sha.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. /*
  2. * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at>
  3. * Copyright (C) 2009 Konstantin Shishkov
  4. * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com>
  5. * and on BSD-licensed SHA-2 code by Aaron D. Gifford
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <string.h>
  24. #include "avutil.h"
  25. #include "bswap.h"
  26. #include "sha.h"
  27. #include "intreadwrite.h"
  28. #include "mem.h"
  29. /** hash context */
  30. typedef struct AVSHA {
  31. uint8_t digest_len; ///< digest length in 32-bit words
  32. uint64_t count; ///< number of bytes in buffer
  33. uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating
  34. uint32_t state[8]; ///< current hash value
  35. /** function used to update hash for 512-bit input block */
  36. void (*transform)(uint32_t *state, const uint8_t buffer[64]);
  37. } AVSHA;
  38. const int av_sha_size = sizeof(AVSHA);
  39. struct AVSHA *av_sha_alloc(void)
  40. {
  41. return av_mallocz(sizeof(struct AVSHA));
  42. }
  43. #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
  44. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  45. #define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i)))
  46. #define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1))
  47. #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  48. #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30);
  49. #define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
  50. #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30);
  51. #define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30);
  52. /* Hash a single 512-bit block. This is the core of the algorithm. */
  53. static void sha1_transform(uint32_t state[5], const uint8_t buffer[64])
  54. {
  55. uint32_t block[80];
  56. unsigned int i, a, b, c, d, e;
  57. a = state[0];
  58. b = state[1];
  59. c = state[2];
  60. d = state[3];
  61. e = state[4];
  62. #if CONFIG_SMALL
  63. for (i = 0; i < 80; i++) {
  64. int t;
  65. if (i < 16)
  66. t = AV_RB32(buffer + 4 * i);
  67. else
  68. t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1);
  69. block[i] = t;
  70. t += e + rol(a, 5);
  71. if (i < 40) {
  72. if (i < 20)
  73. t += ((b&(c^d))^d) + 0x5A827999;
  74. else
  75. t += ( b^c ^d) + 0x6ED9EBA1;
  76. } else {
  77. if (i < 60)
  78. t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC;
  79. else
  80. t += ( b^c ^d) + 0xCA62C1D6;
  81. }
  82. e = d;
  83. d = c;
  84. c = rol(b, 30);
  85. b = a;
  86. a = t;
  87. }
  88. #else
  89. for (i = 0; i < 15; i += 5) {
  90. R0(a, b, c, d, e, 0 + i);
  91. R0(e, a, b, c, d, 1 + i);
  92. R0(d, e, a, b, c, 2 + i);
  93. R0(c, d, e, a, b, 3 + i);
  94. R0(b, c, d, e, a, 4 + i);
  95. }
  96. R0(a, b, c, d, e, 15);
  97. R1(e, a, b, c, d, 16);
  98. R1(d, e, a, b, c, 17);
  99. R1(c, d, e, a, b, 18);
  100. R1(b, c, d, e, a, 19);
  101. for (i = 20; i < 40; i += 5) {
  102. R2(a, b, c, d, e, 0 + i);
  103. R2(e, a, b, c, d, 1 + i);
  104. R2(d, e, a, b, c, 2 + i);
  105. R2(c, d, e, a, b, 3 + i);
  106. R2(b, c, d, e, a, 4 + i);
  107. }
  108. for (; i < 60; i += 5) {
  109. R3(a, b, c, d, e, 0 + i);
  110. R3(e, a, b, c, d, 1 + i);
  111. R3(d, e, a, b, c, 2 + i);
  112. R3(c, d, e, a, b, 3 + i);
  113. R3(b, c, d, e, a, 4 + i);
  114. }
  115. for (; i < 80; i += 5) {
  116. R4(a, b, c, d, e, 0 + i);
  117. R4(e, a, b, c, d, 1 + i);
  118. R4(d, e, a, b, c, 2 + i);
  119. R4(c, d, e, a, b, 3 + i);
  120. R4(b, c, d, e, a, 4 + i);
  121. }
  122. #endif
  123. state[0] += a;
  124. state[1] += b;
  125. state[2] += c;
  126. state[3] += d;
  127. state[4] += e;
  128. }
  129. static const uint32_t K256[64] = {
  130. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  131. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  132. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  133. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  134. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  135. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  136. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  137. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  138. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  139. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  140. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  141. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  142. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  143. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  144. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  145. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  146. };
  147. #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z))
  148. #define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
  149. #define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10))
  150. #define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7))
  151. #define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3))
  152. #define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10))
  153. #undef blk
  154. #define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \
  155. sigma1_256(block[i - 2]) + block[i - 7])
  156. #define ROUND256(a,b,c,d,e,f,g,h) \
  157. T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \
  158. (d) += T1; \
  159. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  160. i++
  161. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  162. T1 = blk0(i); \
  163. ROUND256(a,b,c,d,e,f,g,h)
  164. #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \
  165. T1 = blk(i); \
  166. ROUND256(a,b,c,d,e,f,g,h)
  167. static void sha256_transform(uint32_t *state, const uint8_t buffer[64])
  168. {
  169. unsigned int i, a, b, c, d, e, f, g, h;
  170. uint32_t block[64];
  171. uint32_t T1;
  172. a = state[0];
  173. b = state[1];
  174. c = state[2];
  175. d = state[3];
  176. e = state[4];
  177. f = state[5];
  178. g = state[6];
  179. h = state[7];
  180. #if CONFIG_SMALL
  181. for (i = 0; i < 64; i++) {
  182. uint32_t T2;
  183. if (i < 16)
  184. T1 = blk0(i);
  185. else
  186. T1 = blk(i);
  187. T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i];
  188. T2 = Sigma0_256(a) + Maj(a, b, c);
  189. h = g;
  190. g = f;
  191. f = e;
  192. e = d + T1;
  193. d = c;
  194. c = b;
  195. b = a;
  196. a = T1 + T2;
  197. }
  198. #else
  199. for (i = 0; i < 16 - 7;) {
  200. ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
  201. ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
  202. ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
  203. ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
  204. ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
  205. ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
  206. ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
  207. ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
  208. }
  209. for (; i < 64 - 7;) {
  210. ROUND256_16_TO_63(a, b, c, d, e, f, g, h);
  211. ROUND256_16_TO_63(h, a, b, c, d, e, f, g);
  212. ROUND256_16_TO_63(g, h, a, b, c, d, e, f);
  213. ROUND256_16_TO_63(f, g, h, a, b, c, d, e);
  214. ROUND256_16_TO_63(e, f, g, h, a, b, c, d);
  215. ROUND256_16_TO_63(d, e, f, g, h, a, b, c);
  216. ROUND256_16_TO_63(c, d, e, f, g, h, a, b);
  217. ROUND256_16_TO_63(b, c, d, e, f, g, h, a);
  218. }
  219. #endif
  220. state[0] += a;
  221. state[1] += b;
  222. state[2] += c;
  223. state[3] += d;
  224. state[4] += e;
  225. state[5] += f;
  226. state[6] += g;
  227. state[7] += h;
  228. }
  229. int av_sha_init(AVSHA* ctx, int bits)
  230. {
  231. ctx->digest_len = bits >> 5;
  232. switch (bits) {
  233. case 160: // SHA-1
  234. ctx->state[0] = 0x67452301;
  235. ctx->state[1] = 0xEFCDAB89;
  236. ctx->state[2] = 0x98BADCFE;
  237. ctx->state[3] = 0x10325476;
  238. ctx->state[4] = 0xC3D2E1F0;
  239. ctx->transform = sha1_transform;
  240. break;
  241. case 224: // SHA-224
  242. ctx->state[0] = 0xC1059ED8;
  243. ctx->state[1] = 0x367CD507;
  244. ctx->state[2] = 0x3070DD17;
  245. ctx->state[3] = 0xF70E5939;
  246. ctx->state[4] = 0xFFC00B31;
  247. ctx->state[5] = 0x68581511;
  248. ctx->state[6] = 0x64F98FA7;
  249. ctx->state[7] = 0xBEFA4FA4;
  250. ctx->transform = sha256_transform;
  251. break;
  252. case 256: // SHA-256
  253. ctx->state[0] = 0x6A09E667;
  254. ctx->state[1] = 0xBB67AE85;
  255. ctx->state[2] = 0x3C6EF372;
  256. ctx->state[3] = 0xA54FF53A;
  257. ctx->state[4] = 0x510E527F;
  258. ctx->state[5] = 0x9B05688C;
  259. ctx->state[6] = 0x1F83D9AB;
  260. ctx->state[7] = 0x5BE0CD19;
  261. ctx->transform = sha256_transform;
  262. break;
  263. default:
  264. return -1;
  265. }
  266. ctx->count = 0;
  267. return 0;
  268. }
  269. void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len)
  270. {
  271. unsigned int i, j;
  272. j = ctx->count & 63;
  273. ctx->count += len;
  274. #if CONFIG_SMALL
  275. for (i = 0; i < len; i++) {
  276. ctx->buffer[j++] = data[i];
  277. if (64 == j) {
  278. ctx->transform(ctx->state, ctx->buffer);
  279. j = 0;
  280. }
  281. }
  282. #else
  283. if ((j + len) > 63) {
  284. memcpy(&ctx->buffer[j], data, (i = 64 - j));
  285. ctx->transform(ctx->state, ctx->buffer);
  286. for (; i + 63 < len; i += 64)
  287. ctx->transform(ctx->state, &data[i]);
  288. j = 0;
  289. } else
  290. i = 0;
  291. memcpy(&ctx->buffer[j], &data[i], len - i);
  292. #endif
  293. }
  294. void av_sha_final(AVSHA* ctx, uint8_t *digest)
  295. {
  296. int i;
  297. uint64_t finalcount = av_be2ne64(ctx->count << 3);
  298. av_sha_update(ctx, "\200", 1);
  299. while ((ctx->count & 63) != 56)
  300. av_sha_update(ctx, "", 1);
  301. av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */
  302. for (i = 0; i < ctx->digest_len; i++)
  303. AV_WB32(digest + i*4, ctx->state[i]);
  304. }
  305. #ifdef TEST
  306. #include <stdio.h>
  307. int main(void)
  308. {
  309. int i, j, k;
  310. AVSHA ctx;
  311. unsigned char digest[32];
  312. const int lengths[3] = { 160, 224, 256 };
  313. for (j = 0; j < 3; j++) {
  314. printf("Testing SHA-%d\n", lengths[j]);
  315. for (k = 0; k < 3; k++) {
  316. av_sha_init(&ctx, lengths[j]);
  317. if (k == 0)
  318. av_sha_update(&ctx, "abc", 3);
  319. else if (k == 1)
  320. av_sha_update(&ctx, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
  321. else
  322. for (i = 0; i < 1000*1000; i++)
  323. av_sha_update(&ctx, "a", 1);
  324. av_sha_final(&ctx, digest);
  325. for (i = 0; i < lengths[j] >> 3; i++)
  326. printf("%02X", digest[i]);
  327. putchar('\n');
  328. }
  329. switch (j) {
  330. case 0:
  331. //test vectors (from FIPS PUB 180-1)
  332. printf("A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D\n"
  333. "84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1\n"
  334. "34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F\n");
  335. break;
  336. case 1:
  337. //test vectors (from FIPS PUB 180-2 Appendix A)
  338. printf("23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7\n"
  339. "75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525\n"
  340. "20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67\n");
  341. break;
  342. case 2:
  343. //test vectors (from FIPS PUB 180-2)
  344. printf("ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad\n"
  345. "248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1\n"
  346. "cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0\n");
  347. break;
  348. }
  349. }
  350. return 0;
  351. }
  352. #endif