audiogen.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. /*
  2. * Generates a synthetic stereo sound
  3. * NOTE: No floats are used to guarantee a bit exact output.
  4. *
  5. * Copyright (c) 2002 Fabrice Bellard
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #define MAX_CHANNELS 8
  26. static unsigned int myrnd(unsigned int *seed_ptr, int n)
  27. {
  28. unsigned int seed, val;
  29. seed = *seed_ptr;
  30. seed = (seed * 314159) + 1;
  31. if (n == 256) {
  32. val = seed >> 24;
  33. } else {
  34. val = seed % n;
  35. }
  36. *seed_ptr = seed;
  37. return val;
  38. }
  39. #define FRAC_BITS 16
  40. #define FRAC_ONE (1 << FRAC_BITS)
  41. #define COS_TABLE_BITS 7
  42. /* integer cosinus */
  43. static const unsigned short cos_table[(1 << COS_TABLE_BITS) + 2] = {
  44. 0x8000, 0x7ffe, 0x7ff6, 0x7fea, 0x7fd9, 0x7fc2, 0x7fa7, 0x7f87,
  45. 0x7f62, 0x7f38, 0x7f0a, 0x7ed6, 0x7e9d, 0x7e60, 0x7e1e, 0x7dd6,
  46. 0x7d8a, 0x7d3a, 0x7ce4, 0x7c89, 0x7c2a, 0x7bc6, 0x7b5d, 0x7aef,
  47. 0x7a7d, 0x7a06, 0x798a, 0x790a, 0x7885, 0x77fb, 0x776c, 0x76d9,
  48. 0x7642, 0x75a6, 0x7505, 0x7460, 0x73b6, 0x7308, 0x7255, 0x719e,
  49. 0x70e3, 0x7023, 0x6f5f, 0x6e97, 0x6dca, 0x6cf9, 0x6c24, 0x6b4b,
  50. 0x6a6e, 0x698c, 0x68a7, 0x67bd, 0x66d0, 0x65de, 0x64e9, 0x63ef,
  51. 0x62f2, 0x61f1, 0x60ec, 0x5fe4, 0x5ed7, 0x5dc8, 0x5cb4, 0x5b9d,
  52. 0x5a82, 0x5964, 0x5843, 0x571e, 0x55f6, 0x54ca, 0x539b, 0x5269,
  53. 0x5134, 0x4ffb, 0x4ec0, 0x4d81, 0x4c40, 0x4afb, 0x49b4, 0x486a,
  54. 0x471d, 0x45cd, 0x447b, 0x4326, 0x41ce, 0x4074, 0x3f17, 0x3db8,
  55. 0x3c57, 0x3af3, 0x398d, 0x3825, 0x36ba, 0x354e, 0x33df, 0x326e,
  56. 0x30fc, 0x2f87, 0x2e11, 0x2c99, 0x2b1f, 0x29a4, 0x2827, 0x26a8,
  57. 0x2528, 0x23a7, 0x2224, 0x209f, 0x1f1a, 0x1d93, 0x1c0c, 0x1a83,
  58. 0x18f9, 0x176e, 0x15e2, 0x1455, 0x12c8, 0x113a, 0x0fab, 0x0e1c,
  59. 0x0c8c, 0x0afb, 0x096b, 0x07d9, 0x0648, 0x04b6, 0x0324, 0x0192,
  60. 0x0000, 0x0000,
  61. };
  62. #define CSHIFT (FRAC_BITS - COS_TABLE_BITS - 2)
  63. static int int_cos(int a)
  64. {
  65. int neg, v, f;
  66. const unsigned short *p;
  67. a = a & (FRAC_ONE - 1); /* modulo 2 * pi */
  68. if (a >= (FRAC_ONE / 2))
  69. a = FRAC_ONE - a;
  70. neg = 0;
  71. if (a > (FRAC_ONE / 4)) {
  72. neg = -1;
  73. a = (FRAC_ONE / 2) - a;
  74. }
  75. p = cos_table + (a >> CSHIFT);
  76. /* linear interpolation */
  77. f = a & ((1 << CSHIFT) - 1);
  78. v = p[0] + (((p[1] - p[0]) * f + (1 << (CSHIFT - 1))) >> CSHIFT);
  79. v = (v ^ neg) - neg;
  80. v = v << (FRAC_BITS - 15);
  81. return v;
  82. }
  83. FILE *outfile;
  84. static void put_sample(int v)
  85. {
  86. fputc(v & 0xff, outfile);
  87. fputc((v >> 8) & 0xff, outfile);
  88. }
  89. int main(int argc, char **argv)
  90. {
  91. int i, a, v, j, f, amp, ampa;
  92. unsigned int seed = 1;
  93. int tabf1[MAX_CHANNELS], tabf2[MAX_CHANNELS];
  94. int taba[MAX_CHANNELS];
  95. int sample_rate = 44100;
  96. int nb_channels = 2;
  97. if (argc < 2 || argc > 4) {
  98. printf("usage: %s file [<sample rate> [<channels>]]\n"
  99. "generate a test raw 16 bit audio stream\n"
  100. "default: 44100 Hz stereo\n", argv[0]);
  101. exit(1);
  102. }
  103. if (argc > 2) {
  104. sample_rate = atoi(argv[2]);
  105. if (sample_rate <= 0) {
  106. fprintf(stderr, "invalid sample rate: %d\n", sample_rate);
  107. return 1;
  108. }
  109. }
  110. if (argc > 3) {
  111. nb_channels = atoi(argv[3]);
  112. if (nb_channels < 1 || nb_channels > MAX_CHANNELS) {
  113. fprintf(stderr, "invalid number of channels: %d\n", nb_channels);
  114. return 1;
  115. }
  116. }
  117. outfile = fopen(argv[1], "wb");
  118. if (!outfile) {
  119. perror(argv[1]);
  120. return 1;
  121. }
  122. /* 1 second of single freq sinus at 1000 Hz */
  123. a = 0;
  124. for(i=0;i<1 * sample_rate;i++) {
  125. v = (int_cos(a) * 10000) >> FRAC_BITS;
  126. for(j=0;j<nb_channels;j++)
  127. put_sample(v);
  128. a += (1000 * FRAC_ONE) / sample_rate;
  129. }
  130. /* 1 second of varing frequency between 100 and 10000 Hz */
  131. a = 0;
  132. for(i=0;i<1 * sample_rate;i++) {
  133. v = (int_cos(a) * 10000) >> FRAC_BITS;
  134. for(j=0;j<nb_channels;j++)
  135. put_sample(v);
  136. f = 100 + (((10000 - 100) * i) / sample_rate);
  137. a += (f * FRAC_ONE) / sample_rate;
  138. }
  139. /* 0.5 second of low amplitude white noise */
  140. for(i=0;i<sample_rate / 2;i++) {
  141. v = myrnd(&seed, 20000) - 10000;
  142. for(j=0;j<nb_channels;j++)
  143. put_sample(v);
  144. }
  145. /* 0.5 second of high amplitude white noise */
  146. for(i=0;i<sample_rate / 2;i++) {
  147. v = myrnd(&seed, 65535) - 32768;
  148. for(j=0;j<nb_channels;j++)
  149. put_sample(v);
  150. }
  151. /* 1 second of unrelated ramps for each channel */
  152. for(j=0;j<nb_channels;j++) {
  153. taba[j] = 0;
  154. tabf1[j] = 100 + myrnd(&seed, 5000);
  155. tabf2[j] = 100 + myrnd(&seed, 5000);
  156. }
  157. for(i=0;i<1 * sample_rate;i++) {
  158. for(j=0;j<nb_channels;j++) {
  159. v = (int_cos(taba[j]) * 10000) >> FRAC_BITS;
  160. put_sample(v);
  161. f = tabf1[j] + (((tabf2[j] - tabf1[j]) * i) / sample_rate);
  162. taba[j] += (f * FRAC_ONE) / sample_rate;
  163. }
  164. }
  165. /* 2 seconds of 500 Hz with varying volume */
  166. a = 0;
  167. ampa = 0;
  168. for(i=0;i<2 * sample_rate;i++) {
  169. for(j=0;j<nb_channels;j++) {
  170. amp = ((FRAC_ONE + int_cos(ampa)) * 5000) >> FRAC_BITS;
  171. if (j & 1)
  172. amp = 10000 - amp;
  173. v = (int_cos(a) * amp) >> FRAC_BITS;
  174. put_sample(v);
  175. a += (500 * FRAC_ONE) / sample_rate;
  176. ampa += (2 * FRAC_ONE) / sample_rate;
  177. }
  178. }
  179. fclose(outfile);
  180. return 0;
  181. }