swresample.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835
  1. /*
  2. * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither_scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither_method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"filter_size" , "set resampling filter size" , OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=16 }, 0 , INT_MAX , PARAM },
  74. {"phase_shift" , "set resampling phase shift" , OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  75. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  76. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  77. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  78. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  79. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  80. {"precision" , "set resampling precision" , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  81. {"cheby" , "enable Chebyshev passband" , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  82. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  83. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  84. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  85. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  86. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  87. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  88. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  89. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  90. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  91. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  92. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  93. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  94. { "filter_type" , "select filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  95. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  96. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  97. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  98. { "kaiser_beta" , "set Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  99. {0}
  100. };
  101. static const char* context_to_name(void* ptr) {
  102. return "SWR";
  103. }
  104. static const AVClass av_class = {
  105. .class_name = "SWResampler",
  106. .item_name = context_to_name,
  107. .option = options,
  108. .version = LIBAVUTIL_VERSION_INT,
  109. .log_level_offset_offset = OFFSET(log_level_offset),
  110. .parent_log_context_offset = OFFSET(log_ctx),
  111. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  112. };
  113. unsigned swresample_version(void)
  114. {
  115. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  116. return LIBSWRESAMPLE_VERSION_INT;
  117. }
  118. const char *swresample_configuration(void)
  119. {
  120. return FFMPEG_CONFIGURATION;
  121. }
  122. const char *swresample_license(void)
  123. {
  124. #define LICENSE_PREFIX "libswresample license: "
  125. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  126. }
  127. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  128. if(!s || s->in_convert) // s needs to be allocated but not initialized
  129. return AVERROR(EINVAL);
  130. s->channel_map = channel_map;
  131. return 0;
  132. }
  133. const AVClass *swr_get_class(void)
  134. {
  135. return &av_class;
  136. }
  137. av_cold struct SwrContext *swr_alloc(void){
  138. SwrContext *s= av_mallocz(sizeof(SwrContext));
  139. if(s){
  140. s->av_class= &av_class;
  141. av_opt_set_defaults(s);
  142. }
  143. return s;
  144. }
  145. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  146. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  147. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  148. int log_offset, void *log_ctx){
  149. if(!s) s= swr_alloc();
  150. if(!s) return NULL;
  151. s->log_level_offset= log_offset;
  152. s->log_ctx= log_ctx;
  153. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  154. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  155. av_opt_set_int(s, "osr", out_sample_rate, 0);
  156. av_opt_set_int(s, "icl", in_ch_layout, 0);
  157. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  158. av_opt_set_int(s, "isr", in_sample_rate, 0);
  159. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  160. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  161. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  162. av_opt_set_int(s, "uch", 0, 0);
  163. return s;
  164. }
  165. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  166. a->fmt = fmt;
  167. a->bps = av_get_bytes_per_sample(fmt);
  168. a->planar= av_sample_fmt_is_planar(fmt);
  169. }
  170. static void free_temp(AudioData *a){
  171. av_free(a->data);
  172. memset(a, 0, sizeof(*a));
  173. }
  174. av_cold void swr_free(SwrContext **ss){
  175. SwrContext *s= *ss;
  176. if(s){
  177. free_temp(&s->postin);
  178. free_temp(&s->midbuf);
  179. free_temp(&s->preout);
  180. free_temp(&s->in_buffer);
  181. free_temp(&s->dither);
  182. swri_audio_convert_free(&s-> in_convert);
  183. swri_audio_convert_free(&s->out_convert);
  184. swri_audio_convert_free(&s->full_convert);
  185. if (s->resampler)
  186. s->resampler->free(&s->resample);
  187. swri_rematrix_free(s);
  188. }
  189. av_freep(ss);
  190. }
  191. av_cold int swr_init(struct SwrContext *s){
  192. s->in_buffer_index= 0;
  193. s->in_buffer_count= 0;
  194. s->resample_in_constraint= 0;
  195. free_temp(&s->postin);
  196. free_temp(&s->midbuf);
  197. free_temp(&s->preout);
  198. free_temp(&s->in_buffer);
  199. free_temp(&s->dither);
  200. memset(s->in.ch, 0, sizeof(s->in.ch));
  201. memset(s->out.ch, 0, sizeof(s->out.ch));
  202. swri_audio_convert_free(&s-> in_convert);
  203. swri_audio_convert_free(&s->out_convert);
  204. swri_audio_convert_free(&s->full_convert);
  205. swri_rematrix_free(s);
  206. s->flushed = 0;
  207. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  208. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  209. return AVERROR(EINVAL);
  210. }
  211. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  212. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  213. return AVERROR(EINVAL);
  214. }
  215. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  216. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  217. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  218. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  219. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  220. }else{
  221. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  222. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  223. }
  224. }
  225. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  226. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  227. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  228. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  229. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  230. return AVERROR(EINVAL);
  231. }
  232. switch(s->engine){
  233. #if CONFIG_LIBSOXR
  234. extern struct Resampler const soxr_resampler;
  235. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  236. #endif
  237. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  238. default:
  239. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  240. return AVERROR(EINVAL);
  241. }
  242. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  243. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  244. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  245. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  246. }else
  247. s->resampler->free(&s->resample);
  248. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  249. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  250. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  251. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  252. && s->resample){
  253. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  254. return -1;
  255. }
  256. if(!s->used_ch_count)
  257. s->used_ch_count= s->in.ch_count;
  258. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  259. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  260. s-> in_ch_layout= 0;
  261. }
  262. if(!s-> in_ch_layout)
  263. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  264. if(!s->out_ch_layout)
  265. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  266. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  267. s->rematrix_custom;
  268. #define RSC 1 //FIXME finetune
  269. if(!s-> in.ch_count)
  270. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  271. if(!s->used_ch_count)
  272. s->used_ch_count= s->in.ch_count;
  273. if(!s->out.ch_count)
  274. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  275. if(!s-> in.ch_count){
  276. av_assert0(!s->in_ch_layout);
  277. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  278. return -1;
  279. }
  280. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  281. av_log(s, AV_LOG_ERROR, "Rematrix is needed but there is not enough information to do it\n");
  282. return -1;
  283. }
  284. av_assert0(s->used_ch_count);
  285. av_assert0(s->out.ch_count);
  286. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  287. s->in_buffer= s->in;
  288. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither_method){
  289. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  290. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  291. return 0;
  292. }
  293. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  294. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  295. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  296. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  297. s->postin= s->in;
  298. s->preout= s->out;
  299. s->midbuf= s->in;
  300. if(s->channel_map){
  301. s->postin.ch_count=
  302. s->midbuf.ch_count= s->used_ch_count;
  303. if(s->resample)
  304. s->in_buffer.ch_count= s->used_ch_count;
  305. }
  306. if(!s->resample_first){
  307. s->midbuf.ch_count= s->out.ch_count;
  308. if(s->resample)
  309. s->in_buffer.ch_count = s->out.ch_count;
  310. }
  311. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  312. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  313. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  314. if(s->resample){
  315. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  316. }
  317. s->dither = s->preout;
  318. if(s->rematrix || s->dither_method)
  319. return swri_rematrix_init(s);
  320. return 0;
  321. }
  322. int swri_realloc_audio(AudioData *a, int count){
  323. int i, countb;
  324. AudioData old;
  325. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  326. return AVERROR(EINVAL);
  327. if(a->count >= count)
  328. return 0;
  329. count*=2;
  330. countb= FFALIGN(count*a->bps, ALIGN);
  331. old= *a;
  332. av_assert0(a->bps);
  333. av_assert0(a->ch_count);
  334. a->data= av_mallocz(countb*a->ch_count);
  335. if(!a->data)
  336. return AVERROR(ENOMEM);
  337. for(i=0; i<a->ch_count; i++){
  338. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  339. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  340. }
  341. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  342. av_free(old.data);
  343. a->count= count;
  344. return 1;
  345. }
  346. static void copy(AudioData *out, AudioData *in,
  347. int count){
  348. av_assert0(out->planar == in->planar);
  349. av_assert0(out->bps == in->bps);
  350. av_assert0(out->ch_count == in->ch_count);
  351. if(out->planar){
  352. int ch;
  353. for(ch=0; ch<out->ch_count; ch++)
  354. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  355. }else
  356. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  357. }
  358. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  359. int i;
  360. if(!in_arg){
  361. memset(out->ch, 0, sizeof(out->ch));
  362. }else if(out->planar){
  363. for(i=0; i<out->ch_count; i++)
  364. out->ch[i]= in_arg[i];
  365. }else{
  366. for(i=0; i<out->ch_count; i++)
  367. out->ch[i]= in_arg[0] + i*out->bps;
  368. }
  369. }
  370. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  371. int i;
  372. if(out->planar){
  373. for(i=0; i<out->ch_count; i++)
  374. in_arg[i]= out->ch[i];
  375. }else{
  376. in_arg[0]= out->ch[0];
  377. }
  378. }
  379. /**
  380. *
  381. * out may be equal in.
  382. */
  383. static void buf_set(AudioData *out, AudioData *in, int count){
  384. int ch;
  385. if(in->planar){
  386. for(ch=0; ch<out->ch_count; ch++)
  387. out->ch[ch]= in->ch[ch] + count*out->bps;
  388. }else{
  389. for(ch=out->ch_count-1; ch>=0; ch--)
  390. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  391. }
  392. }
  393. /**
  394. *
  395. * @return number of samples output per channel
  396. */
  397. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  398. const AudioData * in_param, int in_count){
  399. AudioData in, out, tmp;
  400. int ret_sum=0;
  401. int border=0;
  402. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  403. av_assert1(s->in_buffer.planar == in_param->planar);
  404. av_assert1(s->in_buffer.fmt == in_param->fmt);
  405. tmp=out=*out_param;
  406. in = *in_param;
  407. do{
  408. int ret, size, consumed;
  409. if(!s->resample_in_constraint && s->in_buffer_count){
  410. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  411. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  412. out_count -= ret;
  413. ret_sum += ret;
  414. buf_set(&out, &out, ret);
  415. s->in_buffer_count -= consumed;
  416. s->in_buffer_index += consumed;
  417. if(!in_count)
  418. break;
  419. if(s->in_buffer_count <= border){
  420. buf_set(&in, &in, -s->in_buffer_count);
  421. in_count += s->in_buffer_count;
  422. s->in_buffer_count=0;
  423. s->in_buffer_index=0;
  424. border = 0;
  425. }
  426. }
  427. if((s->flushed || in_count) && !s->in_buffer_count){
  428. s->in_buffer_index=0;
  429. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  430. out_count -= ret;
  431. ret_sum += ret;
  432. buf_set(&out, &out, ret);
  433. in_count -= consumed;
  434. buf_set(&in, &in, consumed);
  435. }
  436. //TODO is this check sane considering the advanced copy avoidance below
  437. size= s->in_buffer_index + s->in_buffer_count + in_count;
  438. if( size > s->in_buffer.count
  439. && s->in_buffer_count + in_count <= s->in_buffer_index){
  440. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  441. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  442. s->in_buffer_index=0;
  443. }else
  444. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  445. return ret;
  446. if(in_count){
  447. int count= in_count;
  448. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  449. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  450. copy(&tmp, &in, /*in_*/count);
  451. s->in_buffer_count += count;
  452. in_count -= count;
  453. border += count;
  454. buf_set(&in, &in, count);
  455. s->resample_in_constraint= 0;
  456. if(s->in_buffer_count != count || in_count)
  457. continue;
  458. }
  459. break;
  460. }while(1);
  461. s->resample_in_constraint= !!out_count;
  462. return ret_sum;
  463. }
  464. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  465. AudioData *in , int in_count){
  466. AudioData *postin, *midbuf, *preout;
  467. int ret/*, in_max*/;
  468. AudioData preout_tmp, midbuf_tmp;
  469. if(s->full_convert){
  470. av_assert0(!s->resample);
  471. swri_audio_convert(s->full_convert, out, in, in_count);
  472. return out_count;
  473. }
  474. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  475. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  476. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  477. return ret;
  478. if(s->resample_first){
  479. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  480. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  481. return ret;
  482. }else{
  483. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  484. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  485. return ret;
  486. }
  487. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  488. return ret;
  489. postin= &s->postin;
  490. midbuf_tmp= s->midbuf;
  491. midbuf= &midbuf_tmp;
  492. preout_tmp= s->preout;
  493. preout= &preout_tmp;
  494. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  495. postin= in;
  496. if(s->resample_first ? !s->resample : !s->rematrix)
  497. midbuf= postin;
  498. if(s->resample_first ? !s->rematrix : !s->resample)
  499. preout= midbuf;
  500. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  501. if(preout==in){
  502. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  503. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  504. copy(out, in, out_count);
  505. return out_count;
  506. }
  507. else if(preout==postin) preout= midbuf= postin= out;
  508. else if(preout==midbuf) preout= midbuf= out;
  509. else preout= out;
  510. }
  511. if(in != postin){
  512. swri_audio_convert(s->in_convert, postin, in, in_count);
  513. }
  514. if(s->resample_first){
  515. if(postin != midbuf)
  516. out_count= resample(s, midbuf, out_count, postin, in_count);
  517. if(midbuf != preout)
  518. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  519. }else{
  520. if(postin != midbuf)
  521. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  522. if(midbuf != preout)
  523. out_count= resample(s, preout, out_count, midbuf, in_count);
  524. }
  525. if(preout != out && out_count){
  526. if(s->dither_method){
  527. int ch;
  528. int dither_count= FFMAX(out_count, 1<<16);
  529. av_assert0(preout != in);
  530. if((ret=swri_realloc_audio(&s->dither, dither_count))<0)
  531. return ret;
  532. if(ret)
  533. for(ch=0; ch<s->dither.ch_count; ch++)
  534. swri_get_dither(s, s->dither.ch[ch], s->dither.count, 12345678913579<<ch, s->out_sample_fmt, s->int_sample_fmt);
  535. av_assert0(s->dither.ch_count == preout->ch_count);
  536. if(s->dither_pos + out_count > s->dither.count)
  537. s->dither_pos = 0;
  538. for(ch=0; ch<preout->ch_count; ch++)
  539. s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.ch[ch] + s->dither.bps * s->dither_pos, s->native_one, 0, 0, out_count);
  540. s->dither_pos += out_count;
  541. }
  542. //FIXME packed doesnt need more than 1 chan here!
  543. swri_audio_convert(s->out_convert, out, preout, out_count);
  544. }
  545. return out_count;
  546. }
  547. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  548. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  549. AudioData * in= &s->in;
  550. AudioData *out= &s->out;
  551. if(s->drop_output > 0){
  552. int ret;
  553. AudioData tmp = s->out;
  554. uint8_t *tmp_arg[SWR_CH_MAX];
  555. tmp.count = 0;
  556. tmp.data = NULL;
  557. if((ret=swri_realloc_audio(&tmp, s->drop_output))<0)
  558. return ret;
  559. reversefill_audiodata(&tmp, tmp_arg);
  560. s->drop_output *= -1; //FIXME find a less hackish solution
  561. ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  562. s->drop_output *= -1;
  563. if(ret>0)
  564. s->drop_output -= ret;
  565. av_freep(&tmp.data);
  566. if(s->drop_output || !out_arg)
  567. return 0;
  568. in_count = 0;
  569. }
  570. if(!in_arg){
  571. if(s->resample){
  572. if (!s->flushed)
  573. s->resampler->flush(s);
  574. s->resample_in_constraint = 0;
  575. s->flushed = 1;
  576. }else if(!s->in_buffer_count){
  577. return 0;
  578. }
  579. }else
  580. fill_audiodata(in , (void*)in_arg);
  581. fill_audiodata(out, out_arg);
  582. if(s->resample){
  583. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  584. if(ret>0 && !s->drop_output)
  585. s->outpts += ret * (int64_t)s->in_sample_rate;
  586. return ret;
  587. }else{
  588. AudioData tmp= *in;
  589. int ret2=0;
  590. int ret, size;
  591. size = FFMIN(out_count, s->in_buffer_count);
  592. if(size){
  593. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  594. ret= swr_convert_internal(s, out, size, &tmp, size);
  595. if(ret<0)
  596. return ret;
  597. ret2= ret;
  598. s->in_buffer_count -= ret;
  599. s->in_buffer_index += ret;
  600. buf_set(out, out, ret);
  601. out_count -= ret;
  602. if(!s->in_buffer_count)
  603. s->in_buffer_index = 0;
  604. }
  605. if(in_count){
  606. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  607. if(in_count > out_count) { //FIXME move after swr_convert_internal
  608. if( size > s->in_buffer.count
  609. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  610. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  611. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  612. s->in_buffer_index=0;
  613. }else
  614. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  615. return ret;
  616. }
  617. if(out_count){
  618. size = FFMIN(in_count, out_count);
  619. ret= swr_convert_internal(s, out, size, in, size);
  620. if(ret<0)
  621. return ret;
  622. buf_set(in, in, ret);
  623. in_count -= ret;
  624. ret2 += ret;
  625. }
  626. if(in_count){
  627. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  628. copy(&tmp, in, in_count);
  629. s->in_buffer_count += in_count;
  630. }
  631. }
  632. if(ret2>0 && !s->drop_output)
  633. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  634. return ret2;
  635. }
  636. }
  637. int swr_drop_output(struct SwrContext *s, int count){
  638. s->drop_output += count;
  639. if(s->drop_output <= 0)
  640. return 0;
  641. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  642. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  643. }
  644. int swr_inject_silence(struct SwrContext *s, int count){
  645. int ret, i;
  646. AudioData silence = s->in;
  647. uint8_t *tmp_arg[SWR_CH_MAX];
  648. if(count <= 0)
  649. return 0;
  650. silence.count = 0;
  651. silence.data = NULL;
  652. if((ret=swri_realloc_audio(&silence, count))<0)
  653. return ret;
  654. if(silence.planar) for(i=0; i<silence.ch_count; i++) {
  655. memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
  656. } else
  657. memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
  658. reversefill_audiodata(&silence, tmp_arg);
  659. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  660. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  661. av_freep(&silence.data);
  662. return ret;
  663. }
  664. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  665. if (s->resampler && s->resample){
  666. return s->resampler->get_delay(s, base);
  667. }else{
  668. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  669. }
  670. }
  671. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  672. int ret;
  673. if (!s || compensation_distance < 0)
  674. return AVERROR(EINVAL);
  675. if (!compensation_distance && sample_delta)
  676. return AVERROR(EINVAL);
  677. if (!s->resample) {
  678. s->flags |= SWR_FLAG_RESAMPLE;
  679. ret = swr_init(s);
  680. if (ret < 0)
  681. return ret;
  682. }
  683. if (!s->resampler->set_compensation){
  684. return AVERROR(EINVAL);
  685. }else{
  686. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  687. }
  688. }
  689. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  690. if(pts == INT64_MIN)
  691. return s->outpts;
  692. if(s->min_compensation >= FLT_MAX) {
  693. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  694. } else {
  695. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
  696. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  697. if(fabs(fdelta) > s->min_compensation) {
  698. if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
  699. int ret;
  700. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  701. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  702. if(ret<0){
  703. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  704. }
  705. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  706. int duration = s->out_sample_rate * s->soft_compensation_duration;
  707. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  708. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  709. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  710. swr_set_compensation(s, comp, duration);
  711. }
  712. }
  713. return s->outpts;
  714. }
  715. }