wmadec.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags1, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags1 = 0;
  79. flags2 = 0;
  80. extradata = avctx->extradata;
  81. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  82. flags1 = AV_RL16(extradata);
  83. flags2 = AV_RL16(extradata+2);
  84. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  85. flags1 = AV_RL32(extradata);
  86. flags2 = AV_RL16(extradata+4);
  87. }
  88. // for(i=0; i<avctx->extradata_size; i++)
  89. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  90. s->use_exp_vlc = flags2 & 0x0001;
  91. s->use_bit_reservoir = flags2 & 0x0002;
  92. s->use_variable_block_len = flags2 & 0x0004;
  93. if(ff_wma_init(avctx, flags2)<0)
  94. return -1;
  95. /* init MDCT */
  96. for(i = 0; i < s->nb_block_sizes; i++)
  97. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  98. if (s->use_noise_coding) {
  99. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  100. ff_wma_hgain_huffbits, 1, 1,
  101. ff_wma_hgain_huffcodes, 2, 2, 0);
  102. }
  103. if (s->use_exp_vlc) {
  104. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  105. ff_wma_scale_huffbits, 1, 1,
  106. ff_wma_scale_huffcodes, 4, 4, 0);
  107. } else {
  108. wma_lsp_to_curve_init(s, s->frame_len);
  109. }
  110. return 0;
  111. }
  112. /**
  113. * compute x^-0.25 with an exponent and mantissa table. We use linear
  114. * interpolation to reduce the mantissa table size at a small speed
  115. * expense (linear interpolation approximately doubles the number of
  116. * bits of precision).
  117. */
  118. static inline float pow_m1_4(WMACodecContext *s, float x)
  119. {
  120. union {
  121. float f;
  122. unsigned int v;
  123. } u, t;
  124. unsigned int e, m;
  125. float a, b;
  126. u.f = x;
  127. e = u.v >> 23;
  128. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  129. /* build interpolation scale: 1 <= t < 2. */
  130. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  131. a = s->lsp_pow_m_table1[m];
  132. b = s->lsp_pow_m_table2[m];
  133. return s->lsp_pow_e_table[e] * (a + b * t.f);
  134. }
  135. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  136. {
  137. float wdel, a, b;
  138. int i, e, m;
  139. wdel = M_PI / frame_len;
  140. for(i=0;i<frame_len;i++)
  141. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  142. /* tables for x^-0.25 computation */
  143. for(i=0;i<256;i++) {
  144. e = i - 126;
  145. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  146. }
  147. /* NOTE: these two tables are needed to avoid two operations in
  148. pow_m1_4 */
  149. b = 1.0;
  150. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  151. m = (1 << LSP_POW_BITS) + i;
  152. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  153. a = pow(a, -0.25);
  154. s->lsp_pow_m_table1[i] = 2 * a - b;
  155. s->lsp_pow_m_table2[i] = b - a;
  156. b = a;
  157. }
  158. #if 0
  159. for(i=1;i<20;i++) {
  160. float v, r1, r2;
  161. v = 5.0 / i;
  162. r1 = pow_m1_4(s, v);
  163. r2 = pow(v,-0.25);
  164. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  165. }
  166. #endif
  167. }
  168. /**
  169. * NOTE: We use the same code as Vorbis here
  170. * @todo optimize it further with SSE/3Dnow
  171. */
  172. static void wma_lsp_to_curve(WMACodecContext *s,
  173. float *out, float *val_max_ptr,
  174. int n, float *lsp)
  175. {
  176. int i, j;
  177. float p, q, w, v, val_max;
  178. val_max = 0;
  179. for(i=0;i<n;i++) {
  180. p = 0.5f;
  181. q = 0.5f;
  182. w = s->lsp_cos_table[i];
  183. for(j=1;j<NB_LSP_COEFS;j+=2){
  184. q *= w - lsp[j - 1];
  185. p *= w - lsp[j];
  186. }
  187. p *= p * (2.0f - w);
  188. q *= q * (2.0f + w);
  189. v = p + q;
  190. v = pow_m1_4(s, v);
  191. if (v > val_max)
  192. val_max = v;
  193. out[i] = v;
  194. }
  195. *val_max_ptr = val_max;
  196. }
  197. /**
  198. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  199. */
  200. static void decode_exp_lsp(WMACodecContext *s, int ch)
  201. {
  202. float lsp_coefs[NB_LSP_COEFS];
  203. int val, i;
  204. for(i = 0; i < NB_LSP_COEFS; i++) {
  205. if (i == 0 || i >= 8)
  206. val = get_bits(&s->gb, 3);
  207. else
  208. val = get_bits(&s->gb, 4);
  209. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  210. }
  211. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  212. s->block_len, lsp_coefs);
  213. }
  214. /**
  215. * decode exponents coded with VLC codes
  216. */
  217. static int decode_exp_vlc(WMACodecContext *s, int ch)
  218. {
  219. int last_exp, n, code;
  220. const uint16_t *ptr, *band_ptr;
  221. float v, *q, max_scale, *q_end;
  222. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  223. ptr = band_ptr;
  224. q = s->exponents[ch];
  225. q_end = q + s->block_len;
  226. max_scale = 0;
  227. if (s->version == 1) {
  228. last_exp = get_bits(&s->gb, 5) + 10;
  229. /* XXX: use a table */
  230. v = pow(10, last_exp * (1.0 / 16.0));
  231. max_scale = v;
  232. n = *ptr++;
  233. do {
  234. *q++ = v;
  235. } while (--n);
  236. }else
  237. last_exp = 36;
  238. while (q < q_end) {
  239. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  240. if (code < 0)
  241. return -1;
  242. /* NOTE: this offset is the same as MPEG4 AAC ! */
  243. last_exp += code - 60;
  244. /* XXX: use a table */
  245. v = pow(10, last_exp * (1.0 / 16.0));
  246. if (v > max_scale)
  247. max_scale = v;
  248. n = *ptr++;
  249. do {
  250. *q++ = v;
  251. } while (--n);
  252. }
  253. s->max_exponent[ch] = max_scale;
  254. return 0;
  255. }
  256. /**
  257. * Apply MDCT window and add into output.
  258. *
  259. * We ensure that when the windows overlap their squared sum
  260. * is always 1 (MDCT reconstruction rule).
  261. */
  262. static void wma_window(WMACodecContext *s, float *out)
  263. {
  264. float *in = s->output;
  265. int block_len, bsize, n;
  266. /* left part */
  267. if (s->block_len_bits <= s->prev_block_len_bits) {
  268. block_len = s->block_len;
  269. bsize = s->frame_len_bits - s->block_len_bits;
  270. s->dsp.vector_fmul_add_add(out, in, s->windows[bsize],
  271. out, 0, block_len, 1);
  272. } else {
  273. block_len = 1 << s->prev_block_len_bits;
  274. n = (s->block_len - block_len) / 2;
  275. bsize = s->frame_len_bits - s->prev_block_len_bits;
  276. s->dsp.vector_fmul_add_add(out+n, in+n, s->windows[bsize],
  277. out+n, 0, block_len, 1);
  278. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  279. }
  280. out += s->block_len;
  281. in += s->block_len;
  282. /* right part */
  283. if (s->block_len_bits <= s->next_block_len_bits) {
  284. block_len = s->block_len;
  285. bsize = s->frame_len_bits - s->block_len_bits;
  286. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  287. } else {
  288. block_len = 1 << s->next_block_len_bits;
  289. n = (s->block_len - block_len) / 2;
  290. bsize = s->frame_len_bits - s->next_block_len_bits;
  291. memcpy(out, in, n*sizeof(float));
  292. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  293. memset(out+n+block_len, 0, n*sizeof(float));
  294. }
  295. }
  296. /**
  297. * @return 0 if OK. 1 if last block of frame. return -1 if
  298. * unrecorrable error.
  299. */
  300. static int wma_decode_block(WMACodecContext *s)
  301. {
  302. int n, v, a, ch, code, bsize;
  303. int coef_nb_bits, total_gain;
  304. int nb_coefs[MAX_CHANNELS];
  305. float mdct_norm;
  306. #ifdef TRACE
  307. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  308. #endif
  309. /* compute current block length */
  310. if (s->use_variable_block_len) {
  311. n = av_log2(s->nb_block_sizes - 1) + 1;
  312. if (s->reset_block_lengths) {
  313. s->reset_block_lengths = 0;
  314. v = get_bits(&s->gb, n);
  315. if (v >= s->nb_block_sizes)
  316. return -1;
  317. s->prev_block_len_bits = s->frame_len_bits - v;
  318. v = get_bits(&s->gb, n);
  319. if (v >= s->nb_block_sizes)
  320. return -1;
  321. s->block_len_bits = s->frame_len_bits - v;
  322. } else {
  323. /* update block lengths */
  324. s->prev_block_len_bits = s->block_len_bits;
  325. s->block_len_bits = s->next_block_len_bits;
  326. }
  327. v = get_bits(&s->gb, n);
  328. if (v >= s->nb_block_sizes)
  329. return -1;
  330. s->next_block_len_bits = s->frame_len_bits - v;
  331. } else {
  332. /* fixed block len */
  333. s->next_block_len_bits = s->frame_len_bits;
  334. s->prev_block_len_bits = s->frame_len_bits;
  335. s->block_len_bits = s->frame_len_bits;
  336. }
  337. /* now check if the block length is coherent with the frame length */
  338. s->block_len = 1 << s->block_len_bits;
  339. if ((s->block_pos + s->block_len) > s->frame_len)
  340. return -1;
  341. if (s->nb_channels == 2) {
  342. s->ms_stereo = get_bits1(&s->gb);
  343. }
  344. v = 0;
  345. for(ch = 0; ch < s->nb_channels; ch++) {
  346. a = get_bits1(&s->gb);
  347. s->channel_coded[ch] = a;
  348. v |= a;
  349. }
  350. /* if no channel coded, no need to go further */
  351. /* XXX: fix potential framing problems */
  352. if (!v)
  353. goto next;
  354. bsize = s->frame_len_bits - s->block_len_bits;
  355. /* read total gain and extract corresponding number of bits for
  356. coef escape coding */
  357. total_gain = 1;
  358. for(;;) {
  359. a = get_bits(&s->gb, 7);
  360. total_gain += a;
  361. if (a != 127)
  362. break;
  363. }
  364. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  365. /* compute number of coefficients */
  366. n = s->coefs_end[bsize] - s->coefs_start;
  367. for(ch = 0; ch < s->nb_channels; ch++)
  368. nb_coefs[ch] = n;
  369. /* complex coding */
  370. if (s->use_noise_coding) {
  371. for(ch = 0; ch < s->nb_channels; ch++) {
  372. if (s->channel_coded[ch]) {
  373. int i, n, a;
  374. n = s->exponent_high_sizes[bsize];
  375. for(i=0;i<n;i++) {
  376. a = get_bits1(&s->gb);
  377. s->high_band_coded[ch][i] = a;
  378. /* if noise coding, the coefficients are not transmitted */
  379. if (a)
  380. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  381. }
  382. }
  383. }
  384. for(ch = 0; ch < s->nb_channels; ch++) {
  385. if (s->channel_coded[ch]) {
  386. int i, n, val, code;
  387. n = s->exponent_high_sizes[bsize];
  388. val = (int)0x80000000;
  389. for(i=0;i<n;i++) {
  390. if (s->high_band_coded[ch][i]) {
  391. if (val == (int)0x80000000) {
  392. val = get_bits(&s->gb, 7) - 19;
  393. } else {
  394. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  395. if (code < 0)
  396. return -1;
  397. val += code - 18;
  398. }
  399. s->high_band_values[ch][i] = val;
  400. }
  401. }
  402. }
  403. }
  404. }
  405. /* exponents can be reused in short blocks. */
  406. if ((s->block_len_bits == s->frame_len_bits) ||
  407. get_bits1(&s->gb)) {
  408. for(ch = 0; ch < s->nb_channels; ch++) {
  409. if (s->channel_coded[ch]) {
  410. if (s->use_exp_vlc) {
  411. if (decode_exp_vlc(s, ch) < 0)
  412. return -1;
  413. } else {
  414. decode_exp_lsp(s, ch);
  415. }
  416. s->exponents_bsize[ch] = bsize;
  417. }
  418. }
  419. }
  420. /* parse spectral coefficients : just RLE encoding */
  421. for(ch = 0; ch < s->nb_channels; ch++) {
  422. if (s->channel_coded[ch]) {
  423. VLC *coef_vlc;
  424. int level, run, sign, tindex;
  425. int16_t *ptr, *eptr;
  426. const uint16_t *level_table, *run_table;
  427. /* special VLC tables are used for ms stereo because
  428. there is potentially less energy there */
  429. tindex = (ch == 1 && s->ms_stereo);
  430. coef_vlc = &s->coef_vlc[tindex];
  431. run_table = s->run_table[tindex];
  432. level_table = s->level_table[tindex];
  433. /* XXX: optimize */
  434. ptr = &s->coefs1[ch][0];
  435. eptr = ptr + nb_coefs[ch];
  436. memset(ptr, 0, s->block_len * sizeof(int16_t));
  437. for(;;) {
  438. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  439. if (code < 0)
  440. return -1;
  441. if (code == 1) {
  442. /* EOB */
  443. break;
  444. } else if (code == 0) {
  445. /* escape */
  446. level = get_bits(&s->gb, coef_nb_bits);
  447. /* NOTE: this is rather suboptimal. reading
  448. block_len_bits would be better */
  449. run = get_bits(&s->gb, s->frame_len_bits);
  450. } else {
  451. /* normal code */
  452. run = run_table[code];
  453. level = level_table[code];
  454. }
  455. sign = get_bits1(&s->gb);
  456. if (!sign)
  457. level = -level;
  458. ptr += run;
  459. if (ptr >= eptr)
  460. {
  461. av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  462. break;
  463. }
  464. *ptr++ = level;
  465. /* NOTE: EOB can be omitted */
  466. if (ptr >= eptr)
  467. break;
  468. }
  469. }
  470. if (s->version == 1 && s->nb_channels >= 2) {
  471. align_get_bits(&s->gb);
  472. }
  473. }
  474. /* normalize */
  475. {
  476. int n4 = s->block_len / 2;
  477. mdct_norm = 1.0 / (float)n4;
  478. if (s->version == 1) {
  479. mdct_norm *= sqrt(n4);
  480. }
  481. }
  482. /* finally compute the MDCT coefficients */
  483. for(ch = 0; ch < s->nb_channels; ch++) {
  484. if (s->channel_coded[ch]) {
  485. int16_t *coefs1;
  486. float *coefs, *exponents, mult, mult1, noise;
  487. int i, j, n, n1, last_high_band, esize;
  488. float exp_power[HIGH_BAND_MAX_SIZE];
  489. coefs1 = s->coefs1[ch];
  490. exponents = s->exponents[ch];
  491. esize = s->exponents_bsize[ch];
  492. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  493. mult *= mdct_norm;
  494. coefs = s->coefs[ch];
  495. if (s->use_noise_coding) {
  496. mult1 = mult;
  497. /* very low freqs : noise */
  498. for(i = 0;i < s->coefs_start; i++) {
  499. *coefs++ = s->noise_table[s->noise_index] *
  500. exponents[i<<bsize>>esize] * mult1;
  501. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  502. }
  503. n1 = s->exponent_high_sizes[bsize];
  504. /* compute power of high bands */
  505. exponents = s->exponents[ch] +
  506. (s->high_band_start[bsize]<<bsize);
  507. last_high_band = 0; /* avoid warning */
  508. for(j=0;j<n1;j++) {
  509. n = s->exponent_high_bands[s->frame_len_bits -
  510. s->block_len_bits][j];
  511. if (s->high_band_coded[ch][j]) {
  512. float e2, v;
  513. e2 = 0;
  514. for(i = 0;i < n; i++) {
  515. v = exponents[i<<bsize>>esize];
  516. e2 += v * v;
  517. }
  518. exp_power[j] = e2 / n;
  519. last_high_band = j;
  520. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  521. }
  522. exponents += n<<bsize;
  523. }
  524. /* main freqs and high freqs */
  525. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  526. for(j=-1;j<n1;j++) {
  527. if (j < 0) {
  528. n = s->high_band_start[bsize] -
  529. s->coefs_start;
  530. } else {
  531. n = s->exponent_high_bands[s->frame_len_bits -
  532. s->block_len_bits][j];
  533. }
  534. if (j >= 0 && s->high_band_coded[ch][j]) {
  535. /* use noise with specified power */
  536. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  537. /* XXX: use a table */
  538. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  539. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  540. mult1 *= mdct_norm;
  541. for(i = 0;i < n; i++) {
  542. noise = s->noise_table[s->noise_index];
  543. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  544. *coefs++ = noise *
  545. exponents[i<<bsize>>esize] * mult1;
  546. }
  547. exponents += n<<bsize;
  548. } else {
  549. /* coded values + small noise */
  550. for(i = 0;i < n; i++) {
  551. noise = s->noise_table[s->noise_index];
  552. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  553. *coefs++ = ((*coefs1++) + noise) *
  554. exponents[i<<bsize>>esize] * mult;
  555. }
  556. exponents += n<<bsize;
  557. }
  558. }
  559. /* very high freqs : noise */
  560. n = s->block_len - s->coefs_end[bsize];
  561. mult1 = mult * exponents[((-1<<bsize))>>esize];
  562. for(i = 0; i < n; i++) {
  563. *coefs++ = s->noise_table[s->noise_index] * mult1;
  564. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  565. }
  566. } else {
  567. /* XXX: optimize more */
  568. for(i = 0;i < s->coefs_start; i++)
  569. *coefs++ = 0.0;
  570. n = nb_coefs[ch];
  571. for(i = 0;i < n; i++) {
  572. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  573. }
  574. n = s->block_len - s->coefs_end[bsize];
  575. for(i = 0;i < n; i++)
  576. *coefs++ = 0.0;
  577. }
  578. }
  579. }
  580. #ifdef TRACE
  581. for(ch = 0; ch < s->nb_channels; ch++) {
  582. if (s->channel_coded[ch]) {
  583. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  584. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  585. }
  586. }
  587. #endif
  588. if (s->ms_stereo && s->channel_coded[1]) {
  589. float a, b;
  590. int i;
  591. /* nominal case for ms stereo: we do it before mdct */
  592. /* no need to optimize this case because it should almost
  593. never happen */
  594. if (!s->channel_coded[0]) {
  595. tprintf(s->avctx, "rare ms-stereo case happened\n");
  596. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  597. s->channel_coded[0] = 1;
  598. }
  599. for(i = 0; i < s->block_len; i++) {
  600. a = s->coefs[0][i];
  601. b = s->coefs[1][i];
  602. s->coefs[0][i] = a + b;
  603. s->coefs[1][i] = a - b;
  604. }
  605. }
  606. for(ch = 0; ch < s->nb_channels; ch++) {
  607. if (s->channel_coded[ch]) {
  608. int n4, index, n;
  609. n = s->block_len;
  610. n4 = s->block_len / 2;
  611. s->mdct_ctx[bsize].fft.imdct_calc(&s->mdct_ctx[bsize],
  612. s->output, s->coefs[ch], s->mdct_tmp);
  613. /* multiply by the window and add in the frame */
  614. index = (s->frame_len / 2) + s->block_pos - n4;
  615. wma_window(s, &s->frame_out[ch][index]);
  616. /* specific fast case for ms-stereo : add to second
  617. channel if it is not coded */
  618. if (s->ms_stereo && !s->channel_coded[1]) {
  619. wma_window(s, &s->frame_out[1][index]);
  620. }
  621. }
  622. }
  623. next:
  624. /* update block number */
  625. s->block_num++;
  626. s->block_pos += s->block_len;
  627. if (s->block_pos >= s->frame_len)
  628. return 1;
  629. else
  630. return 0;
  631. }
  632. /* decode a frame of frame_len samples */
  633. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  634. {
  635. int ret, i, n, a, ch, incr;
  636. int16_t *ptr;
  637. float *iptr;
  638. #ifdef TRACE
  639. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  640. #endif
  641. /* read each block */
  642. s->block_num = 0;
  643. s->block_pos = 0;
  644. for(;;) {
  645. ret = wma_decode_block(s);
  646. if (ret < 0)
  647. return -1;
  648. if (ret)
  649. break;
  650. }
  651. /* convert frame to integer */
  652. n = s->frame_len;
  653. incr = s->nb_channels;
  654. for(ch = 0; ch < s->nb_channels; ch++) {
  655. ptr = samples + ch;
  656. iptr = s->frame_out[ch];
  657. for(i=0;i<n;i++) {
  658. a = lrintf(*iptr++);
  659. if (a > 32767)
  660. a = 32767;
  661. else if (a < -32768)
  662. a = -32768;
  663. *ptr = a;
  664. ptr += incr;
  665. }
  666. /* prepare for next block */
  667. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  668. s->frame_len * sizeof(float));
  669. }
  670. #ifdef TRACE
  671. dump_shorts(s, "samples", samples, n * s->nb_channels);
  672. #endif
  673. return 0;
  674. }
  675. static int wma_decode_superframe(AVCodecContext *avctx,
  676. void *data, int *data_size,
  677. uint8_t *buf, int buf_size)
  678. {
  679. WMACodecContext *s = avctx->priv_data;
  680. int nb_frames, bit_offset, i, pos, len;
  681. uint8_t *q;
  682. int16_t *samples;
  683. tprintf(avctx, "***decode_superframe:\n");
  684. if(buf_size==0){
  685. s->last_superframe_len = 0;
  686. return 0;
  687. }
  688. samples = data;
  689. init_get_bits(&s->gb, buf, buf_size*8);
  690. if (s->use_bit_reservoir) {
  691. /* read super frame header */
  692. skip_bits(&s->gb, 4); /* super frame index */
  693. nb_frames = get_bits(&s->gb, 4) - 1;
  694. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  695. if (s->last_superframe_len > 0) {
  696. // printf("skip=%d\n", s->last_bitoffset);
  697. /* add bit_offset bits to last frame */
  698. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  699. MAX_CODED_SUPERFRAME_SIZE)
  700. goto fail;
  701. q = s->last_superframe + s->last_superframe_len;
  702. len = bit_offset;
  703. while (len > 7) {
  704. *q++ = (get_bits)(&s->gb, 8);
  705. len -= 8;
  706. }
  707. if (len > 0) {
  708. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  709. }
  710. /* XXX: bit_offset bits into last frame */
  711. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  712. /* skip unused bits */
  713. if (s->last_bitoffset > 0)
  714. skip_bits(&s->gb, s->last_bitoffset);
  715. /* this frame is stored in the last superframe and in the
  716. current one */
  717. if (wma_decode_frame(s, samples) < 0)
  718. goto fail;
  719. samples += s->nb_channels * s->frame_len;
  720. }
  721. /* read each frame starting from bit_offset */
  722. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  723. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  724. len = pos & 7;
  725. if (len > 0)
  726. skip_bits(&s->gb, len);
  727. s->reset_block_lengths = 1;
  728. for(i=0;i<nb_frames;i++) {
  729. if (wma_decode_frame(s, samples) < 0)
  730. goto fail;
  731. samples += s->nb_channels * s->frame_len;
  732. }
  733. /* we copy the end of the frame in the last frame buffer */
  734. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  735. s->last_bitoffset = pos & 7;
  736. pos >>= 3;
  737. len = buf_size - pos;
  738. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  739. goto fail;
  740. }
  741. s->last_superframe_len = len;
  742. memcpy(s->last_superframe, buf + pos, len);
  743. } else {
  744. /* single frame decode */
  745. if (wma_decode_frame(s, samples) < 0)
  746. goto fail;
  747. samples += s->nb_channels * s->frame_len;
  748. }
  749. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  750. *data_size = (int8_t *)samples - (int8_t *)data;
  751. return s->block_align;
  752. fail:
  753. /* when error, we reset the bit reservoir */
  754. s->last_superframe_len = 0;
  755. return -1;
  756. }
  757. AVCodec wmav1_decoder =
  758. {
  759. "wmav1",
  760. CODEC_TYPE_AUDIO,
  761. CODEC_ID_WMAV1,
  762. sizeof(WMACodecContext),
  763. wma_decode_init,
  764. NULL,
  765. ff_wma_end,
  766. wma_decode_superframe,
  767. };
  768. AVCodec wmav2_decoder =
  769. {
  770. "wmav2",
  771. CODEC_TYPE_AUDIO,
  772. CODEC_ID_WMAV2,
  773. sizeof(WMACodecContext),
  774. wma_decode_init,
  775. NULL,
  776. ff_wma_end,
  777. wma_decode_superframe,
  778. };