huffyuv.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488
  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "bitstream.h"
  31. #include "dsputil.h"
  32. #define VLC_BITS 11
  33. #ifdef WORDS_BIGENDIAN
  34. #define B 3
  35. #define G 2
  36. #define R 1
  37. #else
  38. #define B 0
  39. #define G 1
  40. #define R 2
  41. #endif
  42. typedef enum Predictor{
  43. LEFT= 0,
  44. PLANE,
  45. MEDIAN,
  46. } Predictor;
  47. typedef struct HYuvContext{
  48. AVCodecContext *avctx;
  49. Predictor predictor;
  50. GetBitContext gb;
  51. PutBitContext pb;
  52. int interlaced;
  53. int decorrelate;
  54. int bitstream_bpp;
  55. int version;
  56. int yuy2; //use yuy2 instead of 422P
  57. int bgr32; //use bgr32 instead of bgr24
  58. int width, height;
  59. int flags;
  60. int context;
  61. int picture_number;
  62. int last_slice_end;
  63. uint8_t *temp[3];
  64. uint64_t stats[3][256];
  65. uint8_t len[3][256];
  66. uint32_t bits[3][256];
  67. uint32_t pix_bgr_map[1<<VLC_BITS];
  68. VLC vlc[6]; //Y,U,V,YY,YU,YV
  69. AVFrame picture;
  70. uint8_t *bitstream_buffer;
  71. unsigned int bitstream_buffer_size;
  72. DSPContext dsp;
  73. }HYuvContext;
  74. static const unsigned char classic_shift_luma[] = {
  75. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  76. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  77. 69,68, 0
  78. };
  79. static const unsigned char classic_shift_chroma[] = {
  80. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  81. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  82. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  83. };
  84. static const unsigned char classic_add_luma[256] = {
  85. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  86. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  87. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  88. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  89. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  90. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  91. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  92. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  93. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  94. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  95. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  96. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  97. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  98. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  99. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  100. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  101. };
  102. static const unsigned char classic_add_chroma[256] = {
  103. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  104. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  105. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  106. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  107. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  108. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  109. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  110. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  111. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  112. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  113. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  114. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  115. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  116. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  117. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  118. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  119. };
  120. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  121. int i;
  122. for(i=0; i<w-1; i++){
  123. acc+= src[i];
  124. dst[i]= acc;
  125. i++;
  126. acc+= src[i];
  127. dst[i]= acc;
  128. }
  129. for(; i<w; i++){
  130. acc+= src[i];
  131. dst[i]= acc;
  132. }
  133. return acc;
  134. }
  135. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  136. int i;
  137. uint8_t l, lt;
  138. l= *left;
  139. lt= *left_top;
  140. for(i=0; i<w; i++){
  141. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  142. lt= src1[i];
  143. dst[i]= l;
  144. }
  145. *left= l;
  146. *left_top= lt;
  147. }
  148. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  149. int i;
  150. int r,g,b;
  151. r= *red;
  152. g= *green;
  153. b= *blue;
  154. for(i=0; i<w; i++){
  155. b+= src[4*i+B];
  156. g+= src[4*i+G];
  157. r+= src[4*i+R];
  158. dst[4*i+B]= b;
  159. dst[4*i+G]= g;
  160. dst[4*i+R]= r;
  161. }
  162. *red= r;
  163. *green= g;
  164. *blue= b;
  165. }
  166. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  167. int i;
  168. if(w<32){
  169. for(i=0; i<w; i++){
  170. const int temp= src[i];
  171. dst[i]= temp - left;
  172. left= temp;
  173. }
  174. return left;
  175. }else{
  176. for(i=0; i<16; i++){
  177. const int temp= src[i];
  178. dst[i]= temp - left;
  179. left= temp;
  180. }
  181. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  182. return src[w-1];
  183. }
  184. }
  185. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  186. int i;
  187. int r,g,b;
  188. r= *red;
  189. g= *green;
  190. b= *blue;
  191. for(i=0; i<FFMIN(w,4); i++){
  192. const int rt= src[i*4+R];
  193. const int gt= src[i*4+G];
  194. const int bt= src[i*4+B];
  195. dst[i*4+R]= rt - r;
  196. dst[i*4+G]= gt - g;
  197. dst[i*4+B]= bt - b;
  198. r = rt;
  199. g = gt;
  200. b = bt;
  201. }
  202. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  203. *red= src[(w-1)*4+R];
  204. *green= src[(w-1)*4+G];
  205. *blue= src[(w-1)*4+B];
  206. }
  207. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  208. int i, val, repeat;
  209. for(i=0; i<256;){
  210. repeat= get_bits(gb, 3);
  211. val = get_bits(gb, 5);
  212. if(repeat==0)
  213. repeat= get_bits(gb, 8);
  214. //printf("%d %d\n", val, repeat);
  215. while (repeat--)
  216. dst[i++] = val;
  217. }
  218. }
  219. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  220. int len, index;
  221. uint32_t bits=0;
  222. for(len=32; len>0; len--){
  223. for(index=0; index<256; index++){
  224. if(len_table[index]==len)
  225. dst[index]= bits++;
  226. }
  227. if(bits & 1){
  228. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  229. return -1;
  230. }
  231. bits >>= 1;
  232. }
  233. return 0;
  234. }
  235. #ifdef CONFIG_ENCODERS
  236. typedef struct {
  237. uint64_t val;
  238. int name;
  239. } heap_elem_t;
  240. static void heap_sift(heap_elem_t *h, int root, int size)
  241. {
  242. while(root*2+1 < size) {
  243. int child = root*2+1;
  244. if(child < size-1 && h[child].val > h[child+1].val)
  245. child++;
  246. if(h[root].val > h[child].val) {
  247. FFSWAP(heap_elem_t, h[root], h[child]);
  248. root = child;
  249. } else
  250. break;
  251. }
  252. }
  253. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  254. heap_elem_t h[size];
  255. int up[2*size];
  256. int len[2*size];
  257. int offset, i, next;
  258. for(offset=1; ; offset<<=1){
  259. for(i=0; i<size; i++){
  260. h[i].name = i;
  261. h[i].val = (stats[i] << 8) + offset;
  262. }
  263. for(i=size/2-1; i>=0; i--)
  264. heap_sift(h, i, size);
  265. for(next=size; next<size*2-1; next++){
  266. // merge the two smallest entries, and put it back in the heap
  267. uint64_t min1v = h[0].val;
  268. up[h[0].name] = next;
  269. h[0].val = INT64_MAX;
  270. heap_sift(h, 0, size);
  271. up[h[0].name] = next;
  272. h[0].name = next;
  273. h[0].val += min1v;
  274. heap_sift(h, 0, size);
  275. }
  276. len[2*size-2] = 0;
  277. for(i=2*size-3; i>=size; i--)
  278. len[i] = len[up[i]] + 1;
  279. for(i=0; i<size; i++) {
  280. dst[i] = len[up[i]] + 1;
  281. if(dst[i] > 32) break;
  282. }
  283. if(i==size) break;
  284. }
  285. }
  286. #endif /* CONFIG_ENCODERS */
  287. static void generate_joint_tables(HYuvContext *s){
  288. uint16_t symbols[1<<VLC_BITS];
  289. uint16_t bits[1<<VLC_BITS];
  290. uint8_t len[1<<VLC_BITS];
  291. if(s->bitstream_bpp < 24){
  292. int p, i, y, u;
  293. for(p=0; p<3; p++){
  294. for(i=y=0; y<256; y++){
  295. int len0 = s->len[0][y];
  296. int limit = VLC_BITS - len0;
  297. if(limit <= 0)
  298. continue;
  299. for(u=0; u<256; u++){
  300. int len1 = s->len[p][u];
  301. if(len1 > limit)
  302. continue;
  303. len[i] = len0 + len1;
  304. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  305. symbols[i] = (y<<8) + u;
  306. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  307. i++;
  308. }
  309. }
  310. free_vlc(&s->vlc[3+p]);
  311. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  312. }
  313. }else{
  314. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  315. int i, b, g, r, code;
  316. int p0 = s->decorrelate;
  317. int p1 = !s->decorrelate;
  318. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  319. // cover all the combinations that fit in 11 bits total, and it doesn't
  320. // matter if we miss a few rare codes.
  321. for(i=0, g=-16; g<16; g++){
  322. int len0 = s->len[p0][g&255];
  323. int limit0 = VLC_BITS - len0;
  324. if(limit0 < 2)
  325. continue;
  326. for(b=-16; b<16; b++){
  327. int len1 = s->len[p1][b&255];
  328. int limit1 = limit0 - len1;
  329. if(limit1 < 1)
  330. continue;
  331. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  332. for(r=-16; r<16; r++){
  333. int len2 = s->len[2][r&255];
  334. if(len2 > limit1)
  335. continue;
  336. len[i] = len0 + len1 + len2;
  337. bits[i] = (code << len2) + s->bits[2][r&255];
  338. if(s->decorrelate){
  339. map[i][G] = g;
  340. map[i][B] = g+b;
  341. map[i][R] = g+r;
  342. }else{
  343. map[i][B] = g;
  344. map[i][G] = b;
  345. map[i][R] = r;
  346. }
  347. i++;
  348. }
  349. }
  350. }
  351. free_vlc(&s->vlc[3]);
  352. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  353. }
  354. }
  355. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  356. GetBitContext gb;
  357. int i;
  358. init_get_bits(&gb, src, length*8);
  359. for(i=0; i<3; i++){
  360. read_len_table(s->len[i], &gb);
  361. if(generate_bits_table(s->bits[i], s->len[i])<0){
  362. return -1;
  363. }
  364. #if 0
  365. for(j=0; j<256; j++){
  366. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  367. }
  368. #endif
  369. free_vlc(&s->vlc[i]);
  370. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  371. }
  372. generate_joint_tables(s);
  373. return (get_bits_count(&gb)+7)/8;
  374. }
  375. static int read_old_huffman_tables(HYuvContext *s){
  376. #if 1
  377. GetBitContext gb;
  378. int i;
  379. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  380. read_len_table(s->len[0], &gb);
  381. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  382. read_len_table(s->len[1], &gb);
  383. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  384. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  385. if(s->bitstream_bpp >= 24){
  386. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  387. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  388. }
  389. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  390. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  391. for(i=0; i<3; i++){
  392. free_vlc(&s->vlc[i]);
  393. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  394. }
  395. generate_joint_tables(s);
  396. return 0;
  397. #else
  398. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  399. return -1;
  400. #endif
  401. }
  402. static void alloc_temp(HYuvContext *s){
  403. int i;
  404. if(s->bitstream_bpp<24){
  405. for(i=0; i<3; i++){
  406. s->temp[i]= av_malloc(s->width + 16);
  407. }
  408. }else{
  409. for(i=0; i<2; i++){
  410. s->temp[i]= av_malloc(4*s->width + 16);
  411. }
  412. }
  413. }
  414. static int common_init(AVCodecContext *avctx){
  415. HYuvContext *s = avctx->priv_data;
  416. s->avctx= avctx;
  417. s->flags= avctx->flags;
  418. dsputil_init(&s->dsp, avctx);
  419. s->width= avctx->width;
  420. s->height= avctx->height;
  421. assert(s->width>0 && s->height>0);
  422. return 0;
  423. }
  424. #ifdef CONFIG_DECODERS
  425. static int decode_init(AVCodecContext *avctx)
  426. {
  427. HYuvContext *s = avctx->priv_data;
  428. common_init(avctx);
  429. memset(s->vlc, 0, 3*sizeof(VLC));
  430. avctx->coded_frame= &s->picture;
  431. s->interlaced= s->height > 288;
  432. s->bgr32=1;
  433. //if(avctx->extradata)
  434. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  435. if(avctx->extradata_size){
  436. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  437. s->version=1; // do such files exist at all?
  438. else
  439. s->version=2;
  440. }else
  441. s->version=0;
  442. if(s->version==2){
  443. int method, interlace;
  444. method= ((uint8_t*)avctx->extradata)[0];
  445. s->decorrelate= method&64 ? 1 : 0;
  446. s->predictor= method&63;
  447. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  448. if(s->bitstream_bpp==0)
  449. s->bitstream_bpp= avctx->bits_per_sample&~7;
  450. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  451. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  452. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  453. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  454. return -1;
  455. }else{
  456. switch(avctx->bits_per_sample&7){
  457. case 1:
  458. s->predictor= LEFT;
  459. s->decorrelate= 0;
  460. break;
  461. case 2:
  462. s->predictor= LEFT;
  463. s->decorrelate= 1;
  464. break;
  465. case 3:
  466. s->predictor= PLANE;
  467. s->decorrelate= avctx->bits_per_sample >= 24;
  468. break;
  469. case 4:
  470. s->predictor= MEDIAN;
  471. s->decorrelate= 0;
  472. break;
  473. default:
  474. s->predictor= LEFT; //OLD
  475. s->decorrelate= 0;
  476. break;
  477. }
  478. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  479. s->context= 0;
  480. if(read_old_huffman_tables(s) < 0)
  481. return -1;
  482. }
  483. switch(s->bitstream_bpp){
  484. case 12:
  485. avctx->pix_fmt = PIX_FMT_YUV420P;
  486. break;
  487. case 16:
  488. if(s->yuy2){
  489. avctx->pix_fmt = PIX_FMT_YUYV422;
  490. }else{
  491. avctx->pix_fmt = PIX_FMT_YUV422P;
  492. }
  493. break;
  494. case 24:
  495. case 32:
  496. if(s->bgr32){
  497. avctx->pix_fmt = PIX_FMT_RGB32;
  498. }else{
  499. avctx->pix_fmt = PIX_FMT_BGR24;
  500. }
  501. break;
  502. default:
  503. assert(0);
  504. }
  505. alloc_temp(s);
  506. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  507. return 0;
  508. }
  509. #endif
  510. #ifdef CONFIG_ENCODERS
  511. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  512. int i;
  513. int index= 0;
  514. for(i=0; i<256;){
  515. int val= len[i];
  516. int repeat=0;
  517. for(; i<256 && len[i]==val && repeat<255; i++)
  518. repeat++;
  519. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  520. if(repeat>7){
  521. buf[index++]= val;
  522. buf[index++]= repeat;
  523. }else{
  524. buf[index++]= val | (repeat<<5);
  525. }
  526. }
  527. return index;
  528. }
  529. static int encode_init(AVCodecContext *avctx)
  530. {
  531. HYuvContext *s = avctx->priv_data;
  532. int i, j;
  533. common_init(avctx);
  534. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  535. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  536. s->version=2;
  537. avctx->coded_frame= &s->picture;
  538. switch(avctx->pix_fmt){
  539. case PIX_FMT_YUV420P:
  540. s->bitstream_bpp= 12;
  541. break;
  542. case PIX_FMT_YUV422P:
  543. s->bitstream_bpp= 16;
  544. break;
  545. case PIX_FMT_RGB32:
  546. s->bitstream_bpp= 24;
  547. break;
  548. default:
  549. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  550. return -1;
  551. }
  552. avctx->bits_per_sample= s->bitstream_bpp;
  553. s->decorrelate= s->bitstream_bpp >= 24;
  554. s->predictor= avctx->prediction_method;
  555. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  556. if(avctx->context_model==1){
  557. s->context= avctx->context_model;
  558. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  559. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  560. return -1;
  561. }
  562. }else s->context= 0;
  563. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  564. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  565. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  566. return -1;
  567. }
  568. if(avctx->context_model){
  569. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  570. return -1;
  571. }
  572. if(s->interlaced != ( s->height > 288 ))
  573. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  574. }
  575. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  576. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  577. return -1;
  578. }
  579. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  580. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  581. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  582. if(s->context)
  583. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  584. ((uint8_t*)avctx->extradata)[3]= 0;
  585. s->avctx->extradata_size= 4;
  586. if(avctx->stats_in){
  587. char *p= avctx->stats_in;
  588. for(i=0; i<3; i++)
  589. for(j=0; j<256; j++)
  590. s->stats[i][j]= 1;
  591. for(;;){
  592. for(i=0; i<3; i++){
  593. char *next;
  594. for(j=0; j<256; j++){
  595. s->stats[i][j]+= strtol(p, &next, 0);
  596. if(next==p) return -1;
  597. p=next;
  598. }
  599. }
  600. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  601. }
  602. }else{
  603. for(i=0; i<3; i++)
  604. for(j=0; j<256; j++){
  605. int d= FFMIN(j, 256-j);
  606. s->stats[i][j]= 100000000/(d+1);
  607. }
  608. }
  609. for(i=0; i<3; i++){
  610. generate_len_table(s->len[i], s->stats[i], 256);
  611. if(generate_bits_table(s->bits[i], s->len[i])<0){
  612. return -1;
  613. }
  614. s->avctx->extradata_size+=
  615. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  616. }
  617. if(s->context){
  618. for(i=0; i<3; i++){
  619. int pels = s->width*s->height / (i?40:10);
  620. for(j=0; j<256; j++){
  621. int d= FFMIN(j, 256-j);
  622. s->stats[i][j]= pels/(d+1);
  623. }
  624. }
  625. }else{
  626. for(i=0; i<3; i++)
  627. for(j=0; j<256; j++)
  628. s->stats[i][j]= 0;
  629. }
  630. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  631. alloc_temp(s);
  632. s->picture_number=0;
  633. return 0;
  634. }
  635. #endif /* CONFIG_ENCODERS */
  636. /* TODO instead of restarting the read when the code isn't in the first level
  637. * of the joint table, jump into the 2nd level of the individual table. */
  638. #define READ_2PIX(dst0, dst1, plane1){\
  639. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  640. if(code != 0xffff){\
  641. dst0 = code>>8;\
  642. dst1 = code;\
  643. }else{\
  644. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  645. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  646. }\
  647. }
  648. static void decode_422_bitstream(HYuvContext *s, int count){
  649. int i;
  650. count/=2;
  651. for(i=0; i<count; i++){
  652. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  653. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  654. }
  655. }
  656. static void decode_gray_bitstream(HYuvContext *s, int count){
  657. int i;
  658. count/=2;
  659. for(i=0; i<count; i++){
  660. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  661. }
  662. }
  663. #ifdef CONFIG_ENCODERS
  664. static int encode_422_bitstream(HYuvContext *s, int count){
  665. int i;
  666. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  667. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  668. return -1;
  669. }
  670. #define LOAD4\
  671. int y0 = s->temp[0][2*i];\
  672. int y1 = s->temp[0][2*i+1];\
  673. int u0 = s->temp[1][i];\
  674. int v0 = s->temp[2][i];
  675. count/=2;
  676. if(s->flags&CODEC_FLAG_PASS1){
  677. for(i=0; i<count; i++){
  678. LOAD4;
  679. s->stats[0][y0]++;
  680. s->stats[1][u0]++;
  681. s->stats[0][y1]++;
  682. s->stats[2][v0]++;
  683. }
  684. }
  685. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  686. return 0;
  687. if(s->context){
  688. for(i=0; i<count; i++){
  689. LOAD4;
  690. s->stats[0][y0]++;
  691. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  692. s->stats[1][u0]++;
  693. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  694. s->stats[0][y1]++;
  695. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  696. s->stats[2][v0]++;
  697. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  698. }
  699. }else{
  700. for(i=0; i<count; i++){
  701. LOAD4;
  702. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  703. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  704. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  705. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  706. }
  707. }
  708. return 0;
  709. }
  710. static int encode_gray_bitstream(HYuvContext *s, int count){
  711. int i;
  712. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  713. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  714. return -1;
  715. }
  716. #define LOAD2\
  717. int y0 = s->temp[0][2*i];\
  718. int y1 = s->temp[0][2*i+1];
  719. #define STAT2\
  720. s->stats[0][y0]++;\
  721. s->stats[0][y1]++;
  722. #define WRITE2\
  723. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  724. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  725. count/=2;
  726. if(s->flags&CODEC_FLAG_PASS1){
  727. for(i=0; i<count; i++){
  728. LOAD2;
  729. STAT2;
  730. }
  731. }
  732. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  733. return 0;
  734. if(s->context){
  735. for(i=0; i<count; i++){
  736. LOAD2;
  737. STAT2;
  738. WRITE2;
  739. }
  740. }else{
  741. for(i=0; i<count; i++){
  742. LOAD2;
  743. WRITE2;
  744. }
  745. }
  746. return 0;
  747. }
  748. #endif /* CONFIG_ENCODERS */
  749. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  750. int i;
  751. for(i=0; i<count; i++){
  752. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  753. if(code != -1){
  754. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  755. }else if(decorrelate){
  756. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  757. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  758. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  759. }else{
  760. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  761. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  762. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  763. }
  764. if(alpha)
  765. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  766. }
  767. }
  768. static void decode_bgr_bitstream(HYuvContext *s, int count){
  769. if(s->decorrelate){
  770. if(s->bitstream_bpp==24)
  771. decode_bgr_1(s, count, 1, 0);
  772. else
  773. decode_bgr_1(s, count, 1, 1);
  774. }else{
  775. if(s->bitstream_bpp==24)
  776. decode_bgr_1(s, count, 0, 0);
  777. else
  778. decode_bgr_1(s, count, 0, 1);
  779. }
  780. }
  781. static int encode_bgr_bitstream(HYuvContext *s, int count){
  782. int i;
  783. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  784. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  785. return -1;
  786. }
  787. #define LOAD3\
  788. int g= s->temp[0][4*i+G];\
  789. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  790. int r= (s->temp[0][4*i+R] - g) & 0xff;
  791. #define STAT3\
  792. s->stats[0][b]++;\
  793. s->stats[1][g]++;\
  794. s->stats[2][r]++;
  795. #define WRITE3\
  796. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  797. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  798. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  799. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  800. for(i=0; i<count; i++){
  801. LOAD3;
  802. STAT3;
  803. }
  804. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  805. for(i=0; i<count; i++){
  806. LOAD3;
  807. STAT3;
  808. WRITE3;
  809. }
  810. }else{
  811. for(i=0; i<count; i++){
  812. LOAD3;
  813. WRITE3;
  814. }
  815. }
  816. return 0;
  817. }
  818. #ifdef CONFIG_DECODERS
  819. static void draw_slice(HYuvContext *s, int y){
  820. int h, cy;
  821. int offset[4];
  822. if(s->avctx->draw_horiz_band==NULL)
  823. return;
  824. h= y - s->last_slice_end;
  825. y -= h;
  826. if(s->bitstream_bpp==12){
  827. cy= y>>1;
  828. }else{
  829. cy= y;
  830. }
  831. offset[0] = s->picture.linesize[0]*y;
  832. offset[1] = s->picture.linesize[1]*cy;
  833. offset[2] = s->picture.linesize[2]*cy;
  834. offset[3] = 0;
  835. emms_c();
  836. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  837. s->last_slice_end= y + h;
  838. }
  839. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  840. HYuvContext *s = avctx->priv_data;
  841. const int width= s->width;
  842. const int width2= s->width>>1;
  843. const int height= s->height;
  844. int fake_ystride, fake_ustride, fake_vstride;
  845. AVFrame * const p= &s->picture;
  846. int table_size= 0;
  847. AVFrame *picture = data;
  848. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  849. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  850. if(p->data[0])
  851. avctx->release_buffer(avctx, p);
  852. p->reference= 0;
  853. if(avctx->get_buffer(avctx, p) < 0){
  854. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  855. return -1;
  856. }
  857. if(s->context){
  858. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  859. if(table_size < 0)
  860. return -1;
  861. }
  862. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  863. return -1;
  864. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  865. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  866. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  867. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  868. s->last_slice_end= 0;
  869. if(s->bitstream_bpp<24){
  870. int y, cy;
  871. int lefty, leftu, leftv;
  872. int lefttopy, lefttopu, lefttopv;
  873. if(s->yuy2){
  874. p->data[0][3]= get_bits(&s->gb, 8);
  875. p->data[0][2]= get_bits(&s->gb, 8);
  876. p->data[0][1]= get_bits(&s->gb, 8);
  877. p->data[0][0]= get_bits(&s->gb, 8);
  878. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  879. return -1;
  880. }else{
  881. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  882. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  883. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  884. p->data[0][0]= get_bits(&s->gb, 8);
  885. switch(s->predictor){
  886. case LEFT:
  887. case PLANE:
  888. decode_422_bitstream(s, width-2);
  889. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  890. if(!(s->flags&CODEC_FLAG_GRAY)){
  891. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  892. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  893. }
  894. for(cy=y=1; y<s->height; y++,cy++){
  895. uint8_t *ydst, *udst, *vdst;
  896. if(s->bitstream_bpp==12){
  897. decode_gray_bitstream(s, width);
  898. ydst= p->data[0] + p->linesize[0]*y;
  899. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  900. if(s->predictor == PLANE){
  901. if(y>s->interlaced)
  902. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  903. }
  904. y++;
  905. if(y>=s->height) break;
  906. }
  907. draw_slice(s, y);
  908. ydst= p->data[0] + p->linesize[0]*y;
  909. udst= p->data[1] + p->linesize[1]*cy;
  910. vdst= p->data[2] + p->linesize[2]*cy;
  911. decode_422_bitstream(s, width);
  912. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  913. if(!(s->flags&CODEC_FLAG_GRAY)){
  914. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  915. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  916. }
  917. if(s->predictor == PLANE){
  918. if(cy>s->interlaced){
  919. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  920. if(!(s->flags&CODEC_FLAG_GRAY)){
  921. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  922. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  923. }
  924. }
  925. }
  926. }
  927. draw_slice(s, height);
  928. break;
  929. case MEDIAN:
  930. /* first line except first 2 pixels is left predicted */
  931. decode_422_bitstream(s, width-2);
  932. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  933. if(!(s->flags&CODEC_FLAG_GRAY)){
  934. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  935. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  936. }
  937. cy=y=1;
  938. /* second line is left predicted for interlaced case */
  939. if(s->interlaced){
  940. decode_422_bitstream(s, width);
  941. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  942. if(!(s->flags&CODEC_FLAG_GRAY)){
  943. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  944. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  945. }
  946. y++; cy++;
  947. }
  948. /* next 4 pixels are left predicted too */
  949. decode_422_bitstream(s, 4);
  950. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  951. if(!(s->flags&CODEC_FLAG_GRAY)){
  952. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  953. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  954. }
  955. /* next line except the first 4 pixels is median predicted */
  956. lefttopy= p->data[0][3];
  957. decode_422_bitstream(s, width-4);
  958. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  959. if(!(s->flags&CODEC_FLAG_GRAY)){
  960. lefttopu= p->data[1][1];
  961. lefttopv= p->data[2][1];
  962. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  963. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  964. }
  965. y++; cy++;
  966. for(; y<height; y++,cy++){
  967. uint8_t *ydst, *udst, *vdst;
  968. if(s->bitstream_bpp==12){
  969. while(2*cy > y){
  970. decode_gray_bitstream(s, width);
  971. ydst= p->data[0] + p->linesize[0]*y;
  972. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  973. y++;
  974. }
  975. if(y>=height) break;
  976. }
  977. draw_slice(s, y);
  978. decode_422_bitstream(s, width);
  979. ydst= p->data[0] + p->linesize[0]*y;
  980. udst= p->data[1] + p->linesize[1]*cy;
  981. vdst= p->data[2] + p->linesize[2]*cy;
  982. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  983. if(!(s->flags&CODEC_FLAG_GRAY)){
  984. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  985. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  986. }
  987. }
  988. draw_slice(s, height);
  989. break;
  990. }
  991. }
  992. }else{
  993. int y;
  994. int leftr, leftg, leftb;
  995. const int last_line= (height-1)*p->linesize[0];
  996. if(s->bitstream_bpp==32){
  997. skip_bits(&s->gb, 8);
  998. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  999. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1000. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1001. }else{
  1002. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1003. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1004. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1005. skip_bits(&s->gb, 8);
  1006. }
  1007. if(s->bgr32){
  1008. switch(s->predictor){
  1009. case LEFT:
  1010. case PLANE:
  1011. decode_bgr_bitstream(s, width-1);
  1012. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  1013. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1014. decode_bgr_bitstream(s, width);
  1015. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  1016. if(s->predictor == PLANE){
  1017. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1018. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1019. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1020. }
  1021. }
  1022. }
  1023. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1024. break;
  1025. default:
  1026. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1027. }
  1028. }else{
  1029. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1030. return -1;
  1031. }
  1032. }
  1033. emms_c();
  1034. *picture= *p;
  1035. *data_size = sizeof(AVFrame);
  1036. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1037. }
  1038. #endif
  1039. static int common_end(HYuvContext *s){
  1040. int i;
  1041. for(i=0; i<3; i++){
  1042. av_freep(&s->temp[i]);
  1043. }
  1044. return 0;
  1045. }
  1046. #ifdef CONFIG_DECODERS
  1047. static int decode_end(AVCodecContext *avctx)
  1048. {
  1049. HYuvContext *s = avctx->priv_data;
  1050. int i;
  1051. common_end(s);
  1052. av_freep(&s->bitstream_buffer);
  1053. for(i=0; i<3; i++){
  1054. free_vlc(&s->vlc[i]);
  1055. }
  1056. return 0;
  1057. }
  1058. #endif
  1059. #ifdef CONFIG_ENCODERS
  1060. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1061. HYuvContext *s = avctx->priv_data;
  1062. AVFrame *pict = data;
  1063. const int width= s->width;
  1064. const int width2= s->width>>1;
  1065. const int height= s->height;
  1066. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1067. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1068. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1069. AVFrame * const p= &s->picture;
  1070. int i, j, size=0;
  1071. *p = *pict;
  1072. p->pict_type= FF_I_TYPE;
  1073. p->key_frame= 1;
  1074. if(s->context){
  1075. for(i=0; i<3; i++){
  1076. generate_len_table(s->len[i], s->stats[i], 256);
  1077. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1078. return -1;
  1079. size+= store_table(s, s->len[i], &buf[size]);
  1080. }
  1081. for(i=0; i<3; i++)
  1082. for(j=0; j<256; j++)
  1083. s->stats[i][j] >>= 1;
  1084. }
  1085. init_put_bits(&s->pb, buf+size, buf_size-size);
  1086. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1087. int lefty, leftu, leftv, y, cy;
  1088. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1089. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1090. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1091. put_bits(&s->pb, 8, p->data[0][0]);
  1092. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1093. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1094. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1095. encode_422_bitstream(s, width-2);
  1096. if(s->predictor==MEDIAN){
  1097. int lefttopy, lefttopu, lefttopv;
  1098. cy=y=1;
  1099. if(s->interlaced){
  1100. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1101. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1102. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1103. encode_422_bitstream(s, width);
  1104. y++; cy++;
  1105. }
  1106. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1107. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1108. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1109. encode_422_bitstream(s, 4);
  1110. lefttopy= p->data[0][3];
  1111. lefttopu= p->data[1][1];
  1112. lefttopv= p->data[2][1];
  1113. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1114. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1115. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1116. encode_422_bitstream(s, width-4);
  1117. y++; cy++;
  1118. for(; y<height; y++,cy++){
  1119. uint8_t *ydst, *udst, *vdst;
  1120. if(s->bitstream_bpp==12){
  1121. while(2*cy > y){
  1122. ydst= p->data[0] + p->linesize[0]*y;
  1123. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1124. encode_gray_bitstream(s, width);
  1125. y++;
  1126. }
  1127. if(y>=height) break;
  1128. }
  1129. ydst= p->data[0] + p->linesize[0]*y;
  1130. udst= p->data[1] + p->linesize[1]*cy;
  1131. vdst= p->data[2] + p->linesize[2]*cy;
  1132. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1133. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1134. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1135. encode_422_bitstream(s, width);
  1136. }
  1137. }else{
  1138. for(cy=y=1; y<height; y++,cy++){
  1139. uint8_t *ydst, *udst, *vdst;
  1140. /* encode a luma only line & y++ */
  1141. if(s->bitstream_bpp==12){
  1142. ydst= p->data[0] + p->linesize[0]*y;
  1143. if(s->predictor == PLANE && s->interlaced < y){
  1144. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1145. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1146. }else{
  1147. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1148. }
  1149. encode_gray_bitstream(s, width);
  1150. y++;
  1151. if(y>=height) break;
  1152. }
  1153. ydst= p->data[0] + p->linesize[0]*y;
  1154. udst= p->data[1] + p->linesize[1]*cy;
  1155. vdst= p->data[2] + p->linesize[2]*cy;
  1156. if(s->predictor == PLANE && s->interlaced < cy){
  1157. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1158. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1159. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1160. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1161. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1162. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1163. }else{
  1164. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1165. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1166. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1167. }
  1168. encode_422_bitstream(s, width);
  1169. }
  1170. }
  1171. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1172. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1173. const int stride = -p->linesize[0];
  1174. const int fake_stride = -fake_ystride;
  1175. int y;
  1176. int leftr, leftg, leftb;
  1177. put_bits(&s->pb, 8, leftr= data[R]);
  1178. put_bits(&s->pb, 8, leftg= data[G]);
  1179. put_bits(&s->pb, 8, leftb= data[B]);
  1180. put_bits(&s->pb, 8, 0);
  1181. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1182. encode_bgr_bitstream(s, width-1);
  1183. for(y=1; y<s->height; y++){
  1184. uint8_t *dst = data + y*stride;
  1185. if(s->predictor == PLANE && s->interlaced < y){
  1186. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1187. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1188. }else{
  1189. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1190. }
  1191. encode_bgr_bitstream(s, width);
  1192. }
  1193. }else{
  1194. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1195. }
  1196. emms_c();
  1197. size+= (put_bits_count(&s->pb)+31)/8;
  1198. size/= 4;
  1199. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1200. int j;
  1201. char *p= avctx->stats_out;
  1202. char *end= p + 1024*30;
  1203. for(i=0; i<3; i++){
  1204. for(j=0; j<256; j++){
  1205. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1206. p+= strlen(p);
  1207. s->stats[i][j]= 0;
  1208. }
  1209. snprintf(p, end-p, "\n");
  1210. p++;
  1211. }
  1212. } else
  1213. avctx->stats_out[0] = '\0';
  1214. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1215. flush_put_bits(&s->pb);
  1216. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1217. }
  1218. s->picture_number++;
  1219. return size*4;
  1220. }
  1221. static int encode_end(AVCodecContext *avctx)
  1222. {
  1223. HYuvContext *s = avctx->priv_data;
  1224. common_end(s);
  1225. av_freep(&avctx->extradata);
  1226. av_freep(&avctx->stats_out);
  1227. return 0;
  1228. }
  1229. #endif /* CONFIG_ENCODERS */
  1230. #ifdef CONFIG_DECODERS
  1231. AVCodec huffyuv_decoder = {
  1232. "huffyuv",
  1233. CODEC_TYPE_VIDEO,
  1234. CODEC_ID_HUFFYUV,
  1235. sizeof(HYuvContext),
  1236. decode_init,
  1237. NULL,
  1238. decode_end,
  1239. decode_frame,
  1240. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1241. NULL
  1242. };
  1243. AVCodec ffvhuff_decoder = {
  1244. "ffvhuff",
  1245. CODEC_TYPE_VIDEO,
  1246. CODEC_ID_FFVHUFF,
  1247. sizeof(HYuvContext),
  1248. decode_init,
  1249. NULL,
  1250. decode_end,
  1251. decode_frame,
  1252. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1253. NULL
  1254. };
  1255. #endif
  1256. #ifdef CONFIG_ENCODERS
  1257. AVCodec huffyuv_encoder = {
  1258. "huffyuv",
  1259. CODEC_TYPE_VIDEO,
  1260. CODEC_ID_HUFFYUV,
  1261. sizeof(HYuvContext),
  1262. encode_init,
  1263. encode_frame,
  1264. encode_end,
  1265. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1266. };
  1267. AVCodec ffvhuff_encoder = {
  1268. "ffvhuff",
  1269. CODEC_TYPE_VIDEO,
  1270. CODEC_ID_FFVHUFF,
  1271. sizeof(HYuvContext),
  1272. encode_init,
  1273. encode_frame,
  1274. encode_end,
  1275. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1276. };
  1277. #endif //CONFIG_ENCODERS