rematrix.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. /*
  2. * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "swresample_internal.h"
  21. #include "libavutil/audioconvert.h"
  22. #include "libavutil/avassert.h"
  23. #define ONE (1.0)
  24. #define R(x) x
  25. #define SAMPLE float
  26. #define COEFF float
  27. #define INTER float
  28. #define RENAME(x) x ## _float
  29. #include "rematrix_template.c"
  30. #undef SAMPLE
  31. #undef RENAME
  32. #undef R
  33. #undef ONE
  34. #undef COEFF
  35. #undef INTER
  36. #define ONE (1.0)
  37. #define R(x) x
  38. #define SAMPLE double
  39. #define COEFF double
  40. #define INTER double
  41. #define RENAME(x) x ## _double
  42. #include "rematrix_template.c"
  43. #undef SAMPLE
  44. #undef RENAME
  45. #undef R
  46. #undef ONE
  47. #undef COEFF
  48. #undef INTER
  49. #define ONE (-32768)
  50. #define R(x) (((x) + 16384)>>15)
  51. #define SAMPLE int16_t
  52. #define COEFF int
  53. #define INTER int
  54. #define RENAME(x) x ## _s16
  55. #include "rematrix_template.c"
  56. #define FRONT_LEFT 0
  57. #define FRONT_RIGHT 1
  58. #define FRONT_CENTER 2
  59. #define LOW_FREQUENCY 3
  60. #define BACK_LEFT 4
  61. #define BACK_RIGHT 5
  62. #define FRONT_LEFT_OF_CENTER 6
  63. #define FRONT_RIGHT_OF_CENTER 7
  64. #define BACK_CENTER 8
  65. #define SIDE_LEFT 9
  66. #define SIDE_RIGHT 10
  67. #define TOP_CENTER 11
  68. #define TOP_FRONT_LEFT 12
  69. #define TOP_FRONT_CENTER 13
  70. #define TOP_FRONT_RIGHT 14
  71. #define TOP_BACK_LEFT 15
  72. #define TOP_BACK_CENTER 16
  73. #define TOP_BACK_RIGHT 17
  74. int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
  75. {
  76. int nb_in, nb_out, in, out;
  77. if (!s || s->in_convert) // s needs to be allocated but not initialized
  78. return AVERROR(EINVAL);
  79. memset(s->matrix, 0, sizeof(s->matrix));
  80. nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
  81. nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
  82. for (out = 0; out < nb_out; out++) {
  83. for (in = 0; in < nb_in; in++)
  84. s->matrix[out][in] = matrix[in];
  85. matrix += stride;
  86. }
  87. s->rematrix_custom = 1;
  88. return 0;
  89. }
  90. static int even(int64_t layout){
  91. if(!layout) return 1;
  92. if(layout&(layout-1)) return 1;
  93. return 0;
  94. }
  95. static int sane_layout(int64_t layout){
  96. if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
  97. return 0;
  98. if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
  99. return 0;
  100. if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
  101. return 0;
  102. if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
  103. return 0;
  104. if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
  105. return 0;
  106. if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
  107. return 0;
  108. return 1;
  109. }
  110. static int auto_matrix(SwrContext *s)
  111. {
  112. int i, j, out_i;
  113. double matrix[64][64]={{0}};
  114. int64_t unaccounted= s->in_ch_layout & ~s->out_ch_layout;
  115. double maxcoef=0;
  116. char buf[128];
  117. const int matrix_encoding = s->matrix_encoding;
  118. memset(s->matrix, 0, sizeof(s->matrix));
  119. for(i=0; i<64; i++){
  120. if(s->in_ch_layout & s->out_ch_layout & (1LL<<i))
  121. matrix[i][i]= 1.0;
  122. }
  123. if(!sane_layout(s->in_ch_layout)){
  124. av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
  125. av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
  126. return AVERROR(EINVAL);
  127. }
  128. if(!sane_layout(s->out_ch_layout)){
  129. av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
  130. av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
  131. return AVERROR(EINVAL);
  132. }
  133. //FIXME implement dolby surround
  134. //FIXME implement full ac3
  135. if(unaccounted & AV_CH_FRONT_CENTER){
  136. if((s->out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
  137. if(s->in_ch_layout & AV_CH_LAYOUT_STEREO) {
  138. matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
  139. matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
  140. } else {
  141. matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
  142. matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
  143. }
  144. }else
  145. av_assert0(0);
  146. }
  147. if(unaccounted & AV_CH_LAYOUT_STEREO){
  148. if(s->out_ch_layout & AV_CH_FRONT_CENTER){
  149. matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
  150. matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
  151. if(s->in_ch_layout & AV_CH_FRONT_CENTER)
  152. matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
  153. }else
  154. av_assert0(0);
  155. }
  156. if(unaccounted & AV_CH_BACK_CENTER){
  157. if(s->out_ch_layout & AV_CH_BACK_LEFT){
  158. matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
  159. matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
  160. }else if(s->out_ch_layout & AV_CH_SIDE_LEFT){
  161. matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
  162. matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
  163. }else if(s->out_ch_layout & AV_CH_FRONT_LEFT){
  164. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
  165. matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  166. if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
  167. matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
  168. matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
  169. } else {
  170. matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
  171. matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
  172. }
  173. } else {
  174. matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
  175. matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
  176. }
  177. }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
  178. matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
  179. }else
  180. av_assert0(0);
  181. }
  182. if(unaccounted & AV_CH_BACK_LEFT){
  183. if(s->out_ch_layout & AV_CH_BACK_CENTER){
  184. matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
  185. matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
  186. }else if(s->out_ch_layout & AV_CH_SIDE_LEFT){
  187. if(s->in_ch_layout & AV_CH_SIDE_LEFT){
  188. matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
  189. matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
  190. }else{
  191. matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
  192. matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
  193. }
  194. }else if(s->out_ch_layout & AV_CH_FRONT_LEFT){
  195. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  196. matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
  197. matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
  198. matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
  199. matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
  200. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  201. matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
  202. matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
  203. matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
  204. matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
  205. } else {
  206. matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
  207. matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
  208. }
  209. }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
  210. matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
  211. matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
  212. }else
  213. av_assert0(0);
  214. }
  215. if(unaccounted & AV_CH_SIDE_LEFT){
  216. if(s->out_ch_layout & AV_CH_BACK_LEFT){
  217. /* if back channels do not exist in the input, just copy side
  218. channels to back channels, otherwise mix side into back */
  219. if (s->in_ch_layout & AV_CH_BACK_LEFT) {
  220. matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
  221. matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
  222. } else {
  223. matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
  224. matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
  225. }
  226. }else if(s->out_ch_layout & AV_CH_BACK_CENTER){
  227. matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
  228. matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
  229. }else if(s->out_ch_layout & AV_CH_FRONT_LEFT){
  230. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  231. matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
  232. matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
  233. matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
  234. matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
  235. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  236. matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
  237. matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
  238. matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
  239. matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
  240. } else {
  241. matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
  242. matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
  243. }
  244. }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
  245. matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
  246. matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
  247. }else
  248. av_assert0(0);
  249. }
  250. if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
  251. if(s->out_ch_layout & AV_CH_FRONT_LEFT){
  252. matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
  253. matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
  254. }else if(s->out_ch_layout & AV_CH_FRONT_CENTER){
  255. matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
  256. matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
  257. }else
  258. av_assert0(0);
  259. }
  260. /* mix LFE into front left/right or center */
  261. if (unaccounted & AV_CH_LOW_FREQUENCY) {
  262. if (s->out_ch_layout & AV_CH_FRONT_CENTER) {
  263. matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
  264. } else if (s->out_ch_layout & AV_CH_FRONT_LEFT) {
  265. matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
  266. matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
  267. } else
  268. av_assert0(0);
  269. }
  270. for(out_i=i=0; i<64; i++){
  271. double sum=0;
  272. int in_i=0;
  273. for(j=0; j<64; j++){
  274. s->matrix[out_i][in_i]= matrix[i][j];
  275. if(matrix[i][j]){
  276. sum += fabs(matrix[i][j]);
  277. }
  278. if(s->in_ch_layout & (1ULL<<j))
  279. in_i++;
  280. }
  281. maxcoef= FFMAX(maxcoef, sum);
  282. if(s->out_ch_layout & (1ULL<<i))
  283. out_i++;
  284. }
  285. if(s->rematrix_volume < 0)
  286. maxcoef = -s->rematrix_volume;
  287. if(( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
  288. || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) && maxcoef > 1.0){
  289. for(i=0; i<SWR_CH_MAX; i++)
  290. for(j=0; j<SWR_CH_MAX; j++){
  291. s->matrix[i][j] /= maxcoef;
  292. }
  293. }
  294. if(s->rematrix_volume > 0){
  295. for(i=0; i<SWR_CH_MAX; i++)
  296. for(j=0; j<SWR_CH_MAX; j++){
  297. s->matrix[i][j] *= s->rematrix_volume;
  298. }
  299. }
  300. for(i=0; i<av_get_channel_layout_nb_channels(s->out_ch_layout); i++){
  301. for(j=0; j<av_get_channel_layout_nb_channels(s->in_ch_layout); j++){
  302. av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
  303. }
  304. av_log(NULL, AV_LOG_DEBUG, "\n");
  305. }
  306. return 0;
  307. }
  308. int swri_rematrix_init(SwrContext *s){
  309. int i, j;
  310. int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
  311. int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
  312. s->mix_any_f = NULL;
  313. if (!s->rematrix_custom) {
  314. int r = auto_matrix(s);
  315. if (r)
  316. return r;
  317. }
  318. if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
  319. s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(int));
  320. s->native_one = av_mallocz(sizeof(int));
  321. for (i = 0; i < nb_out; i++)
  322. for (j = 0; j < nb_in; j++)
  323. ((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
  324. *((int*)s->native_one) = 32768;
  325. s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
  326. s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
  327. s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
  328. }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
  329. s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(float));
  330. s->native_one = av_mallocz(sizeof(float));
  331. for (i = 0; i < nb_out; i++)
  332. for (j = 0; j < nb_in; j++)
  333. ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
  334. *((float*)s->native_one) = 1.0;
  335. s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
  336. s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
  337. s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
  338. }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
  339. s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(double));
  340. s->native_one = av_mallocz(sizeof(double));
  341. for (i = 0; i < nb_out; i++)
  342. for (j = 0; j < nb_in; j++)
  343. ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
  344. *((double*)s->native_one) = 1.0;
  345. s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
  346. s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
  347. s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
  348. }else
  349. av_assert0(0);
  350. //FIXME quantize for integeres
  351. for (i = 0; i < SWR_CH_MAX; i++) {
  352. int ch_in=0;
  353. for (j = 0; j < SWR_CH_MAX; j++) {
  354. s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
  355. if(s->matrix[i][j])
  356. s->matrix_ch[i][++ch_in]= j;
  357. }
  358. s->matrix_ch[i][0]= ch_in;
  359. }
  360. if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s);
  361. return 0;
  362. }
  363. void swri_rematrix_free(SwrContext *s){
  364. av_freep(&s->native_matrix);
  365. av_freep(&s->native_one);
  366. av_freep(&s->native_simd_matrix);
  367. }
  368. int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
  369. int out_i, in_i, i, j;
  370. int len1 = 0;
  371. int off = 0;
  372. if(s->mix_any_f) {
  373. s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
  374. return 0;
  375. }
  376. if(s->mix_2_1_simd || s->mix_1_1_simd){
  377. len1= len&~15;
  378. off = len1 * out->bps;
  379. }
  380. av_assert0(out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
  381. av_assert0(in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
  382. for(out_i=0; out_i<out->ch_count; out_i++){
  383. switch(s->matrix_ch[out_i][0]){
  384. case 0:
  385. if(mustcopy)
  386. memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
  387. break;
  388. case 1:
  389. in_i= s->matrix_ch[out_i][1];
  390. if(s->matrix[out_i][in_i]!=1.0){
  391. if(s->mix_1_1_simd && len1)
  392. s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
  393. if(len != len1)
  394. s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
  395. }else if(mustcopy){
  396. memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
  397. }else{
  398. out->ch[out_i]= in->ch[in_i];
  399. }
  400. break;
  401. case 2: {
  402. int in_i1 = s->matrix_ch[out_i][1];
  403. int in_i2 = s->matrix_ch[out_i][2];
  404. if(s->mix_2_1_simd && len1)
  405. s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
  406. else
  407. s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
  408. if(len != len1)
  409. s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
  410. break;}
  411. default:
  412. if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
  413. for(i=0; i<len; i++){
  414. float v=0;
  415. for(j=0; j<s->matrix_ch[out_i][0]; j++){
  416. in_i= s->matrix_ch[out_i][1+j];
  417. v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
  418. }
  419. ((float*)out->ch[out_i])[i]= v;
  420. }
  421. }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
  422. for(i=0; i<len; i++){
  423. double v=0;
  424. for(j=0; j<s->matrix_ch[out_i][0]; j++){
  425. in_i= s->matrix_ch[out_i][1+j];
  426. v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
  427. }
  428. ((double*)out->ch[out_i])[i]= v;
  429. }
  430. }else{
  431. for(i=0; i<len; i++){
  432. int v=0;
  433. for(j=0; j<s->matrix_ch[out_i][0]; j++){
  434. in_i= s->matrix_ch[out_i][1+j];
  435. v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
  436. }
  437. ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
  438. }
  439. }
  440. }
  441. }
  442. return 0;
  443. }