-frames
  751. */
  752. static void vc1_interp_mc(VC1Context *v)
  753. {
  754. MpegEncContext *s = &v->s;
  755. DSPContext *dsp = &v->s.dsp;
  756. uint8_t *srcY, *srcU, *srcV;
  757. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  758. if(!v->s.next_picture.data[0])return;
  759. mx = s->mv[1][0][0];
  760. my = s->mv[1][0][1];
  761. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  762. uvmy = (my + ((my & 3) == 3)) >> 1;
  763. if(v->fastuvmc) {
  764. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  765. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  766. }
  767. srcY = s->next_picture.data[0];
  768. srcU = s->next_picture.data[1];
  769. srcV = s->next_picture.data[2];
  770. src_x = s->mb_x * 16 + (mx >> 2);
  771. src_y = s->mb_y * 16 + (my >> 2);
  772. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  773. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  774. if(v->profile != PROFILE_ADVANCED){
  775. src_x = av_clip( src_x, -16, s->mb_width * 16);
  776. src_y = av_clip( src_y, -16, s->mb_height * 16);
  777. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  778. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  779. }else{
  780. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  781. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  782. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  783. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  784. }
  785. srcY += src_y * s->linesize + src_x;
  786. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  787. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  788. /* for grayscale we should not try to read from unknown area */
  789. if(s->flags & CODEC_FLAG_GRAY) {
  790. srcU = s->edge_emu_buffer + 18 * s->linesize;
  791. srcV = s->edge_emu_buffer + 18 * s->linesize;
  792. }
  793. if(v->rangeredfrm
  794. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  795. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  796. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  797. srcY -= s->mspel * (1 + s->linesize);
  798. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  799. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  800. srcY = s->edge_emu_buffer;
  801. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  802. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  803. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  804. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  805. srcU = uvbuf;
  806. srcV = uvbuf + 16;
  807. /* if we deal with range reduction we need to scale source blocks */
  808. if(v->rangeredfrm) {
  809. int i, j;
  810. uint8_t *src, *src2;
  811. src = srcY;
  812. for(j = 0; j < 17 + s->mspel*2; j++) {
  813. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  814. src += s->linesize;
  815. }
  816. src = srcU; src2 = srcV;
  817. for(j = 0; j < 9; j++) {
  818. for(i = 0; i < 9; i++) {
  819. src[i] = ((src[i] - 128) >> 1) + 128;
  820. src2[i] = ((src2[i] - 128) >> 1) + 128;
  821. }
  822. src += s->uvlinesize;
  823. src2 += s->uvlinesize;
  824. }
  825. }
  826. srcY += s->mspel * (1 + s->linesize);
  827. }
  828. if(s->mspel) {
  829. dxy = ((my & 3) << 2) | (mx & 3);
  830. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  831. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  832. srcY += s->linesize * 8;
  833. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  834. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  835. } else { // hpel mc
  836. dxy = (my & 2) | ((mx & 2) >> 1);
  837. if(!v->rnd)
  838. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  839. else
  840. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  841. }
  842. if(s->flags & CODEC_FLAG_GRAY) return;
  843. /* Chroma MC always uses qpel blilinear */
  844. uvmx = (uvmx&3)<<1;
  845. uvmy = (uvmy&3)<<1;
  846. if(!v->rnd){
  847. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  848. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  849. }else{
  850. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  851. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  852. }
  853. }
  854. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  855. {
  856. int n = bfrac;
  857. #if B_FRACTION_DEN==256
  858. if(inv)
  859. n -= 256;
  860. if(!qs)
  861. return 2 * ((value * n + 255) >> 9);
  862. return (value * n + 128) >> 8;
  863. #else
  864. if(inv)
  865. n -= B_FRACTION_DEN;
  866. if(!qs)
  867. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  868. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  869. #endif
  870. }
  871. /** Reconstruct motion vector for B-frame and do motion compensation
  872. */
  873. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  874. {
  875. if(v->use_ic) {
  876. v->mv_mode2 = v->mv_mode;
  877. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  878. }
  879. if(direct) {
  880. vc1_mc_1mv(v, 0);
  881. vc1_interp_mc(v);
  882. if(v->use_ic) v->mv_mode = v->mv_mode2;
  883. return;
  884. }
  885. if(mode == BMV_TYPE_INTERPOLATED) {
  886. vc1_mc_1mv(v, 0);
  887. vc1_interp_mc(v);
  888. if(v->use_ic) v->mv_mode = v->mv_mode2;
  889. return;
  890. }
  891. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  892. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  893. if(v->use_ic) v->mv_mode = v->mv_mode2;
  894. }
  895. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  896. {
  897. MpegEncContext *s = &v->s;
  898. int xy, wrap, off = 0;
  899. int16_t *A, *B, *C;
  900. int px, py;
  901. int sum;
  902. int r_x, r_y;
  903. const uint8_t *is_intra = v->mb_type[0];
  904. r_x = v->range_x;
  905. r_y = v->range_y;
  906. /* scale MV difference to be quad-pel */
  907. dmv_x[0] <<= 1 - s->quarter_sample;
  908. dmv_y[0] <<= 1 - s->quarter_sample;
  909. dmv_x[1] <<= 1 - s->quarter_sample;
  910. dmv_y[1] <<= 1 - s->quarter_sample;
  911. wrap = s->b8_stride;
  912. xy = s->block_index[0];
  913. if(s->mb_intra) {
  914. s->current_picture.motion_val[0][xy][0] =
  915. s->current_picture.motion_val[0][xy][1] =
  916. s->current_picture.motion_val[1][xy][0] =
  917. s->current_picture.motion_val[1][xy][1] = 0;
  918. return;
  919. }
  920. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  921. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  922. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  923. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  924. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  925. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  926. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  927. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  928. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  929. if(direct) {
  930. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  931. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  932. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  933. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  934. return;
  935. }
  936. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  937. C = s->current_picture.motion_val[0][xy - 2];
  938. A = s->current_picture.motion_val[0][xy - wrap*2];
  939. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  940. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  941. if(!s->mb_x) C[0] = C[1] = 0;
  942. if(!s->first_slice_line) { // predictor A is not out of bounds
  943. if(s->mb_width == 1) {
  944. px = A[0];
  945. py = A[1];
  946. } else {
  947. px = mid_pred(A[0], B[0], C[0]);
  948. py = mid_pred(A[1], B[1], C[1]);
  949. }
  950. } else if(s->mb_x) { // predictor C is not out of bounds
  951. px = C[0];
  952. py = C[1];
  953. } else {
  954. px = py = 0;
  955. }
  956. /* Pullback MV as specified in 8.3.5.3.4 */
  957. {
  958. int qx, qy, X, Y;
  959. if(v->profile < PROFILE_ADVANCED) {
  960. qx = (s->mb_x << 5);
  961. qy = (s->mb_y << 5);
  962. X = (s->mb_width << 5) - 4;
  963. Y = (s->mb_height << 5) - 4;
  964. if(qx + px < -28) px = -28 - qx;
  965. if(qy + py < -28) py = -28 - qy;
  966. if(qx + px > X) px = X - qx;
  967. if(qy + py > Y) py = Y - qy;
  968. } else {
  969. qx = (s->mb_x << 6);
  970. qy = (s->mb_y << 6);
  971. X = (s->mb_width << 6) - 4;
  972. Y = (s->mb_height << 6) - 4;
  973. if(qx + px < -60) px = -60 - qx;
  974. if(qy + py < -60) py = -60 - qy;
  975. if(qx + px > X) px = X - qx;
  976. if(qy + py > Y) py = Y - qy;
  977. }
  978. }
  979. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  980. if(0 && !s->first_slice_line && s->mb_x) {
  981. if(is_intra[xy - wrap])
  982. sum = FFABS(px) + FFABS(py);
  983. else
  984. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  985. if(sum > 32) {
  986. if(get_bits1(&s->gb)) {
  987. px = A[0];
  988. py = A[1];
  989. } else {
  990. px = C[0];
  991. py = C[1];
  992. }
  993. } else {
  994. if(is_intra[xy - 2])
  995. sum = FFABS(px) + FFABS(py);
  996. else
  997. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  998. if(sum > 32) {
  999. if(get_bits1(&s->gb)) {
  1000. px = A[0];
  1001. py = A[1];
  1002. } else {
  1003. px = C[0];
  1004. py = C[1];
  1005. }
  1006. }
  1007. }
  1008. }
  1009. /* store MV using signed modulus of MV range defined in 4.11 */
  1010. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1011. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1012. }
  1013. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1014. C = s->current_picture.motion_val[1][xy - 2];
  1015. A = s->current_picture.motion_val[1][xy - wrap*2];
  1016. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1017. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1018. if(!s->mb_x) C[0] = C[1] = 0;
  1019. if(!s->first_slice_line) { // predictor A is not out of bounds
  1020. if(s->mb_width == 1) {
  1021. px = A[0];
  1022. py = A[1];
  1023. } else {
  1024. px = mid_pred(A[0], B[0], C[0]);
  1025. py = mid_pred(A[1], B[1], C[1]);
  1026. }
  1027. } else if(s->mb_x) { // predictor C is not out of bounds
  1028. px = C[0];
  1029. py = C[1];
  1030. } else {
  1031. px = py = 0;
  1032. }
  1033. /* Pullback MV as specified in 8.3.5.3.4 */
  1034. {
  1035. int qx, qy, X, Y;
  1036. if(v->profile < PROFILE_ADVANCED) {
  1037. qx = (s->mb_x << 5);
  1038. qy = (s->mb_y << 5);
  1039. X = (s->mb_width << 5) - 4;
  1040. Y = (s->mb_height << 5) - 4;
  1041. if(qx + px < -28) px = -28 - qx;
  1042. if(qy + py < -28) py = -28 - qy;
  1043. if(qx + px > X) px = X - qx;
  1044. if(qy + py > Y) py = Y - qy;
  1045. } else {
  1046. qx = (s->mb_x << 6);
  1047. qy = (s->mb_y << 6);
  1048. X = (s->mb_width << 6) - 4;
  1049. Y = (s->mb_height << 6) - 4;
  1050. if(qx + px < -60) px = -60 - qx;
  1051. if(qy + py < -60) py = -60 - qy;
  1052. if(qx + px > X) px = X - qx;
  1053. if(qy + py > Y) py = Y - qy;
  1054. }
  1055. }
  1056. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1057. if(0 && !s->first_slice_line && s->mb_x) {
  1058. if(is_intra[xy - wrap])
  1059. sum = FFABS(px) + FFABS(py);
  1060. else
  1061. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1062. if(sum > 32) {
  1063. if(get_bits1(&s->gb)) {
  1064. px = A[0];
  1065. py = A[1];
  1066. } else {
  1067. px = C[0];
  1068. py = C[1];
  1069. }
  1070. } else {
  1071. if(is_intra[xy - 2])
  1072. sum = FFABS(px) + FFABS(py);
  1073. else
  1074. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1075. if(sum > 32) {
  1076. if(get_bits1(&s->gb)) {
  1077. px = A[0];
  1078. py = A[1];
  1079. } else {
  1080. px = C[0];
  1081. py = C[1];
  1082. }
  1083. }
  1084. }
  1085. }
  1086. /* store MV using signed modulus of MV range defined in 4.11 */
  1087. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1088. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1089. }
  1090. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1091. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1092. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1093. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1094. }
  1095. /** Get predicted DC value for I-frames only
  1096. * prediction dir: left=0, top=1
  1097. * @param s MpegEncContext
  1098. * @param overlap flag indicating that overlap filtering is used
  1099. * @param pq integer part of picture quantizer
  1100. * @param[in] n block index in the current MB
  1101. * @param dc_val_ptr Pointer to DC predictor
  1102. * @param dir_ptr Prediction direction for use in AC prediction
  1103. */
  1104. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1105. int16_t **dc_val_ptr, int *dir_ptr)
  1106. {
  1107. int a, b, c, wrap, pred, scale;
  1108. int16_t *dc_val;
  1109. static const uint16_t dcpred[32] = {
  1110. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1111. 114, 102, 93, 85, 79, 73, 68, 64,
  1112. 60, 57, 54, 51, 49, 47, 45, 43,
  1113. 41, 39, 38, 37, 35, 34, 33
  1114. };
  1115. /* find prediction - wmv3_dc_scale always used here in fact */
  1116. if (n < 4) scale = s->y_dc_scale;
  1117. else scale = s->c_dc_scale;
  1118. wrap = s->block_wrap[n];
  1119. dc_val= s->dc_val[0] + s->block_index[n];
  1120. /* B A
  1121. * C X
  1122. */
  1123. c = dc_val[ - 1];
  1124. b = dc_val[ - 1 - wrap];
  1125. a = dc_val[ - wrap];
  1126. if (pq < 9 || !overlap)
  1127. {
  1128. /* Set outer values */
  1129. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1130. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1131. }
  1132. else
  1133. {
  1134. /* Set outer values */
  1135. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1136. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1137. }
  1138. if (abs(a - b) <= abs(b - c)) {
  1139. pred = c;
  1140. *dir_ptr = 1;//left
  1141. } else {
  1142. pred = a;
  1143. *dir_ptr = 0;//top
  1144. }
  1145. /* update predictor */
  1146. *dc_val_ptr = &dc_val[0];
  1147. return pred;
  1148. }
  1149. /** Get predicted DC value
  1150. * prediction dir: left=0, top=1
  1151. * @param s MpegEncContext
  1152. * @param overlap flag indicating that overlap filtering is used
  1153. * @param pq integer part of picture quantizer
  1154. * @param[in] n block index in the current MB
  1155. * @param a_avail flag indicating top block availability
  1156. * @param c_avail flag indicating left block availability
  1157. * @param dc_val_ptr Pointer to DC predictor
  1158. * @param dir_ptr Prediction direction for use in AC prediction
  1159. */
  1160. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1161. int a_avail, int c_avail,
  1162. int16_t **dc_val_ptr, int *dir_ptr)
  1163. {
  1164. int a, b, c, wrap, pred;
  1165. int16_t *dc_val;
  1166. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1167. int q1, q2 = 0;
  1168. wrap = s->block_wrap[n];
  1169. dc_val= s->dc_val[0] + s->block_index[n];
  1170. /* B A
  1171. * C X
  1172. */
  1173. c = dc_val[ - 1];
  1174. b = dc_val[ - 1 - wrap];
  1175. a = dc_val[ - wrap];
  1176. /* scale predictors if needed */
  1177. q1 = s->current_picture.qscale_table[mb_pos];
  1178. if(c_avail && (n!= 1 && n!=3)) {
  1179. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1180. if(q2 && q2 != q1)
  1181. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1182. }
  1183. if(a_avail && (n!= 2 && n!=3)) {
  1184. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1185. if(q2 && q2 != q1)
  1186. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1187. }
  1188. if(a_avail && c_avail && (n!=3)) {
  1189. int off = mb_pos;
  1190. if(n != 1) off--;
  1191. if(n != 2) off -= s->mb_stride;
  1192. q2 = s->current_picture.qscale_table[off];
  1193. if(q2 && q2 != q1)
  1194. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1195. }
  1196. if(a_avail && c_avail) {
  1197. if(abs(a - b) <= abs(b - c)) {
  1198. pred = c;
  1199. *dir_ptr = 1;//left
  1200. } else {
  1201. pred = a;
  1202. *dir_ptr = 0;//top
  1203. }
  1204. } else if(a_avail) {
  1205. pred = a;
  1206. *dir_ptr = 0;//top
  1207. } else if(c_avail) {
  1208. pred = c;
  1209. *dir_ptr = 1;//left
  1210. } else {
  1211. pred = 0;
  1212. *dir_ptr = 1;//left
  1213. }
  1214. /* update predictor */
  1215. *dc_val_ptr = &dc_val[0];
  1216. return pred;
  1217. }
  1218. /** @} */ // Block group
  1219. /**
  1220. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1221. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1222. * @{
  1223. */
  1224. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1225. {
  1226. int xy, wrap, pred, a, b, c;
  1227. xy = s->block_index[n];
  1228. wrap = s->b8_stride;
  1229. /* B C
  1230. * A X
  1231. */
  1232. a = s->coded_block[xy - 1 ];
  1233. b = s->coded_block[xy - 1 - wrap];
  1234. c = s->coded_block[xy - wrap];
  1235. if (b == c) {
  1236. pred = a;
  1237. } else {
  1238. pred = c;
  1239. }
  1240. /* store value */
  1241. *coded_block_ptr = &s->coded_block[xy];
  1242. return pred;
  1243. }
  1244. /**
  1245. * Decode one AC coefficient
  1246. * @param v The VC1 context
  1247. * @param last Last coefficient
  1248. * @param skip How much zero coefficients to skip
  1249. * @param value Decoded AC coefficient value
  1250. * @param codingset set of VLC to decode data
  1251. * @see 8.1.3.4
  1252. */
  1253. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1254. {
  1255. GetBitContext *gb = &v->s.gb;
  1256. int index, escape, run = 0, level = 0, lst = 0;
  1257. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1258. if (index != vc1_ac_sizes[codingset] - 1) {
  1259. run = vc1_index_decode_table[codingset][index][0];
  1260. level = vc1_index_decode_table[codingset][index][1];
  1261. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  1262. if(get_bits1(gb))
  1263. level = -level;
  1264. } else {
  1265. escape = decode210(gb);
  1266. if (escape != 2) {
  1267. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1268. run = vc1_index_decode_table[codingset][index][0];
  1269. level = vc1_index_decode_table[codingset][index][1];
  1270. lst = index >= vc1_last_decode_table[codingset];
  1271. if(escape == 0) {
  1272. if(lst)
  1273. level += vc1_last_delta_level_table[codingset][run];
  1274. else
  1275. level += vc1_delta_level_table[codingset][run];
  1276. } else {
  1277. if(lst)
  1278. run += vc1_last_delta_run_table[codingset][level] + 1;
  1279. else
  1280. run += vc1_delta_run_table[codingset][level] + 1;
  1281. }
  1282. if(get_bits1(gb))
  1283. level = -level;
  1284. } else {
  1285. int sign;
  1286. lst = get_bits1(gb);
  1287. if(v->s.esc3_level_length == 0) {
  1288. if(v->pq < 8 || v->dquantfrm) { // table 59
  1289. v->s.esc3_level_length = get_bits(gb, 3);
  1290. if(!v->s.esc3_level_length)
  1291. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1292. } else { //table 60
  1293. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1294. }
  1295. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1296. }
  1297. run = get_bits(gb, v->s.esc3_run_length);
  1298. sign = get_bits1(gb);
  1299. level = get_bits(gb, v->s.esc3_level_length);
  1300. if(sign)
  1301. level = -level;
  1302. }
  1303. }
  1304. *last = lst;
  1305. *skip = run;
  1306. *value = level;
  1307. }
  1308. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1309. * @param v VC1Context
  1310. * @param block block to decode
  1311. * @param[in] n subblock index
  1312. * @param coded are AC coeffs present or not
  1313. * @param codingset set of VLC to decode data
  1314. */
  1315. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1316. {
  1317. GetBitContext *gb = &v->s.gb;
  1318. MpegEncContext *s = &v->s;
  1319. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1320. int i;
  1321. int16_t *dc_val;
  1322. int16_t *ac_val, *ac_val2;
  1323. int dcdiff;
  1324. /* Get DC differential */
  1325. if (n < 4) {
  1326. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1327. } else {
  1328. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1329. }
  1330. if (dcdiff < 0){
  1331. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1332. return -1;
  1333. }
  1334. if (dcdiff)
  1335. {
  1336. if (dcdiff == 119 /* ESC index value */)
  1337. {
  1338. /* TODO: Optimize */
  1339. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1340. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1341. else dcdiff = get_bits(gb, 8);
  1342. }
  1343. else
  1344. {
  1345. if (v->pq == 1)
  1346. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1347. else if (v->pq == 2)
  1348. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1349. }
  1350. if (get_bits1(gb))
  1351. dcdiff = -dcdiff;
  1352. }
  1353. /* Prediction */
  1354. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1355. *dc_val = dcdiff;
  1356. /* Store the quantized DC coeff, used for prediction */
  1357. if (n < 4) {
  1358. block[0] = dcdiff * s->y_dc_scale;
  1359. } else {
  1360. block[0] = dcdiff * s->c_dc_scale;
  1361. }
  1362. /* Skip ? */
  1363. if (!coded) {
  1364. goto not_coded;
  1365. }
  1366. //AC Decoding
  1367. i = 1;
  1368. {
  1369. int last = 0, skip, value;
  1370. const uint8_t *zz_table;
  1371. int scale;
  1372. int k;
  1373. scale = v->pq * 2 + v->halfpq;
  1374. if(v->s.ac_pred) {
  1375. if(!dc_pred_dir)
  1376. zz_table = v->zz_8x8[2];
  1377. else
  1378. zz_table = v->zz_8x8[3];
  1379. } else
  1380. zz_table = v->zz_8x8[1];
  1381. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1382. ac_val2 = ac_val;
  1383. if(dc_pred_dir) //left
  1384. ac_val -= 16;
  1385. else //top
  1386. ac_val -= 16 * s->block_wrap[n];
  1387. while (!last) {
  1388. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1389. i += skip;
  1390. if(i > 63)
  1391. break;
  1392. block[zz_table[i++]] = value;
  1393. }
  1394. /* apply AC prediction if needed */
  1395. if(s->ac_pred) {
  1396. if(dc_pred_dir) { //left
  1397. for(k = 1; k < 8; k++)
  1398. block[k] += ac_val[k];
  1399. } else { //top
  1400. for(k = 1; k < 8; k++)
  1401. block[k << 3] += ac_val[k + 8];
  1402. }
  1403. }
  1404. /* save AC coeffs for further prediction */
  1405. for(k = 1; k < 8; k++) {
  1406. ac_val2[k] = block[k];
  1407. ac_val2[k + 8] = block[k << 3];
  1408. }
  1409. /* scale AC coeffs */
  1410. for(k = 1; k < 64; k++)
  1411. if(block[k]) {
  1412. block[k] *= scale;
  1413. if(!v->pquantizer)
  1414. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1415. }
  1416. if(s->ac_pred) i = 63;
  1417. }
  1418. not_coded:
  1419. if(!coded) {
  1420. int k, scale;
  1421. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1422. ac_val2 = ac_val;
  1423. i = 0;
  1424. scale = v->pq * 2 + v->halfpq;
  1425. memset(ac_val2, 0, 16 * 2);
  1426. if(dc_pred_dir) {//left
  1427. ac_val -= 16;
  1428. if(s->ac_pred)
  1429. memcpy(ac_val2, ac_val, 8 * 2);
  1430. } else {//top
  1431. ac_val -= 16 * s->block_wrap[n];
  1432. if(s->ac_pred)
  1433. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1434. }
  1435. /* apply AC prediction if needed */
  1436. if(s->ac_pred) {
  1437. if(dc_pred_dir) { //left
  1438. for(k = 1; k < 8; k++) {
  1439. block[k] = ac_val[k] * scale;
  1440. if(!v->pquantizer && block[k])
  1441. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1442. }
  1443. } else { //top
  1444. for(k = 1; k < 8; k++) {
  1445. block[k << 3] = ac_val[k + 8] * scale;
  1446. if(!v->pquantizer && block[k << 3])
  1447. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1448. }
  1449. }
  1450. i = 63;
  1451. }
  1452. }
  1453. s->block_last_index[n] = i;
  1454. return 0;
  1455. }
  1456. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1457. * @param v VC1Context
  1458. * @param block block to decode
  1459. * @param[in] n subblock number
  1460. * @param coded are AC coeffs present or not
  1461. * @param codingset set of VLC to decode data
  1462. * @param mquant quantizer value for this macroblock
  1463. */
  1464. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1465. {
  1466. GetBitContext *gb = &v->s.gb;
  1467. MpegEncContext *s = &v->s;
  1468. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1469. int i;
  1470. int16_t *dc_val;
  1471. int16_t *ac_val, *ac_val2;
  1472. int dcdiff;
  1473. int a_avail = v->a_avail, c_avail = v->c_avail;
  1474. int use_pred = s->ac_pred;
  1475. int scale;
  1476. int q1, q2 = 0;
  1477. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1478. /* Get DC differential */
  1479. if (n < 4) {
  1480. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1481. } else {
  1482. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1483. }
  1484. if (dcdiff < 0){
  1485. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1486. return -1;
  1487. }
  1488. if (dcdiff)
  1489. {
  1490. if (dcdiff == 119 /* ESC index value */)
  1491. {
  1492. /* TODO: Optimize */
  1493. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1494. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1495. else dcdiff = get_bits(gb, 8);
  1496. }
  1497. else
  1498. {
  1499. if (mquant == 1)
  1500. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1501. else if (mquant == 2)
  1502. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1503. }
  1504. if (get_bits1(gb))
  1505. dcdiff = -dcdiff;
  1506. }
  1507. /* Prediction */
  1508. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1509. *dc_val = dcdiff;
  1510. /* Store the quantized DC coeff, used for prediction */
  1511. if (n < 4) {
  1512. block[0] = dcdiff * s->y_dc_scale;
  1513. } else {
  1514. block[0] = dcdiff * s->c_dc_scale;
  1515. }
  1516. //AC Decoding
  1517. i = 1;
  1518. /* check if AC is needed at all */
  1519. if(!a_avail && !c_avail) use_pred = 0;
  1520. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1521. ac_val2 = ac_val;
  1522. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1523. if(dc_pred_dir) //left
  1524. ac_val -= 16;
  1525. else //top
  1526. ac_val -= 16 * s->block_wrap[n];
  1527. q1 = s->current_picture.qscale_table[mb_pos];
  1528. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1529. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1530. if(dc_pred_dir && n==1) q2 = q1;
  1531. if(!dc_pred_dir && n==2) q2 = q1;
  1532. if(n==3) q2 = q1;
  1533. if(coded) {
  1534. int last = 0, skip, value;
  1535. const uint8_t *zz_table;
  1536. int k;
  1537. if(v->s.ac_pred) {
  1538. if(!dc_pred_dir)
  1539. zz_table = v->zz_8x8[2];
  1540. else
  1541. zz_table = v->zz_8x8[3];
  1542. } else
  1543. zz_table = v->zz_8x8[1];
  1544. while (!last) {
  1545. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1546. i += skip;
  1547. if(i > 63)
  1548. break;
  1549. block[zz_table[i++]] = value;
  1550. }
  1551. /* apply AC prediction if needed */
  1552. if(use_pred) {
  1553. /* scale predictors if needed*/
  1554. if(q2 && q1!=q2) {
  1555. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1556. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1557. if(dc_pred_dir) { //left
  1558. for(k = 1; k < 8; k++)
  1559. block[k] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1560. } else { //top
  1561. for(k = 1; k < 8; k++)
  1562. block[k << 3] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1563. }
  1564. } else {
  1565. if(dc_pred_dir) { //left
  1566. for(k = 1; k < 8; k++)
  1567. block[k] += ac_val[k];
  1568. } else { //top
  1569. for(k = 1; k < 8; k++)
  1570. block[k << 3] += ac_val[k + 8];
  1571. }
  1572. }
  1573. }
  1574. /* save AC coeffs for further prediction */
  1575. for(k = 1; k < 8; k++) {
  1576. ac_val2[k] = block[k];
  1577. ac_val2[k + 8] = block[k << 3];
  1578. }
  1579. /* scale AC coeffs */
  1580. for(k = 1; k < 64; k++)
  1581. if(block[k]) {
  1582. block[k] *= scale;
  1583. if(!v->pquantizer)
  1584. block[k] += (block[k] < 0) ? -mquant : mquant;
  1585. }
  1586. if(use_pred) i = 63;
  1587. } else { // no AC coeffs
  1588. int k;
  1589. memset(ac_val2, 0, 16 * 2);
  1590. if(dc_pred_dir) {//left
  1591. if(use_pred) {
  1592. memcpy(ac_val2, ac_val, 8 * 2);
  1593. if(q2 && q1!=q2) {
  1594. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1595. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1596. for(k = 1; k < 8; k++)
  1597. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1598. }
  1599. }
  1600. } else {//top
  1601. if(use_pred) {
  1602. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1603. if(q2 && q1!=q2) {
  1604. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1605. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1606. for(k = 1; k < 8; k++)
  1607. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1608. }
  1609. }
  1610. }
  1611. /* apply AC prediction if needed */
  1612. if(use_pred) {
  1613. if(dc_pred_dir) { //left
  1614. for(k = 1; k < 8; k++) {
  1615. block[k] = ac_val2[k] * scale;
  1616. if(!v->pquantizer && block[k])
  1617. block[k] += (block[k] < 0) ? -mquant : mquant;
  1618. }
  1619. } else { //top
  1620. for(k = 1; k < 8; k++) {
  1621. block[k << 3] = ac_val2[k + 8] * scale;
  1622. if(!v->pquantizer && block[k << 3])
  1623. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1624. }
  1625. }
  1626. i = 63;
  1627. }
  1628. }
  1629. s->block_last_index[n] = i;
  1630. return 0;
  1631. }
  1632. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1633. * @param v VC1Context
  1634. * @param block block to decode
  1635. * @param[in] n subblock index
  1636. * @param coded are AC coeffs present or not
  1637. * @param mquant block quantizer
  1638. * @param codingset set of VLC to decode data
  1639. */
  1640. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1641. {
  1642. GetBitContext *gb = &v->s.gb;
  1643. MpegEncContext *s = &v->s;
  1644. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1645. int i;
  1646. int16_t *dc_val;
  1647. int16_t *ac_val, *ac_val2;
  1648. int dcdiff;
  1649. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1650. int a_avail = v->a_avail, c_avail = v->c_avail;
  1651. int use_pred = s->ac_pred;
  1652. int scale;
  1653. int q1, q2 = 0;
  1654. s->dsp.clear_block(block);
  1655. /* XXX: Guard against dumb values of mquant */
  1656. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1657. /* Set DC scale - y and c use the same */
  1658. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1659. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1660. /* Get DC differential */
  1661. if (n < 4) {
  1662. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1663. } else {
  1664. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1665. }
  1666. if (dcdiff < 0){
  1667. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1668. return -1;
  1669. }
  1670. if (dcdiff)
  1671. {
  1672. if (dcdiff == 119 /* ESC index value */)
  1673. {
  1674. /* TODO: Optimize */
  1675. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1676. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1677. else dcdiff = get_bits(gb, 8);
  1678. }
  1679. else
  1680. {
  1681. if (mquant == 1)
  1682. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1683. else if (mquant == 2)
  1684. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1685. }
  1686. if (get_bits1(gb))
  1687. dcdiff = -dcdiff;
  1688. }
  1689. /* Prediction */
  1690. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1691. *dc_val = dcdiff;
  1692. /* Store the quantized DC coeff, used for prediction */
  1693. if (n < 4) {
  1694. block[0] = dcdiff * s->y_dc_scale;
  1695. } else {
  1696. block[0] = dcdiff * s->c_dc_scale;
  1697. }
  1698. //AC Decoding
  1699. i = 1;
  1700. /* check if AC is needed at all and adjust direction if needed */
  1701. if(!a_avail) dc_pred_dir = 1;
  1702. if(!c_avail) dc_pred_dir = 0;
  1703. if(!a_avail && !c_avail) use_pred = 0;
  1704. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1705. ac_val2 = ac_val;
  1706. scale = mquant * 2 + v->halfpq;
  1707. if(dc_pred_dir) //left
  1708. ac_val -= 16;
  1709. else //top
  1710. ac_val -= 16 * s->block_wrap[n];
  1711. q1 = s->current_picture.qscale_table[mb_pos];
  1712. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1713. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1714. if(dc_pred_dir && n==1) q2 = q1;
  1715. if(!dc_pred_dir && n==2) q2 = q1;
  1716. if(n==3) q2 = q1;
  1717. if(coded) {
  1718. int last = 0, skip, value;
  1719. int k;
  1720. while (!last) {
  1721. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1722. i += skip;
  1723. if(i > 63)
  1724. break;
  1725. block[v->zz_8x8[0][i++]] = value;
  1726. }
  1727. /* apply AC prediction if needed */
  1728. if(use_pred) {
  1729. /* scale predictors if needed*/
  1730. if(q2 && q1!=q2) {
  1731. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1732. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1733. if(dc_pred_dir) { //left
  1734. for(k = 1; k < 8; k++)
  1735. block[k] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1736. } else { //top
  1737. for(k = 1; k < 8; k++)
  1738. block[k << 3] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1739. }
  1740. } else {
  1741. if(dc_pred_dir) { //left
  1742. for(k = 1; k < 8; k++)
  1743. block[k] += ac_val[k];
  1744. } else { //top
  1745. for(k = 1; k < 8; k++)
  1746. block[k << 3] += ac_val[k + 8];
  1747. }
  1748. }
  1749. }
  1750. /* save AC coeffs for further prediction */
  1751. for(k = 1; k < 8; k++) {
  1752. ac_val2[k] = block[k];
  1753. ac_val2[k + 8] = block[k << 3];
  1754. }
  1755. /* scale AC coeffs */
  1756. for(k = 1; k < 64; k++)
  1757. if(block[k]) {
  1758. block[k] *= scale;
  1759. if(!v->pquantizer)
  1760. block[k] += (block[k] < 0) ? -mquant : mquant;
  1761. }
  1762. if(use_pred) i = 63;
  1763. } else { // no AC coeffs
  1764. int k;
  1765. memset(ac_val2, 0, 16 * 2);
  1766. if(dc_pred_dir) {//left
  1767. if(use_pred) {
  1768. memcpy(ac_val2, ac_val, 8 * 2);
  1769. if(q2 && q1!=q2) {
  1770. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1771. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1772. for(k = 1; k < 8; k++)
  1773. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1774. }
  1775. }
  1776. } else {//top
  1777. if(use_pred) {
  1778. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1779. if(q2 && q1!=q2) {
  1780. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1781. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1782. for(k = 1; k < 8; k++)
  1783. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1784. }
  1785. }
  1786. }
  1787. /* apply AC prediction if needed */
  1788. if(use_pred) {
  1789. if(dc_pred_dir) { //left
  1790. for(k = 1; k < 8; k++) {
  1791. block[k] = ac_val2[k] * scale;
  1792. if(!v->pquantizer && block[k])
  1793. block[k] += (block[k] < 0) ? -mquant : mquant;
  1794. }
  1795. } else { //top
  1796. for(k = 1; k < 8; k++) {
  1797. block[k << 3] = ac_val2[k + 8] * scale;
  1798. if(!v->pquantizer && block[k << 3])
  1799. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1800. }
  1801. }
  1802. i = 63;
  1803. }
  1804. }
  1805. s->block_last_index[n] = i;
  1806. return 0;
  1807. }
  1808. /** Decode P block
  1809. */
  1810. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1811. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  1812. {
  1813. MpegEncContext *s = &v->s;
  1814. GetBitContext *gb = &s->gb;
  1815. int i, j;
  1816. int subblkpat = 0;
  1817. int scale, off, idx, last, skip, value;
  1818. int ttblk = ttmb & 7;
  1819. int pat = 0;
  1820. s->dsp.clear_block(block);
  1821. if(ttmb == -1) {
  1822. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1823. }
  1824. if(ttblk == TT_4X4) {
  1825. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1826. }
  1827. if((ttblk != TT_8X8 && ttblk != TT_4X4)
  1828. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1829. || (!v->res_rtm_flag && !first_block))) {
  1830. subblkpat = decode012(gb);
  1831. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1832. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1833. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1834. }
  1835. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1836. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1837. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1838. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1839. ttblk = TT_8X4;
  1840. }
  1841. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1842. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1843. ttblk = TT_4X8;
  1844. }
  1845. switch(ttblk) {
  1846. case TT_8X8:
  1847. pat = 0xF;
  1848. i = 0;
  1849. last = 0;
  1850. while (!last) {
  1851. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1852. i += skip;
  1853. if(i > 63)
  1854. break;
  1855. idx = v->zz_8x8[0][i++];
  1856. block[idx] = value * scale;
  1857. if(!v->pquantizer)
  1858. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1859. }
  1860. if(!skip_block){
  1861. if(i==1)
  1862. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1863. else{
  1864. v->vc1dsp.vc1_inv_trans_8x8(block);
  1865. s->dsp.add_pixels_clamped(block, dst, linesize);
  1866. }
  1867. if(apply_filter && cbp_top & 0xC)
  1868. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1869. if(apply_filter && cbp_left & 0xA)
  1870. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  1871. }
  1872. break;
  1873. case TT_4X4:
  1874. pat = ~subblkpat & 0xF;
  1875. for(j = 0; j < 4; j++) {
  1876. last = subblkpat & (1 << (3 - j));
  1877. i = 0;
  1878. off = (j & 1) * 4 + (j & 2) * 16;
  1879. while (!last) {
  1880. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1881. i += skip;
  1882. if(i > 15)
  1883. break;
  1884. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1885. block[idx + off] = value * scale;
  1886. if(!v->pquantizer)
  1887. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1888. }
  1889. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1890. if(i==1)
  1891. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1892. else
  1893. v->vc1dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1894. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  1895. v->vc1dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1896. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  1897. v->vc1dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1898. }
  1899. }
  1900. break;
  1901. case TT_8X4:
  1902. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1903. for(j = 0; j < 2; j++) {
  1904. last = subblkpat & (1 << (1 - j));
  1905. i = 0;
  1906. off = j * 32;
  1907. while (!last) {
  1908. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1909. i += skip;
  1910. if(i > 31)
  1911. break;
  1912. idx = v->zz_8x4[i++]+off;
  1913. block[idx] = value * scale;
  1914. if(!v->pquantizer)
  1915. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1916. }
  1917. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1918. if(i==1)
  1919. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  1920. else
  1921. v->vc1dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1922. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  1923. v->vc1dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  1924. if(apply_filter && cbp_left & (2 << j))
  1925. v->vc1dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  1926. }
  1927. }
  1928. break;
  1929. case TT_4X8:
  1930. pat = ~(subblkpat*5) & 0xF;
  1931. for(j = 0; j < 2; j++) {
  1932. last = subblkpat & (1 << (1 - j));
  1933. i = 0;
  1934. off = j * 4;
  1935. while (!last) {
  1936. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1937. i += skip;
  1938. if(i > 31)
  1939. break;
  1940. idx = v->zz_4x8[i++]+off;
  1941. block[idx] = value * scale;
  1942. if(!v->pquantizer)
  1943. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1944. }
  1945. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1946. if(i==1)
  1947. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  1948. else
  1949. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1950. if(apply_filter && cbp_top & (2 << j))
  1951. v->vc1dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  1952. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  1953. v->vc1dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  1954. }
  1955. }
  1956. break;
  1957. }
  1958. return pat;
  1959. }
  1960. /** @} */ // Macroblock group
  1961. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1962. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1963. /** Decode one P-frame MB (in Simple/Main profile)
  1964. */
  1965. static int vc1_decode_p_mb(VC1Context *v)
  1966. {
  1967. MpegEncContext *s = &v->s;
  1968. GetBitContext *gb = &s->gb;
  1969. int i, j;
  1970. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1971. int cbp; /* cbp decoding stuff */
  1972. int mqdiff, mquant; /* MB quantization */
  1973. int ttmb = v->ttfrm; /* MB Transform type */
  1974. int mb_has_coeffs = 1; /* last_flag */
  1975. int dmv_x, dmv_y; /* Differential MV components */
  1976. int index, index1; /* LUT indexes */
  1977. int val, sign; /* temp values */
  1978. int first_block = 1;
  1979. int dst_idx, off;
  1980. int skipped, fourmv;
  1981. int block_cbp = 0, pat;
  1982. int apply_loop_filter;
  1983. mquant = v->pq; /* Loosy initialization */
  1984. if (v->mv_type_is_raw)
  1985. fourmv = get_bits1(gb);
  1986. else
  1987. fourmv = v->mv_type_mb_plane[mb_pos];
  1988. if (v->skip_is_raw)
  1989. skipped = get_bits1(gb);
  1990. else
  1991. skipped = v->s.mbskip_table[mb_pos];
  1992. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  1993. if (!fourmv) /* 1MV mode */
  1994. {
  1995. if (!skipped)
  1996. {
  1997. GET_MVDATA(dmv_x, dmv_y);
  1998. if (s->mb_intra) {
  1999. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2000. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2001. }
  2002. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2003. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2004. /* FIXME Set DC val for inter block ? */
  2005. if (s->mb_intra && !mb_has_coeffs)
  2006. {
  2007. GET_MQUANT();
  2008. s->ac_pred = get_bits1(gb);
  2009. cbp = 0;
  2010. }
  2011. else if (mb_has_coeffs)
  2012. {
  2013. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2014. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2015. GET_MQUANT();
  2016. }
  2017. else
  2018. {
  2019. mquant = v->pq;
  2020. cbp = 0;
  2021. }
  2022. s->current_picture.qscale_table[mb_pos] = mquant;
  2023. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2024. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2025. VC1_TTMB_VLC_BITS, 2);
  2026. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2027. dst_idx = 0;
  2028. for (i=0; i<6; i++)
  2029. {
  2030. s->dc_val[0][s->block_index[i]] = 0;
  2031. dst_idx += i >> 2;
  2032. val = ((cbp >> (5 - i)) & 1);
  2033. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2034. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2035. if(s->mb_intra) {
  2036. /* check if prediction blocks A and C are available */
  2037. v->a_avail = v->c_avail = 0;
  2038. if(i == 2 || i == 3 || !s->first_slice_line)
  2039. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2040. if(i == 1 || i == 3 || s->mb_x)
  2041. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2042. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2043. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2044. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2045. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2046. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2047. if(v->pq >= 9 && v->overlap) {
  2048. if(v->c_avail)
  2049. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2050. if(v->a_avail)
  2051. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2052. }
  2053. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2054. int left_cbp, top_cbp;
  2055. if(i & 4){
  2056. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2057. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2058. }else{
  2059. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2060. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2061. }
  2062. if(left_cbp & 0xC)
  2063. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2064. if(top_cbp & 0xA)
  2065. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2066. }
  2067. block_cbp |= 0xF << (i << 2);
  2068. } else if(val) {
  2069. int left_cbp = 0, top_cbp = 0, filter = 0;
  2070. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2071. filter = 1;
  2072. if(i & 4){
  2073. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2074. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2075. }else{
  2076. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2077. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2078. }
  2079. if(left_cbp & 0xC)
  2080. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2081. if(top_cbp & 0xA)
  2082. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2083. }
  2084. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2085. block_cbp |= pat << (i << 2);
  2086. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2087. first_block = 0;
  2088. }
  2089. }
  2090. }
  2091. else //Skipped
  2092. {
  2093. s->mb_intra = 0;
  2094. for(i = 0; i < 6; i++) {
  2095. v->mb_type[0][s->block_index[i]] = 0;
  2096. s->dc_val[0][s->block_index[i]] = 0;
  2097. }
  2098. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2099. s->current_picture.qscale_table[mb_pos] = 0;
  2100. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2101. vc1_mc_1mv(v, 0);
  2102. return 0;
  2103. }
  2104. } //1MV mode
  2105. else //4MV mode
  2106. {
  2107. if (!skipped /* unskipped MB */)
  2108. {
  2109. int intra_count = 0, coded_inter = 0;
  2110. int is_intra[6], is_coded[6];
  2111. /* Get CBPCY */
  2112. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2113. for (i=0; i<6; i++)
  2114. {
  2115. val = ((cbp >> (5 - i)) & 1);
  2116. s->dc_val[0][s->block_index[i]] = 0;
  2117. s->mb_intra = 0;
  2118. if(i < 4) {
  2119. dmv_x = dmv_y = 0;
  2120. s->mb_intra = 0;
  2121. mb_has_coeffs = 0;
  2122. if(val) {
  2123. GET_MVDATA(dmv_x, dmv_y);
  2124. }
  2125. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2126. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2127. intra_count += s->mb_intra;
  2128. is_intra[i] = s->mb_intra;
  2129. is_coded[i] = mb_has_coeffs;
  2130. }
  2131. if(i&4){
  2132. is_intra[i] = (intra_count >= 3);
  2133. is_coded[i] = val;
  2134. }
  2135. if(i == 4) vc1_mc_4mv_chroma(v);
  2136. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2137. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2138. }
  2139. // if there are no coded blocks then don't do anything more
  2140. if(!intra_count && !coded_inter) return 0;
  2141. dst_idx = 0;
  2142. GET_MQUANT();
  2143. s->current_picture.qscale_table[mb_pos] = mquant;
  2144. /* test if block is intra and has pred */
  2145. {
  2146. int intrapred = 0;
  2147. for(i=0; i<6; i++)
  2148. if(is_intra[i]) {
  2149. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2150. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2151. intrapred = 1;
  2152. break;
  2153. }
  2154. }
  2155. if(intrapred)s->ac_pred = get_bits1(gb);
  2156. else s->ac_pred = 0;
  2157. }
  2158. if (!v->ttmbf && coded_inter)
  2159. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2160. for (i=0; i<6; i++)
  2161. {
  2162. dst_idx += i >> 2;
  2163. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2164. s->mb_intra = is_intra[i];
  2165. if (is_intra[i]) {
  2166. /* check if prediction blocks A and C are available */
  2167. v->a_avail = v->c_avail = 0;
  2168. if(i == 2 || i == 3 || !s->first_slice_line)
  2169. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2170. if(i == 1 || i == 3 || s->mb_x)
  2171. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2172. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2173. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2174. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2175. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2176. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2177. if(v->pq >= 9 && v->overlap) {
  2178. if(v->c_avail)
  2179. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2180. if(v->a_avail)
  2181. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2182. }
  2183. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2184. int left_cbp, top_cbp;
  2185. if(i & 4){
  2186. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2187. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2188. }else{
  2189. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2190. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2191. }
  2192. if(left_cbp & 0xC)
  2193. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2194. if(top_cbp & 0xA)
  2195. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2196. }
  2197. block_cbp |= 0xF << (i << 2);
  2198. } else if(is_coded[i]) {
  2199. int left_cbp = 0, top_cbp = 0, filter = 0;
  2200. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2201. filter = 1;
  2202. if(i & 4){
  2203. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2204. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2205. }else{
  2206. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2207. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2208. }
  2209. if(left_cbp & 0xC)
  2210. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2211. if(top_cbp & 0xA)
  2212. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2213. }
  2214. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2215. block_cbp |= pat << (i << 2);
  2216. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2217. first_block = 0;
  2218. }
  2219. }
  2220. return 0;
  2221. }
  2222. else //Skipped MB
  2223. {
  2224. s->mb_intra = 0;
  2225. s->current_picture.qscale_table[mb_pos] = 0;
  2226. for (i=0; i<6; i++) {
  2227. v->mb_type[0][s->block_index[i]] = 0;
  2228. s->dc_val[0][s->block_index[i]] = 0;
  2229. }
  2230. for (i=0; i<4; i++)
  2231. {
  2232. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2233. vc1_mc_4mv_luma(v, i);
  2234. }
  2235. vc1_mc_4mv_chroma(v);
  2236. s->current_picture.qscale_table[mb_pos] = 0;
  2237. return 0;
  2238. }
  2239. }
  2240. v->cbp[s->mb_x] = block_cbp;
  2241. /* Should never happen */
  2242. return -1;
  2243. }
  2244. /** Decode one B-frame MB (in Main profile)
  2245. */
  2246. static void vc1_decode_b_mb(VC1Context *v)
  2247. {
  2248. MpegEncContext *s = &v->s;
  2249. GetBitContext *gb = &s->gb;
  2250. int i, j;
  2251. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2252. int cbp = 0; /* cbp decoding stuff */
  2253. int mqdiff, mquant; /* MB quantization */
  2254. int ttmb = v->ttfrm; /* MB Transform type */
  2255. int mb_has_coeffs = 0; /* last_flag */
  2256. int index, index1; /* LUT indexes */
  2257. int val, sign; /* temp values */
  2258. int first_block = 1;
  2259. int dst_idx, off;
  2260. int skipped, direct;
  2261. int dmv_x[2], dmv_y[2];
  2262. int bmvtype = BMV_TYPE_BACKWARD;
  2263. mquant = v->pq; /* Loosy initialization */
  2264. s->mb_intra = 0;
  2265. if (v->dmb_is_raw)
  2266. direct = get_bits1(gb);
  2267. else
  2268. direct = v->direct_mb_plane[mb_pos];
  2269. if (v->skip_is_raw)
  2270. skipped = get_bits1(gb);
  2271. else
  2272. skipped = v->s.mbskip_table[mb_pos];
  2273. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2274. for(i = 0; i < 6; i++) {
  2275. v->mb_type[0][s->block_index[i]] = 0;
  2276. s->dc_val[0][s->block_index[i]] = 0;
  2277. }
  2278. s->current_picture.qscale_table[mb_pos] = 0;
  2279. if (!direct) {
  2280. if (!skipped) {
  2281. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2282. dmv_x[1] = dmv_x[0];
  2283. dmv_y[1] = dmv_y[0];
  2284. }
  2285. if(skipped || !s->mb_intra) {
  2286. bmvtype = decode012(gb);
  2287. switch(bmvtype) {
  2288. case 0:
  2289. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2290. break;
  2291. case 1:
  2292. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2293. break;
  2294. case 2:
  2295. bmvtype = BMV_TYPE_INTERPOLATED;
  2296. dmv_x[0] = dmv_y[0] = 0;
  2297. }
  2298. }
  2299. }
  2300. for(i = 0; i < 6; i++)
  2301. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2302. if (skipped) {
  2303. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2304. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2305. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2306. return;
  2307. }
  2308. if (direct) {
  2309. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2310. GET_MQUANT();
  2311. s->mb_intra = 0;
  2312. s->current_picture.qscale_table[mb_pos] = mquant;
  2313. if(!v->ttmbf)
  2314. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2315. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2316. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2317. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2318. } else {
  2319. if(!mb_has_coeffs && !s->mb_intra) {
  2320. /* no coded blocks - effectively skipped */
  2321. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2322. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2323. return;
  2324. }
  2325. if(s->mb_intra && !mb_has_coeffs) {
  2326. GET_MQUANT();
  2327. s->current_picture.qscale_table[mb_pos] = mquant;
  2328. s->ac_pred = get_bits1(gb);
  2329. cbp = 0;
  2330. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2331. } else {
  2332. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2333. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2334. if(!mb_has_coeffs) {
  2335. /* interpolated skipped block */
  2336. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2337. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2338. return;
  2339. }
  2340. }
  2341. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2342. if(!s->mb_intra) {
  2343. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2344. }
  2345. if(s->mb_intra)
  2346. s->ac_pred = get_bits1(gb);
  2347. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2348. GET_MQUANT();
  2349. s->current_picture.qscale_table[mb_pos] = mquant;
  2350. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2351. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2352. }
  2353. }
  2354. dst_idx = 0;
  2355. for (i=0; i<6; i++)
  2356. {
  2357. s->dc_val[0][s->block_index[i]] = 0;
  2358. dst_idx += i >> 2;
  2359. val = ((cbp >> (5 - i)) & 1);
  2360. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2361. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2362. if(s->mb_intra) {
  2363. /* check if prediction blocks A and C are available */
  2364. v->a_avail = v->c_avail = 0;
  2365. if(i == 2 || i == 3 || !s->first_slice_line)
  2366. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2367. if(i == 1 || i == 3 || s->mb_x)
  2368. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2369. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2370. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2371. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2372. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2373. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2374. } else if(val) {
  2375. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  2376. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2377. first_block = 0;
  2378. }
  2379. }
  2380. }
  2381. /** Decode blocks of I-frame
  2382. */
  2383. static void vc1_decode_i_blocks(VC1Context *v)
  2384. {
  2385. int k, j;
  2386. MpegEncContext *s = &v->s;
  2387. int cbp, val;
  2388. uint8_t *coded_val;
  2389. int mb_pos;
  2390. /* select codingmode used for VLC tables selection */
  2391. switch(v->y_ac_table_index){
  2392. case 0:
  2393. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2394. break;
  2395. case 1:
  2396. v->codingset = CS_HIGH_MOT_INTRA;
  2397. break;
  2398. case 2:
  2399. v->codingset = CS_MID_RATE_INTRA;
  2400. break;
  2401. }
  2402. switch(v->c_ac_table_index){
  2403. case 0:
  2404. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2405. break;
  2406. case 1:
  2407. v->codingset2 = CS_HIGH_MOT_INTER;
  2408. break;
  2409. case 2:
  2410. v->codingset2 = CS_MID_RATE_INTER;
  2411. break;
  2412. }
  2413. /* Set DC scale - y and c use the same */
  2414. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2415. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2416. //do frame decode
  2417. s->mb_x = s->mb_y = 0;
  2418. s->mb_intra = 1;
  2419. s->first_slice_line = 1;
  2420. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2421. s->mb_x = 0;
  2422. ff_init_block_index(s);
  2423. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2424. ff_update_block_index(s);
  2425. s->dsp.clear_blocks(s->block[0]);
  2426. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2427. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2428. s->current_picture.qscale_table[mb_pos] = v->pq;
  2429. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2430. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2431. // do actual MB decoding and displaying
  2432. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2433. v->s.ac_pred = get_bits1(&v->s.gb);
  2434. for(k = 0; k < 6; k++) {
  2435. val = ((cbp >> (5 - k)) & 1);
  2436. if (k < 4) {
  2437. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2438. val = val ^ pred;
  2439. *coded_val = val;
  2440. }
  2441. cbp |= val << (5 - k);
  2442. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2443. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2444. if(v->pq >= 9 && v->overlap) {
  2445. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2446. }
  2447. }
  2448. vc1_put_block(v, s->block);
  2449. if(v->pq >= 9 && v->overlap) {
  2450. if(s->mb_x) {
  2451. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2452. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2453. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2454. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2455. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2456. }
  2457. }
  2458. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2459. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2460. if(!s->first_slice_line) {
  2461. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2462. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2463. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2464. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2465. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2466. }
  2467. }
  2468. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2469. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2470. }
  2471. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2472. if(get_bits_count(&s->gb) > v->bits) {
  2473. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2474. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2475. return;
  2476. }
  2477. }
  2478. if (!v->s.loop_filter)
  2479. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2480. else if (s->mb_y)
  2481. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2482. s->first_slice_line = 0;
  2483. }
  2484. if (v->s.loop_filter)
  2485. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2486. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2487. }
  2488. /** Decode blocks of I-frame for advanced profile
  2489. */
  2490. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2491. {
  2492. int k;
  2493. MpegEncContext *s = &v->s;
  2494. int cbp, val;
  2495. uint8_t *coded_val;
  2496. int mb_pos;
  2497. int mquant = v->pq;
  2498. int mqdiff;
  2499. int overlap;
  2500. GetBitContext *gb = &s->gb;
  2501. /* select codingmode used for VLC tables selection */
  2502. switch(v->y_ac_table_index){
  2503. case 0:
  2504. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2505. break;
  2506. case 1:
  2507. v->codingset = CS_HIGH_MOT_INTRA;
  2508. break;
  2509. case 2:
  2510. v->codingset = CS_MID_RATE_INTRA;
  2511. break;
  2512. }
  2513. switch(v->c_ac_table_index){
  2514. case 0:
  2515. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2516. break;
  2517. case 1:
  2518. v->codingset2 = CS_HIGH_MOT_INTER;
  2519. break;
  2520. case 2:
  2521. v->codingset2 = CS_MID_RATE_INTER;
  2522. break;
  2523. }
  2524. //do frame decode
  2525. s->mb_x = s->mb_y = 0;
  2526. s->mb_intra = 1;
  2527. s->first_slice_line = 1;
  2528. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2529. s->mb_x = 0;
  2530. ff_init_block_index(s);
  2531. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2532. uint8_t *dst[6];
  2533. ff_update_block_index(s);
  2534. dst[0] = s->dest[0];
  2535. dst[1] = dst[0] + 8;
  2536. dst[2] = s->dest[0] + s->linesize * 8;
  2537. dst[3] = dst[2] + 8;
  2538. dst[4] = s->dest[1];
  2539. dst[5] = s->dest[2];
  2540. s->dsp.clear_blocks(s->block[0]);
  2541. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2542. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2543. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2544. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2545. // do actual MB decoding and displaying
  2546. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2547. if(v->acpred_is_raw)
  2548. v->s.ac_pred = get_bits1(&v->s.gb);
  2549. else
  2550. v->s.ac_pred = v->acpred_plane[mb_pos];
  2551. if(v->condover == CONDOVER_SELECT) {
  2552. if(v->overflg_is_raw)
  2553. overlap = get_bits1(&v->s.gb);
  2554. else
  2555. overlap = v->over_flags_plane[mb_pos];
  2556. } else
  2557. overlap = (v->condover == CONDOVER_ALL);
  2558. GET_MQUANT();
  2559. s->current_picture.qscale_table[mb_pos] = mquant;
  2560. /* Set DC scale - y and c use the same */
  2561. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2562. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2563. for(k = 0; k < 6; k++) {
  2564. val = ((cbp >> (5 - k)) & 1);
  2565. if (k < 4) {
  2566. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2567. val = val ^ pred;
  2568. *coded_val = val;
  2569. }
  2570. cbp |= val << (5 - k);
  2571. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2572. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2573. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2574. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2575. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2576. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k],
  2577. k & 4 ? s->uvlinesize : s->linesize);
  2578. }
  2579. if(overlap) {
  2580. if(s->mb_x) {
  2581. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2582. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2583. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2584. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2585. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2586. }
  2587. }
  2588. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2589. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2590. if(!s->first_slice_line) {
  2591. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2592. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2593. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2594. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2595. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2596. }
  2597. }
  2598. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2599. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2600. }
  2601. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2602. if(get_bits_count(&s->gb) > v->bits) {
  2603. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2604. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2605. return;
  2606. }
  2607. }
  2608. if (!v->s.loop_filter)
  2609. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2610. else if (s->mb_y)
  2611. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2612. s->first_slice_line = 0;
  2613. }
  2614. if (v->s.loop_filter)
  2615. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2616. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2617. }
  2618. static void vc1_decode_p_blocks(VC1Context *v)
  2619. {
  2620. MpegEncContext *s = &v->s;
  2621. /* select codingmode used for VLC tables selection */
  2622. switch(v->c_ac_table_index){
  2623. case 0:
  2624. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2625. break;
  2626. case 1:
  2627. v->codingset = CS_HIGH_MOT_INTRA;
  2628. break;
  2629. case 2:
  2630. v->codingset = CS_MID_RATE_INTRA;
  2631. break;
  2632. }
  2633. switch(v->c_ac_table_index){
  2634. case 0:
  2635. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2636. break;
  2637. case 1:
  2638. v->codingset2 = CS_HIGH_MOT_INTER;
  2639. break;
  2640. case 2:
  2641. v->codingset2 = CS_MID_RATE_INTER;
  2642. break;
  2643. }
  2644. s->first_slice_line = 1;
  2645. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2646. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2647. s->mb_x = 0;
  2648. ff_init_block_index(s);
  2649. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2650. ff_update_block_index(s);
  2651. vc1_decode_p_mb(v);
  2652. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2653. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2654. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2655. return;
  2656. }
  2657. }
  2658. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2659. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2660. s->first_slice_line = 0;
  2661. }
  2662. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2663. }
  2664. static void vc1_decode_b_blocks(VC1Context *v)
  2665. {
  2666. MpegEncContext *s = &v->s;
  2667. /* select codingmode used for VLC tables selection */
  2668. switch(v->c_ac_table_index){
  2669. case 0:
  2670. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2671. break;
  2672. case 1:
  2673. v->codingset = CS_HIGH_MOT_INTRA;
  2674. break;
  2675. case 2:
  2676. v->codingset = CS_MID_RATE_INTRA;
  2677. break;
  2678. }
  2679. switch(v->c_ac_table_index){
  2680. case 0:
  2681. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2682. break;
  2683. case 1:
  2684. v->codingset2 = CS_HIGH_MOT_INTER;
  2685. break;
  2686. case 2:
  2687. v->codingset2 = CS_MID_RATE_INTER;
  2688. break;
  2689. }
  2690. s->first_slice_line = 1;
  2691. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2692. s->mb_x = 0;
  2693. ff_init_block_index(s);
  2694. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2695. ff_update_block_index(s);
  2696. vc1_decode_b_mb(v);
  2697. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2698. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2699. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2700. return;
  2701. }
  2702. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2703. }
  2704. if (!v->s.loop_filter)
  2705. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2706. else if (s->mb_y)
  2707. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2708. s->first_slice_line = 0;
  2709. }
  2710. if (v->s.loop_filter)
  2711. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2712. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2713. }
  2714. static void vc1_decode_skip_blocks(VC1Context *v)
  2715. {
  2716. MpegEncContext *s = &v->s;
  2717. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2718. s->first_slice_line = 1;
  2719. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2720. s->mb_x = 0;
  2721. ff_init_block_index(s);
  2722. ff_update_block_index(s);
  2723. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2724. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2725. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2726. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2727. s->first_slice_line = 0;
  2728. }
  2729. s->pict_type = FF_P_TYPE;
  2730. }
  2731. static void vc1_decode_blocks(VC1Context *v)
  2732. {
  2733. v->s.esc3_level_length = 0;
  2734. if(v->x8_type){
  2735. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2736. }else{
  2737. switch(v->s.pict_type) {
  2738. case FF_I_TYPE:
  2739. if(v->profile == PROFILE_ADVANCED)
  2740. vc1_decode_i_blocks_adv(v);
  2741. else
  2742. vc1_decode_i_blocks(v);
  2743. break;
  2744. case FF_P_TYPE:
  2745. if(v->p_frame_skipped)
  2746. vc1_decode_skip_blocks(v);
  2747. else
  2748. vc1_decode_p_blocks(v);
  2749. break;
  2750. case FF_B_TYPE:
  2751. if(v->bi_type){
  2752. if(v->profile == PROFILE_ADVANCED)
  2753. vc1_decode_i_blocks_adv(v);
  2754. else
  2755. vc1_decode_i_blocks(v);
  2756. }else
  2757. vc1_decode_b_blocks(v);
  2758. break;
  2759. }
  2760. }
  2761. }
  2762. /** Initialize a VC1/WMV3 decoder
  2763. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2764. * @todo TODO: Decypher remaining bits in extra_data
  2765. */
  2766. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2767. {
  2768. VC1Context *v = avctx->priv_data;
  2769. MpegEncContext *s = &v->s;
  2770. GetBitContext gb;
  2771. int i;
  2772. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2773. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2774. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2775. else
  2776. avctx->pix_fmt = PIX_FMT_GRAY8;
  2777. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2778. v->s.avctx = avctx;
  2779. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2780. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2781. if(avctx->idct_algo==FF_IDCT_AUTO){
  2782. avctx->idct_algo=FF_IDCT_WMV2;
  2783. }
  2784. if(ff_msmpeg4_decode_init(avctx) < 0)
  2785. return -1;
  2786. if (vc1_init_common(v) < 0) return -1;
  2787. ff_vc1dsp_init(&v->vc1dsp);
  2788. for (i = 0; i < 64; i++) {
  2789. #define transpose(x) ((x>>3) | ((x&7)<<3))
  2790. v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
  2791. v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
  2792. v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
  2793. v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
  2794. }
  2795. avctx->coded_width = avctx->width;
  2796. avctx->coded_height = avctx->height;
  2797. if (avctx->codec_id == CODEC_ID_WMV3)
  2798. {
  2799. int count = 0;
  2800. // looks like WMV3 has a sequence header stored in the extradata
  2801. // advanced sequence header may be before the first frame
  2802. // the last byte of the extradata is a version number, 1 for the
  2803. // samples we can decode
  2804. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2805. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2806. return -1;
  2807. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2808. if (count>0)
  2809. {
  2810. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2811. count, get_bits(&gb, count));
  2812. }
  2813. else if (count < 0)
  2814. {
  2815. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2816. }
  2817. } else { // VC1/WVC1
  2818. const uint8_t *start = avctx->extradata;
  2819. uint8_t *end = avctx->extradata + avctx->extradata_size;
  2820. const uint8_t *next;
  2821. int size, buf2_size;
  2822. uint8_t *buf2 = NULL;
  2823. int seq_initialized = 0, ep_initialized = 0;
  2824. if(avctx->extradata_size < 16) {
  2825. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  2826. return -1;
  2827. }
  2828. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2829. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  2830. next = start;
  2831. for(; next < end; start = next){
  2832. next = find_next_marker(start + 4, end);
  2833. size = next - start - 4;
  2834. if(size <= 0) continue;
  2835. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  2836. init_get_bits(&gb, buf2, buf2_size * 8);
  2837. switch(AV_RB32(start)){
  2838. case VC1_CODE_SEQHDR:
  2839. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  2840. av_free(buf2);
  2841. return -1;
  2842. }
  2843. seq_initialized = 1;
  2844. break;
  2845. case VC1_CODE_ENTRYPOINT:
  2846. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  2847. av_free(buf2);
  2848. return -1;
  2849. }
  2850. ep_initialized = 1;
  2851. break;
  2852. }
  2853. }
  2854. av_free(buf2);
  2855. if(!seq_initialized || !ep_initialized){
  2856. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  2857. return -1;
  2858. }
  2859. }
  2860. avctx->has_b_frames= !!(avctx->max_b_frames);
  2861. s->low_delay = !avctx->has_b_frames;
  2862. s->mb_width = (avctx->coded_width+15)>>4;
  2863. s->mb_height = (avctx->coded_height+15)>>4;
  2864. /* Allocate mb bitplanes */
  2865. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2866. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2867. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  2868. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  2869. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2870. v->cbp = v->cbp_base + s->mb_stride;
  2871. /* allocate block type info in that way so it could be used with s->block_index[] */
  2872. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2873. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2874. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2875. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2876. /* Init coded blocks info */
  2877. if (v->profile == PROFILE_ADVANCED)
  2878. {
  2879. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2880. // return -1;
  2881. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2882. // return -1;
  2883. }
  2884. ff_intrax8_common_init(&v->x8,s);
  2885. return 0;
  2886. }
  2887. /** Decode a VC1/WMV3 frame
  2888. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2889. */
  2890. static int vc1_decode_frame(AVCodecContext *avctx,
  2891. void *data, int *data_size,
  2892. AVPacket *avpkt)
  2893. {
  2894. const uint8_t *buf = avpkt->data;
  2895. int buf_size = avpkt->size;
  2896. VC1Context *v = avctx->priv_data;
  2897. MpegEncContext *s = &v->s;
  2898. AVFrame *pict = data;
  2899. uint8_t *buf2 = NULL;
  2900. const uint8_t *buf_start = buf;
  2901. /* no supplementary picture */
  2902. if (buf_size == 0) {
  2903. /* special case for last picture */
  2904. if (s->low_delay==0 && s->next_picture_ptr) {
  2905. *pict= *(AVFrame*)s->next_picture_ptr;
  2906. s->next_picture_ptr= NULL;
  2907. *data_size = sizeof(AVFrame);
  2908. }
  2909. return 0;
  2910. }
  2911. /* We need to set current_picture_ptr before reading the header,
  2912. * otherwise we cannot store anything in there. */
  2913. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2914. int i= ff_find_unused_picture(s, 0);
  2915. s->current_picture_ptr= &s->picture[i];
  2916. }
  2917. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2918. if (v->profile < PROFILE_ADVANCED)
  2919. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  2920. else
  2921. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  2922. }
  2923. //for advanced profile we may need to parse and unescape data
  2924. if (avctx->codec_id == CODEC_ID_VC1) {
  2925. int buf_size2 = 0;
  2926. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2927. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  2928. const uint8_t *start, *end, *next;
  2929. int size;
  2930. next = buf;
  2931. for(start = buf, end = buf + buf_size; next < end; start = next){
  2932. next = find_next_marker(start + 4, end);
  2933. size = next - start - 4;
  2934. if(size <= 0) continue;
  2935. switch(AV_RB32(start)){
  2936. case VC1_CODE_FRAME:
  2937. if (avctx->hwaccel ||
  2938. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2939. buf_start = start;
  2940. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2941. break;
  2942. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  2943. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2944. init_get_bits(&s->gb, buf2, buf_size2*8);
  2945. vc1_decode_entry_point(avctx, v, &s->gb);
  2946. break;
  2947. case VC1_CODE_SLICE:
  2948. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  2949. av_free(buf2);
  2950. return -1;
  2951. }
  2952. }
  2953. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  2954. const uint8_t *divider;
  2955. divider = find_next_marker(buf, buf + buf_size);
  2956. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  2957. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  2958. av_free(buf2);
  2959. return -1;
  2960. }
  2961. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  2962. // TODO
  2963. if(!v->warn_interlaced++)
  2964. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  2965. av_free(buf2);return -1;
  2966. }else{
  2967. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  2968. }
  2969. init_get_bits(&s->gb, buf2, buf_size2*8);
  2970. } else
  2971. init_get_bits(&s->gb, buf, buf_size*8);
  2972. // do parse frame header
  2973. if(v->profile < PROFILE_ADVANCED) {
  2974. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  2975. av_free(buf2);
  2976. return -1;
  2977. }
  2978. } else {
  2979. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  2980. av_free(buf2);
  2981. return -1;
  2982. }
  2983. }
  2984. if(v->res_sprite && (s->pict_type!=FF_I_TYPE)){
  2985. av_free(buf2);
  2986. return -1;
  2987. }
  2988. // for hurry_up==5
  2989. s->current_picture.pict_type= s->pict_type;
  2990. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  2991. /* skip B-frames if we don't have reference frames */
  2992. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  2993. av_free(buf2);
  2994. return -1;//buf_size;
  2995. }
  2996. /* skip b frames if we are in a hurry */
  2997. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  2998. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  2999. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3000. || avctx->skip_frame >= AVDISCARD_ALL) {
  3001. av_free(buf2);
  3002. return buf_size;
  3003. }
  3004. /* skip everything if we are in a hurry>=5 */
  3005. if(avctx->hurry_up>=5) {
  3006. av_free(buf2);
  3007. return -1;//buf_size;
  3008. }
  3009. if(s->next_p_frame_damaged){
  3010. if(s->pict_type==FF_B_TYPE)
  3011. return buf_size;
  3012. else
  3013. s->next_p_frame_damaged=0;
  3014. }
  3015. if(MPV_frame_start(s, avctx) < 0) {
  3016. av_free(buf2);
  3017. return -1;
  3018. }
  3019. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3020. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3021. if ((CONFIG_VC1_VDPAU_DECODER)
  3022. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3023. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3024. else if (avctx->hwaccel) {
  3025. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3026. return -1;
  3027. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3028. return -1;
  3029. if (avctx->hwaccel->end_frame(avctx) < 0)
  3030. return -1;
  3031. } else {
  3032. ff_er_frame_start(s);
  3033. v->bits = buf_size * 8;
  3034. vc1_decode_blocks(v);
  3035. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3036. // if(get_bits_count(&s->gb) > buf_size * 8)
  3037. // return -1;
  3038. ff_er_frame_end(s);
  3039. }
  3040. MPV_frame_end(s);
  3041. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3042. assert(s->current_picture.pict_type == s->pict_type);
  3043. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3044. *pict= *(AVFrame*)s->current_picture_ptr;
  3045. } else if (s->last_picture_ptr != NULL) {
  3046. *pict= *(AVFrame*)s->last_picture_ptr;
  3047. }
  3048. if(s->last_picture_ptr || s->low_delay){
  3049. *data_size = sizeof(AVFrame);
  3050. ff_print_debug_info(s, pict);
  3051. }
  3052. av_free(buf2);
  3053. return buf_size;
  3054. }
  3055. /** Close a VC1/WMV3 decoder
  3056. * @warning Initial try at using MpegEncContext stuff
  3057. */
  3058. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3059. {
  3060. VC1Context *v = avctx->priv_data;
  3061. av_freep(&v->hrd_rate);
  3062. av_freep(&v->hrd_buffer);
  3063. MPV_common_end(&v->s);
  3064. av_freep(&v->mv_type_mb_plane);
  3065. av_freep(&v->direct_mb_plane);
  3066. av_freep(&v->acpred_plane);
  3067. av_freep(&v->over_flags_plane);
  3068. av_freep(&v->mb_type_base);
  3069. av_freep(&v->cbp_base);
  3070. ff_intrax8_common_end(&v->x8);
  3071. return 0;
  3072. }
  3073. AVCodec ff_vc1_decoder = {
  3074. "vc1",
  3075. AVMEDIA_TYPE_VIDEO,
  3076. CODEC_ID_VC1,
  3077. sizeof(VC1Context),
  3078. vc1_decode_init,
  3079. NULL,
  3080. vc1_decode_end,
  3081. vc1_decode_frame,
  3082. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3083. NULL,
  3084. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3085. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3086. };
  3087. #if CONFIG_WMV3_DECODER
  3088. AVCodec ff_wmv3_decoder = {
  3089. "wmv3",
  3090. AVMEDIA_TYPE_VIDEO,
  3091. CODEC_ID_WMV3,
  3092. sizeof(VC1Context),
  3093. vc1_decode_init,
  3094. NULL,
  3095. vc1_decode_end,
  3096. vc1_decode_frame,
  3097. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3098. NULL,
  3099. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3100. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3101. };
  3102. #endif
  3103. #if CONFIG_WMV3_VDPAU_DECODER
  3104. AVCodec ff_wmv3_vdpau_decoder = {
  3105. "wmv3_vdpau",
  3106. AVMEDIA_TYPE_VIDEO,
  3107. CODEC_ID_WMV3,
  3108. sizeof(VC1Context),
  3109. vc1_decode_init,
  3110. NULL,
  3111. vc1_decode_end,
  3112. vc1_decode_frame,
  3113. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3114. NULL,
  3115. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3116. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3117. };
  3118. #endif
  3119. #if CONFIG_VC1_VDPAU_DECODER
  3120. AVCodec ff_vc1_vdpau_decoder = {
  3121. "vc1_vdpau",
  3122. AVMEDIA_TYPE_VIDEO,
  3123. CODEC_ID_VC1,
  3124. sizeof(VC1Context),
  3125. vc1_decode_init,
  3126. NULL,
  3127. vc1_decode_end,
  3128. vc1_decode_frame,
  3129. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3130. NULL,
  3131. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3132. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3133. };
  3134. #endif