sha.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*
  2. * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
  3. * Copyright (C) 2009 Konstantin Shishkov
  4. * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
  5. * and on BSD-licensed SHA-2 code by Aaron D. Gifford
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <string.h>
  24. #include "avutil.h"
  25. #include "bswap.h"
  26. #include "sha.h"
  27. #include "intreadwrite.h"
  28. /** hash context */
  29. typedef struct AVSHA {
  30. uint8_t digest_len; ///< digest length in 32-bit words
  31. uint64_t count; ///< number of bytes in buffer
  32. uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating
  33. uint32_t state[8]; ///< current hash value
  34. /** function used to update hash for 512-bit input block */
  35. void (*transform)(uint32_t *state, const uint8_t buffer[64]);
  36. } AVSHA;
  37. const int av_sha_size = sizeof(AVSHA);
  38. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  39. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  40. #define blk0(i) (block[i] = av_be2ne32(((const uint32_t*)buffer)[i]))
  41. #define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1))
  42. #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  43. #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  44. #define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
  45. #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
  46. #define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
  47. /* Hash a single 512-bit block. This is the core of the algorithm. */
  48. static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
  49. {
  50. uint32_t block[80];
  51. unsigned int i, a, b, c, d, e;
  52. a = state[0];
  53. b = state[1];
  54. c = state[2];
  55. d = state[3];
  56. e = state[4];
  57. #if CONFIG_SMALL
  58. for (i = 0; i < 80; i++) {
  59. int t;
  60. if (i < 16)
  61. t = av_be2ne32(((uint32_t*)buffer)[i]);
  62. else
  63. t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
  64. block[i] = t;
  65. t += e + rol(a, 5);
  66. if (i < 40) {
  67. if (i < 20)
  68. t += ((b&(c^d))^d) + 0x5A827999;
  69. else
  70. t += ( b^c ^d) + 0x6ED9EBA1;
  71. } else {
  72. if (i < 60)
  73. t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
  74. else
  75. t += ( b^c ^d) + 0xCA62C1D6;
  76. }
  77. e = d;
  78. d = c;
  79. c = rol(b, 30);
  80. b = a;
  81. a = t;
  82. }
  83. #else
  84. for (i = 0; i < 15; i += 5) {
  85. R0(a, b, c, d, e, 0 + i);
  86. R0(e, a, b, c, d, 1 + i);
  87. R0(d, e, a, b, c, 2 + i);
  88. R0(c, d, e, a, b, 3 + i);
  89. R0(b, c, d, e, a, 4 + i);
  90. }
  91. R0(a, b, c, d, e, 15);
  92. R1(e, a, b, c, d, 16);
  93. R1(d, e, a, b, c, 17);
  94. R1(c, d, e, a, b, 18);
  95. R1(b, c, d, e, a, 19);
  96. for (i = 20; i < 40; i += 5) {
  97. R2(a, b, c, d, e, 0 + i);
  98. R2(e, a, b, c, d, 1 + i);
  99. R2(d, e, a, b, c, 2 + i);
  100. R2(c, d, e, a, b, 3 + i);
  101. R2(b, c, d, e, a, 4 + i);
  102. }
  103. for (; i < 60; i += 5) {
  104. R3(a, b, c, d, e, 0 + i);
  105. R3(e, a, b, c, d, 1 + i);
  106. R3(d, e, a, b, c, 2 + i);
  107. R3(c, d, e, a, b, 3 + i);
  108. R3(b, c, d, e, a, 4 + i);
  109. }
  110. for (; i < 80; i += 5) {
  111. R4(a, b, c, d, e, 0 + i);
  112. R4(e, a, b, c, d, 1 + i);
  113. R4(d, e, a, b, c, 2 + i);
  114. R4(c, d, e, a, b, 3 + i);
  115. R4(b, c, d, e, a, 4 + i);
  116. }
  117. #endif
  118. state[0] += a;
  119. state[1] += b;
  120. state[2] += c;
  121. state[3] += d;
  122. state[4] += e;
  123. }
  124. static const uint32_t K256[64] = {
  125. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  126. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  127. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  128. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  129. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  130. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  131. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  132. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  133. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  134. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  135. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  136. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  137. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  138. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  139. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  140. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  141. };
  142. #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
  143. #define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
  144. #define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
  145. #define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7))
  146. #define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
  147. #define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
  148. #undef blk
  149. #define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
  150. sigma1_256(block[i - 2]) + block[i - 7])
  151. #define ROUND256(a,b,c,d,e,f,g,h) \
  152. T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
  153. (d) += T1; \
  154. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  155. i++
  156. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  157. T1 = blk0(i); \
  158. ROUND256(a,b,c,d,e,f,g,h)
  159. #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
  160. T1 = blk(i); \
  161. ROUND256(a,b,c,d,e,f,g,h)
  162. static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
  163. {
  164. unsigned int i, a, b, c, d, e, f, g, h;
  165. uint32_t block[64];
  166. uint32_t T1, av_unused(T2);
  167. a = state[0];
  168. b = state[1];
  169. c = state[2];
  170. d = state[3];
  171. e = state[4];
  172. f = state[5];
  173. g = state[6];
  174. h = state[7];
  175. #if CONFIG_SMALL
  176. for (i = 0; i < 64; i++) {
  177. if (i < 16)
  178. T1 = blk0(i);
  179. else
  180. T1 = blk(i);
  181. T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
  182. T2 = Sigma0_256(a) + Maj(a, b, c);
  183. h = g;
  184. g = f;
  185. f = e;
  186. e = d + T1;
  187. d = c;
  188. c = b;
  189. b = a;
  190. a = T1 + T2;
  191. }
  192. #else
  193. for (i = 0; i < 16;) {
  194. ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
  195. ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
  196. ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
  197. ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
  198. ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
  199. ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
  200. ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
  201. ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
  202. }
  203. for (; i < 64;) {
  204. ROUND256_16_TO_63(a, b, c, d, e, f, g, h);
  205. ROUND256_16_TO_63(h, a, b, c, d, e, f, g);
  206. ROUND256_16_TO_63(g, h, a, b, c, d, e, f);
  207. ROUND256_16_TO_63(f, g, h, a, b, c, d, e);
  208. ROUND256_16_TO_63(e, f, g, h, a, b, c, d);
  209. ROUND256_16_TO_63(d, e, f, g, h, a, b, c);
  210. ROUND256_16_TO_63(c, d, e, f, g, h, a, b);
  211. ROUND256_16_TO_63(b, c, d, e, f, g, h, a);
  212. }
  213. #endif
  214. state[0] += a;
  215. state[1] += b;
  216. state[2] += c;
  217. state[3] += d;
  218. state[4] += e;
  219. state[5] += f;
  220. state[6] += g;
  221. state[7] += h;
  222. }
  223. int av_sha_init(AVSHA* ctx, int bits)
  224. {
  225. ctx->digest_len = bits >> 5;
  226. switch (bits) {
  227. case 160: // SHA-1
  228. ctx->state[0] = 0x67452301;
  229. ctx->state[1] = 0xEFCDAB89;
  230. ctx->state[2] = 0x98BADCFE;
  231. ctx->state[3] = 0x10325476;
  232. ctx->state[4] = 0xC3D2E1F0;
  233. ctx->transform = sha1_transform;
  234. break;
  235. case 224: // SHA-224
  236. ctx->state[0] = 0xC1059ED8;
  237. ctx->state[1] = 0x367CD507;
  238. ctx->state[2] = 0x3070DD17;
  239. ctx->state[3] = 0xF70E5939;
  240. ctx->state[4] = 0xFFC00B31;
  241. ctx->state[5] = 0x68581511;
  242. ctx->state[6] = 0x64F98FA7;
  243. ctx->state[7] = 0xBEFA4FA4;
  244. ctx->transform = sha256_transform;
  245. break;
  246. case 256: // SHA-256
  247. ctx->state[0] = 0x6A09E667;
  248. ctx->state[1] = 0xBB67AE85;
  249. ctx->state[2] = 0x3C6EF372;
  250. ctx->state[3] = 0xA54FF53A;
  251. ctx->state[4] = 0x510E527F;
  252. ctx->state[5] = 0x9B05688C;
  253. ctx->state[6] = 0x1F83D9AB;
  254. ctx->state[7] = 0x5BE0CD19;
  255. ctx->transform = sha256_transform;
  256. break;
  257. default:
  258. return -1;
  259. }
  260. ctx->count = 0;
  261. return 0;
  262. }
  263. void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len)
  264. {
  265. unsigned int i, j;
  266. j = ctx->count & 63;
  267. ctx->count += len;
  268. #if CONFIG_SMALL
  269. for (i = 0; i < len; i++) {
  270. ctx->buffer[j++] = data[i];
  271. if (64 == j) {
  272. ctx->transform(ctx->state, ctx->buffer);
  273. j = 0;
  274. }
  275. }
  276. #else
  277. if ((j + len) > 63) {
  278. memcpy(&ctx->buffer[j], data, (i = 64 - j));
  279. ctx->transform(ctx->state, ctx->buffer);
  280. for (; i + 63 < len; i += 64)
  281. ctx->transform(ctx->state, &data[i]);
  282. j = 0;
  283. } else
  284. i = 0;
  285. memcpy(&ctx->buffer[j], &data[i], len - i);
  286. #endif
  287. }
  288. void av_sha_final(AVSHA* ctx, uint8_t *digest)
  289. {
  290. int i;
  291. uint64_t finalcount = av_be2ne64(ctx->count << 3);
  292. av_sha_update(ctx, "\200", 1);
  293. while ((ctx->count & 63) != 56)
  294. av_sha_update(ctx, "", 1);
  295. av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
  296. for (i = 0; i < ctx->digest_len; i++)
  297. AV_WB32(digest + i*4, ctx->state[i]);
  298. }
  299. #ifdef TEST
  300. #include <stdio.h>
  301. #undef printf
  302. int main(void)
  303. {
  304. int i, j, k;
  305. AVSHA ctx;
  306. unsigned char digest[32];
  307. const int lengths[3] = { 160, 224, 256 };
  308. for (j = 0; j < 3; j++) {
  309. printf("Testing SHA-%d\n", lengths[j]);
  310. for (k = 0; k < 3; k++) {
  311. av_sha_init(&ctx, lengths[j]);
  312. if (k == 0)
  313. av_sha_update(&ctx, "abc", 3);
  314. else if (k == 1)
  315. av_sha_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
  316. else
  317. for (i = 0; i < 1000*1000; i++)
  318. av_sha_update(&ctx, "a", 1);
  319. av_sha_final(&ctx, digest);
  320. for (i = 0; i < lengths[j] >> 3; i++)
  321. printf("%02X", digest[i]);
  322. putchar('\n');
  323. }
  324. switch (j) {
  325. case 0:
  326. //test vectors (from FIPS PUB 180-1)
  327. printf("A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D\n"
  328. "84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1\n"
  329. "34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F\n");
  330. break;
  331. case 1:
  332. //test vectors (from FIPS PUB 180-2 Appendix A)
  333. printf("23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7\n"
  334. "75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525\n"
  335. "20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67\n");
  336. break;
  337. case 2:
  338. //test vectors (from FIPS PUB 180-2)
  339. printf("ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad\n"
  340. "248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1\n"
  341. "cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0\n");
  342. break;
  343. }
  344. }
  345. return 0;
  346. }
  347. #endif