alsdec.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754
  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. //#define DEBUG
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "dsputil.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "libavutil/crc.h"
  36. #include <stdint.h>
  37. /** Rice parameters and corresponding index offsets for decoding the
  38. * indices of scaled PARCOR values. The table chosen is set globally
  39. * by the encoder and stored in ALSSpecificConfig.
  40. */
  41. static const int8_t parcor_rice_table[3][20][2] = {
  42. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  43. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  44. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  45. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  46. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  47. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  48. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  49. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  50. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  51. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  52. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  53. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  54. };
  55. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  56. * To be indexed by the Rice coded indices.
  57. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  58. * Actual values are divided by 32 in order to be stored in 16 bits.
  59. */
  60. static const int16_t parcor_scaled_values[] = {
  61. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  62. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  63. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  64. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  65. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  66. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  67. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  68. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  69. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  70. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  71. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  72. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  73. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  74. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  75. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  76. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  77. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  78. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  79. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  80. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  81. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  82. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  83. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  84. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  85. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  86. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  87. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  88. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  89. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  90. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  91. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  92. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  93. };
  94. /** Gain values of p(0) for long-term prediction.
  95. * To be indexed by the Rice coded indices.
  96. */
  97. static const uint8_t ltp_gain_values [4][4] = {
  98. { 0, 8, 16, 24},
  99. {32, 40, 48, 56},
  100. {64, 70, 76, 82},
  101. {88, 92, 96, 100}
  102. };
  103. /** Inter-channel weighting factors for multi-channel correlation.
  104. * To be indexed by the Rice coded indices.
  105. */
  106. static const int16_t mcc_weightings[] = {
  107. 204, 192, 179, 166, 153, 140, 128, 115,
  108. 102, 89, 76, 64, 51, 38, 25, 12,
  109. 0, -12, -25, -38, -51, -64, -76, -89,
  110. -102, -115, -128, -140, -153, -166, -179, -192
  111. };
  112. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  113. */
  114. static const uint8_t tail_code[16][6] = {
  115. { 74, 44, 25, 13, 7, 3},
  116. { 68, 42, 24, 13, 7, 3},
  117. { 58, 39, 23, 13, 7, 3},
  118. {126, 70, 37, 19, 10, 5},
  119. {132, 70, 37, 20, 10, 5},
  120. {124, 70, 38, 20, 10, 5},
  121. {120, 69, 37, 20, 11, 5},
  122. {116, 67, 37, 20, 11, 5},
  123. {108, 66, 36, 20, 10, 5},
  124. {102, 62, 36, 20, 10, 5},
  125. { 88, 58, 34, 19, 10, 5},
  126. {162, 89, 49, 25, 13, 7},
  127. {156, 87, 49, 26, 14, 7},
  128. {150, 86, 47, 26, 14, 7},
  129. {142, 84, 47, 26, 14, 7},
  130. {131, 79, 46, 26, 14, 7}
  131. };
  132. enum RA_Flag {
  133. RA_FLAG_NONE,
  134. RA_FLAG_FRAMES,
  135. RA_FLAG_HEADER
  136. };
  137. typedef struct {
  138. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  139. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  140. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  141. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  142. int frame_length; ///< frame length for each frame (last frame may differ)
  143. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  144. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  145. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  146. int coef_table; ///< table index of Rice code parameters
  147. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  148. int max_order; ///< maximum prediction order (0..1023)
  149. int block_switching; ///< number of block switching levels
  150. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  151. int sb_part; ///< sub-block partition
  152. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  153. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  154. int chan_config; ///< indicates that a chan_config_info field is present
  155. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  156. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  157. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  158. int *chan_pos; ///< original channel positions
  159. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  160. } ALSSpecificConfig;
  161. typedef struct {
  162. int stop_flag;
  163. int master_channel;
  164. int time_diff_flag;
  165. int time_diff_sign;
  166. int time_diff_index;
  167. int weighting[6];
  168. } ALSChannelData;
  169. typedef struct {
  170. AVCodecContext *avctx;
  171. ALSSpecificConfig sconf;
  172. GetBitContext gb;
  173. DSPContext dsp;
  174. const AVCRC *crc_table;
  175. uint32_t crc_org; ///< CRC value of the original input data
  176. uint32_t crc; ///< CRC value calculated from decoded data
  177. unsigned int cur_frame_length; ///< length of the current frame to decode
  178. unsigned int frame_id; ///< the frame ID / number of the current frame
  179. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  180. unsigned int num_blocks; ///< number of blocks used in the current frame
  181. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  182. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  183. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  184. int ltp_lag_length; ///< number of bits used for ltp lag value
  185. int *const_block; ///< contains const_block flags for all channels
  186. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  187. unsigned int *opt_order; ///< contains opt_order flags for all channels
  188. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  189. int *use_ltp; ///< contains use_ltp flags for all channels
  190. int *ltp_lag; ///< contains ltp lag values for all channels
  191. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  192. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  193. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  194. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  195. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  196. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  197. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  198. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  199. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  200. int *reverted_channels; ///< stores a flag for each reverted channel
  201. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  202. int32_t **raw_samples; ///< decoded raw samples for each channel
  203. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  204. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  205. } ALSDecContext;
  206. typedef struct {
  207. unsigned int block_length; ///< number of samples within the block
  208. unsigned int ra_block; ///< if true, this is a random access block
  209. int *const_block; ///< if true, this is a constant value block
  210. int js_blocks; ///< true if this block contains a difference signal
  211. unsigned int *shift_lsbs; ///< shift of values for this block
  212. unsigned int *opt_order; ///< prediction order of this block
  213. int *store_prev_samples;///< if true, carryover samples have to be stored
  214. int *use_ltp; ///< if true, long-term prediction is used
  215. int *ltp_lag; ///< lag value for long-term prediction
  216. int *ltp_gain; ///< gain values for ltp 5-tap filter
  217. int32_t *quant_cof; ///< quantized parcor coefficients
  218. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  219. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  220. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  221. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  222. } ALSBlockData;
  223. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  224. {
  225. #ifdef DEBUG
  226. AVCodecContext *avctx = ctx->avctx;
  227. ALSSpecificConfig *sconf = &ctx->sconf;
  228. av_dlog(avctx, "resolution = %i\n", sconf->resolution);
  229. av_dlog(avctx, "floating = %i\n", sconf->floating);
  230. av_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  231. av_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  232. av_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  233. av_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  234. av_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  235. av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  236. av_dlog(avctx, "max_order = %i\n", sconf->max_order);
  237. av_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  238. av_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  239. av_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  240. av_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  241. av_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  242. av_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  243. av_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  244. av_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  245. av_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  246. #endif
  247. }
  248. /** Read an ALSSpecificConfig from a buffer into the output struct.
  249. */
  250. static av_cold int read_specific_config(ALSDecContext *ctx)
  251. {
  252. GetBitContext gb;
  253. uint64_t ht_size;
  254. int i, config_offset;
  255. MPEG4AudioConfig m4ac;
  256. ALSSpecificConfig *sconf = &ctx->sconf;
  257. AVCodecContext *avctx = ctx->avctx;
  258. uint32_t als_id, header_size, trailer_size;
  259. init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
  260. config_offset = ff_mpeg4audio_get_config(&m4ac, avctx->extradata,
  261. avctx->extradata_size);
  262. if (config_offset < 0)
  263. return -1;
  264. skip_bits_long(&gb, config_offset);
  265. if (get_bits_left(&gb) < (30 << 3))
  266. return -1;
  267. // read the fixed items
  268. als_id = get_bits_long(&gb, 32);
  269. avctx->sample_rate = m4ac.sample_rate;
  270. skip_bits_long(&gb, 32); // sample rate already known
  271. sconf->samples = get_bits_long(&gb, 32);
  272. avctx->channels = m4ac.channels;
  273. skip_bits(&gb, 16); // number of channels already knwon
  274. skip_bits(&gb, 3); // skip file_type
  275. sconf->resolution = get_bits(&gb, 3);
  276. sconf->floating = get_bits1(&gb);
  277. sconf->msb_first = get_bits1(&gb);
  278. sconf->frame_length = get_bits(&gb, 16) + 1;
  279. sconf->ra_distance = get_bits(&gb, 8);
  280. sconf->ra_flag = get_bits(&gb, 2);
  281. sconf->adapt_order = get_bits1(&gb);
  282. sconf->coef_table = get_bits(&gb, 2);
  283. sconf->long_term_prediction = get_bits1(&gb);
  284. sconf->max_order = get_bits(&gb, 10);
  285. sconf->block_switching = get_bits(&gb, 2);
  286. sconf->bgmc = get_bits1(&gb);
  287. sconf->sb_part = get_bits1(&gb);
  288. sconf->joint_stereo = get_bits1(&gb);
  289. sconf->mc_coding = get_bits1(&gb);
  290. sconf->chan_config = get_bits1(&gb);
  291. sconf->chan_sort = get_bits1(&gb);
  292. sconf->crc_enabled = get_bits1(&gb);
  293. sconf->rlslms = get_bits1(&gb);
  294. skip_bits(&gb, 5); // skip 5 reserved bits
  295. skip_bits1(&gb); // skip aux_data_enabled
  296. // check for ALSSpecificConfig struct
  297. if (als_id != MKBETAG('A','L','S','\0'))
  298. return -1;
  299. ctx->cur_frame_length = sconf->frame_length;
  300. // read channel config
  301. if (sconf->chan_config)
  302. sconf->chan_config_info = get_bits(&gb, 16);
  303. // TODO: use this to set avctx->channel_layout
  304. // read channel sorting
  305. if (sconf->chan_sort && avctx->channels > 1) {
  306. int chan_pos_bits = av_ceil_log2(avctx->channels);
  307. int bits_needed = avctx->channels * chan_pos_bits + 7;
  308. if (get_bits_left(&gb) < bits_needed)
  309. return -1;
  310. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  311. return AVERROR(ENOMEM);
  312. for (i = 0; i < avctx->channels; i++)
  313. sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
  314. align_get_bits(&gb);
  315. // TODO: use this to actually do channel sorting
  316. } else {
  317. sconf->chan_sort = 0;
  318. }
  319. // read fixed header and trailer sizes,
  320. // if size = 0xFFFFFFFF then there is no data field!
  321. if (get_bits_left(&gb) < 64)
  322. return -1;
  323. header_size = get_bits_long(&gb, 32);
  324. trailer_size = get_bits_long(&gb, 32);
  325. if (header_size == 0xFFFFFFFF)
  326. header_size = 0;
  327. if (trailer_size == 0xFFFFFFFF)
  328. trailer_size = 0;
  329. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  330. // skip the header and trailer data
  331. if (get_bits_left(&gb) < ht_size)
  332. return -1;
  333. if (ht_size > INT32_MAX)
  334. return -1;
  335. skip_bits_long(&gb, ht_size);
  336. // initialize CRC calculation
  337. if (sconf->crc_enabled) {
  338. if (get_bits_left(&gb) < 32)
  339. return -1;
  340. if (avctx->error_recognition >= FF_ER_CAREFUL) {
  341. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  342. ctx->crc = 0xFFFFFFFF;
  343. ctx->crc_org = ~get_bits_long(&gb, 32);
  344. } else
  345. skip_bits_long(&gb, 32);
  346. }
  347. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  348. dprint_specific_config(ctx);
  349. return 0;
  350. }
  351. /** Check the ALSSpecificConfig for unsupported features.
  352. */
  353. static int check_specific_config(ALSDecContext *ctx)
  354. {
  355. ALSSpecificConfig *sconf = &ctx->sconf;
  356. int error = 0;
  357. // report unsupported feature and set error value
  358. #define MISSING_ERR(cond, str, errval) \
  359. { \
  360. if (cond) { \
  361. av_log_missing_feature(ctx->avctx, str, 0); \
  362. error = errval; \
  363. } \
  364. }
  365. MISSING_ERR(sconf->floating, "Floating point decoding", -1);
  366. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", -1);
  367. MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
  368. return error;
  369. }
  370. /** Parse the bs_info field to extract the block partitioning used in
  371. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  372. */
  373. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  374. unsigned int div, unsigned int **div_blocks,
  375. unsigned int *num_blocks)
  376. {
  377. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  378. // if the level is valid and the investigated bit n is set
  379. // then recursively check both children at bits (2n+1) and (2n+2)
  380. n *= 2;
  381. div += 1;
  382. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  383. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  384. } else {
  385. // else the bit is not set or the last level has been reached
  386. // (bit implicitly not set)
  387. **div_blocks = div;
  388. (*div_blocks)++;
  389. (*num_blocks)++;
  390. }
  391. }
  392. /** Read and decode a Rice codeword.
  393. */
  394. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  395. {
  396. int max = get_bits_left(gb) - k;
  397. int q = get_unary(gb, 0, max);
  398. int r = k ? get_bits1(gb) : !(q & 1);
  399. if (k > 1) {
  400. q <<= (k - 1);
  401. q += get_bits_long(gb, k - 1);
  402. } else if (!k) {
  403. q >>= 1;
  404. }
  405. return r ? q : ~q;
  406. }
  407. /** Convert PARCOR coefficient k to direct filter coefficient.
  408. */
  409. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  410. {
  411. int i, j;
  412. for (i = 0, j = k - 1; i < j; i++, j--) {
  413. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  414. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  415. cof[i] += tmp1;
  416. }
  417. if (i == j)
  418. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  419. cof[k] = par[k];
  420. }
  421. /** Read block switching field if necessary and set actual block sizes.
  422. * Also assure that the block sizes of the last frame correspond to the
  423. * actual number of samples.
  424. */
  425. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  426. uint32_t *bs_info)
  427. {
  428. ALSSpecificConfig *sconf = &ctx->sconf;
  429. GetBitContext *gb = &ctx->gb;
  430. unsigned int *ptr_div_blocks = div_blocks;
  431. unsigned int b;
  432. if (sconf->block_switching) {
  433. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  434. *bs_info = get_bits_long(gb, bs_info_len);
  435. *bs_info <<= (32 - bs_info_len);
  436. }
  437. ctx->num_blocks = 0;
  438. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  439. // The last frame may have an overdetermined block structure given in
  440. // the bitstream. In that case the defined block structure would need
  441. // more samples than available to be consistent.
  442. // The block structure is actually used but the block sizes are adapted
  443. // to fit the actual number of available samples.
  444. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  445. // This results in the actual block sizes: 2 2 1 0.
  446. // This is not specified in 14496-3 but actually done by the reference
  447. // codec RM22 revision 2.
  448. // This appears to happen in case of an odd number of samples in the last
  449. // frame which is actually not allowed by the block length switching part
  450. // of 14496-3.
  451. // The ALS conformance files feature an odd number of samples in the last
  452. // frame.
  453. for (b = 0; b < ctx->num_blocks; b++)
  454. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  455. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  456. unsigned int remaining = ctx->cur_frame_length;
  457. for (b = 0; b < ctx->num_blocks; b++) {
  458. if (remaining <= div_blocks[b]) {
  459. div_blocks[b] = remaining;
  460. ctx->num_blocks = b + 1;
  461. break;
  462. }
  463. remaining -= div_blocks[b];
  464. }
  465. }
  466. }
  467. /** Read the block data for a constant block
  468. */
  469. static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  470. {
  471. ALSSpecificConfig *sconf = &ctx->sconf;
  472. AVCodecContext *avctx = ctx->avctx;
  473. GetBitContext *gb = &ctx->gb;
  474. *bd->raw_samples = 0;
  475. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  476. bd->js_blocks = get_bits1(gb);
  477. // skip 5 reserved bits
  478. skip_bits(gb, 5);
  479. if (*bd->const_block) {
  480. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  481. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  482. }
  483. // ensure constant block decoding by reusing this field
  484. *bd->const_block = 1;
  485. }
  486. /** Decode the block data for a constant block
  487. */
  488. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  489. {
  490. int smp = bd->block_length - 1;
  491. int32_t val = *bd->raw_samples;
  492. int32_t *dst = bd->raw_samples + 1;
  493. // write raw samples into buffer
  494. for (; smp; smp--)
  495. *dst++ = val;
  496. }
  497. /** Read the block data for a non-constant block
  498. */
  499. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  500. {
  501. ALSSpecificConfig *sconf = &ctx->sconf;
  502. AVCodecContext *avctx = ctx->avctx;
  503. GetBitContext *gb = &ctx->gb;
  504. unsigned int k;
  505. unsigned int s[8];
  506. unsigned int sx[8];
  507. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  508. unsigned int start = 0;
  509. unsigned int opt_order;
  510. int sb;
  511. int32_t *quant_cof = bd->quant_cof;
  512. int32_t *current_res;
  513. // ensure variable block decoding by reusing this field
  514. *bd->const_block = 0;
  515. *bd->opt_order = 1;
  516. bd->js_blocks = get_bits1(gb);
  517. opt_order = *bd->opt_order;
  518. // determine the number of subblocks for entropy decoding
  519. if (!sconf->bgmc && !sconf->sb_part) {
  520. log2_sub_blocks = 0;
  521. } else {
  522. if (sconf->bgmc && sconf->sb_part)
  523. log2_sub_blocks = get_bits(gb, 2);
  524. else
  525. log2_sub_blocks = 2 * get_bits1(gb);
  526. }
  527. sub_blocks = 1 << log2_sub_blocks;
  528. // do not continue in case of a damaged stream since
  529. // block_length must be evenly divisible by sub_blocks
  530. if (bd->block_length & (sub_blocks - 1)) {
  531. av_log(avctx, AV_LOG_WARNING,
  532. "Block length is not evenly divisible by the number of subblocks.\n");
  533. return -1;
  534. }
  535. sb_length = bd->block_length >> log2_sub_blocks;
  536. if (sconf->bgmc) {
  537. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  538. for (k = 1; k < sub_blocks; k++)
  539. s[k] = s[k - 1] + decode_rice(gb, 2);
  540. for (k = 0; k < sub_blocks; k++) {
  541. sx[k] = s[k] & 0x0F;
  542. s [k] >>= 4;
  543. }
  544. } else {
  545. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  546. for (k = 1; k < sub_blocks; k++)
  547. s[k] = s[k - 1] + decode_rice(gb, 0);
  548. }
  549. if (get_bits1(gb))
  550. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  551. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  552. if (!sconf->rlslms) {
  553. if (sconf->adapt_order) {
  554. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  555. 2, sconf->max_order + 1));
  556. *bd->opt_order = get_bits(gb, opt_order_length);
  557. } else {
  558. *bd->opt_order = sconf->max_order;
  559. }
  560. opt_order = *bd->opt_order;
  561. if (opt_order) {
  562. int add_base;
  563. if (sconf->coef_table == 3) {
  564. add_base = 0x7F;
  565. // read coefficient 0
  566. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  567. // read coefficient 1
  568. if (opt_order > 1)
  569. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  570. // read coefficients 2 to opt_order
  571. for (k = 2; k < opt_order; k++)
  572. quant_cof[k] = get_bits(gb, 7);
  573. } else {
  574. int k_max;
  575. add_base = 1;
  576. // read coefficient 0 to 19
  577. k_max = FFMIN(opt_order, 20);
  578. for (k = 0; k < k_max; k++) {
  579. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  580. int offset = parcor_rice_table[sconf->coef_table][k][0];
  581. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  582. }
  583. // read coefficients 20 to 126
  584. k_max = FFMIN(opt_order, 127);
  585. for (; k < k_max; k++)
  586. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  587. // read coefficients 127 to opt_order
  588. for (; k < opt_order; k++)
  589. quant_cof[k] = decode_rice(gb, 1);
  590. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  591. if (opt_order > 1)
  592. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  593. }
  594. for (k = 2; k < opt_order; k++)
  595. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  596. }
  597. }
  598. // read LTP gain and lag values
  599. if (sconf->long_term_prediction) {
  600. *bd->use_ltp = get_bits1(gb);
  601. if (*bd->use_ltp) {
  602. int r, c;
  603. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  604. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  605. r = get_unary(gb, 0, 4);
  606. c = get_bits(gb, 2);
  607. bd->ltp_gain[2] = ltp_gain_values[r][c];
  608. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  609. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  610. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  611. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  612. }
  613. }
  614. // read first value and residuals in case of a random access block
  615. if (bd->ra_block) {
  616. if (opt_order)
  617. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  618. if (opt_order > 1)
  619. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  620. if (opt_order > 2)
  621. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  622. start = FFMIN(opt_order, 3);
  623. }
  624. // read all residuals
  625. if (sconf->bgmc) {
  626. int delta[8];
  627. unsigned int k [8];
  628. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  629. unsigned int i = start;
  630. // read most significant bits
  631. unsigned int high;
  632. unsigned int low;
  633. unsigned int value;
  634. ff_bgmc_decode_init(gb, &high, &low, &value);
  635. current_res = bd->raw_samples + start;
  636. for (sb = 0; sb < sub_blocks; sb++, i = 0) {
  637. k [sb] = s[sb] > b ? s[sb] - b : 0;
  638. delta[sb] = 5 - s[sb] + k[sb];
  639. ff_bgmc_decode(gb, sb_length, current_res,
  640. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  641. current_res += sb_length;
  642. }
  643. ff_bgmc_decode_end(gb);
  644. // read least significant bits and tails
  645. i = start;
  646. current_res = bd->raw_samples + start;
  647. for (sb = 0; sb < sub_blocks; sb++, i = 0) {
  648. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  649. unsigned int cur_k = k[sb];
  650. unsigned int cur_s = s[sb];
  651. for (; i < sb_length; i++) {
  652. int32_t res = *current_res;
  653. if (res == cur_tail_code) {
  654. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  655. << (5 - delta[sb]);
  656. res = decode_rice(gb, cur_s);
  657. if (res >= 0) {
  658. res += (max_msb ) << cur_k;
  659. } else {
  660. res -= (max_msb - 1) << cur_k;
  661. }
  662. } else {
  663. if (res > cur_tail_code)
  664. res--;
  665. if (res & 1)
  666. res = -res;
  667. res >>= 1;
  668. if (cur_k) {
  669. res <<= cur_k;
  670. res |= get_bits_long(gb, cur_k);
  671. }
  672. }
  673. *current_res++ = res;
  674. }
  675. }
  676. } else {
  677. current_res = bd->raw_samples + start;
  678. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  679. for (; start < sb_length; start++)
  680. *current_res++ = decode_rice(gb, s[sb]);
  681. }
  682. if (!sconf->mc_coding || ctx->js_switch)
  683. align_get_bits(gb);
  684. return 0;
  685. }
  686. /** Decode the block data for a non-constant block
  687. */
  688. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  689. {
  690. ALSSpecificConfig *sconf = &ctx->sconf;
  691. unsigned int block_length = bd->block_length;
  692. unsigned int smp = 0;
  693. unsigned int k;
  694. int opt_order = *bd->opt_order;
  695. int sb;
  696. int64_t y;
  697. int32_t *quant_cof = bd->quant_cof;
  698. int32_t *lpc_cof = bd->lpc_cof;
  699. int32_t *raw_samples = bd->raw_samples;
  700. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  701. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  702. // reverse long-term prediction
  703. if (*bd->use_ltp) {
  704. int ltp_smp;
  705. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  706. int center = ltp_smp - *bd->ltp_lag;
  707. int begin = FFMAX(0, center - 2);
  708. int end = center + 3;
  709. int tab = 5 - (end - begin);
  710. int base;
  711. y = 1 << 6;
  712. for (base = begin; base < end; base++, tab++)
  713. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  714. raw_samples[ltp_smp] += y >> 7;
  715. }
  716. }
  717. // reconstruct all samples from residuals
  718. if (bd->ra_block) {
  719. for (smp = 0; smp < opt_order; smp++) {
  720. y = 1 << 19;
  721. for (sb = 0; sb < smp; sb++)
  722. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  723. *raw_samples++ -= y >> 20;
  724. parcor_to_lpc(smp, quant_cof, lpc_cof);
  725. }
  726. } else {
  727. for (k = 0; k < opt_order; k++)
  728. parcor_to_lpc(k, quant_cof, lpc_cof);
  729. // store previous samples in case that they have to be altered
  730. if (*bd->store_prev_samples)
  731. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  732. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  733. // reconstruct difference signal for prediction (joint-stereo)
  734. if (bd->js_blocks && bd->raw_other) {
  735. int32_t *left, *right;
  736. if (bd->raw_other > raw_samples) { // D = R - L
  737. left = raw_samples;
  738. right = bd->raw_other;
  739. } else { // D = R - L
  740. left = bd->raw_other;
  741. right = raw_samples;
  742. }
  743. for (sb = -1; sb >= -sconf->max_order; sb--)
  744. raw_samples[sb] = right[sb] - left[sb];
  745. }
  746. // reconstruct shifted signal
  747. if (*bd->shift_lsbs)
  748. for (sb = -1; sb >= -sconf->max_order; sb--)
  749. raw_samples[sb] >>= *bd->shift_lsbs;
  750. }
  751. // reverse linear prediction coefficients for efficiency
  752. lpc_cof = lpc_cof + opt_order;
  753. for (sb = 0; sb < opt_order; sb++)
  754. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  755. // reconstruct raw samples
  756. raw_samples = bd->raw_samples + smp;
  757. lpc_cof = lpc_cof_reversed + opt_order;
  758. for (; raw_samples < raw_samples_end; raw_samples++) {
  759. y = 1 << 19;
  760. for (sb = -opt_order; sb < 0; sb++)
  761. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  762. *raw_samples -= y >> 20;
  763. }
  764. raw_samples = bd->raw_samples;
  765. // restore previous samples in case that they have been altered
  766. if (*bd->store_prev_samples)
  767. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  768. sizeof(*raw_samples) * sconf->max_order);
  769. return 0;
  770. }
  771. /** Read the block data.
  772. */
  773. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  774. {
  775. GetBitContext *gb = &ctx->gb;
  776. *bd->shift_lsbs = 0;
  777. // read block type flag and read the samples accordingly
  778. if (get_bits1(gb)) {
  779. if (read_var_block_data(ctx, bd))
  780. return -1;
  781. } else {
  782. read_const_block_data(ctx, bd);
  783. }
  784. return 0;
  785. }
  786. /** Decode the block data.
  787. */
  788. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  789. {
  790. unsigned int smp;
  791. // read block type flag and read the samples accordingly
  792. if (*bd->const_block)
  793. decode_const_block_data(ctx, bd);
  794. else if (decode_var_block_data(ctx, bd))
  795. return -1;
  796. // TODO: read RLSLMS extension data
  797. if (*bd->shift_lsbs)
  798. for (smp = 0; smp < bd->block_length; smp++)
  799. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  800. return 0;
  801. }
  802. /** Read and decode block data successively.
  803. */
  804. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  805. {
  806. int ret;
  807. ret = read_block(ctx, bd);
  808. if (ret)
  809. return ret;
  810. ret = decode_block(ctx, bd);
  811. return ret;
  812. }
  813. /** Compute the number of samples left to decode for the current frame and
  814. * sets these samples to zero.
  815. */
  816. static void zero_remaining(unsigned int b, unsigned int b_max,
  817. const unsigned int *div_blocks, int32_t *buf)
  818. {
  819. unsigned int count = 0;
  820. while (b < b_max)
  821. count += div_blocks[b];
  822. if (count)
  823. memset(buf, 0, sizeof(*buf) * count);
  824. }
  825. /** Decode blocks independently.
  826. */
  827. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  828. unsigned int c, const unsigned int *div_blocks,
  829. unsigned int *js_blocks)
  830. {
  831. unsigned int b;
  832. ALSBlockData bd;
  833. memset(&bd, 0, sizeof(ALSBlockData));
  834. bd.ra_block = ra_frame;
  835. bd.const_block = ctx->const_block;
  836. bd.shift_lsbs = ctx->shift_lsbs;
  837. bd.opt_order = ctx->opt_order;
  838. bd.store_prev_samples = ctx->store_prev_samples;
  839. bd.use_ltp = ctx->use_ltp;
  840. bd.ltp_lag = ctx->ltp_lag;
  841. bd.ltp_gain = ctx->ltp_gain[0];
  842. bd.quant_cof = ctx->quant_cof[0];
  843. bd.lpc_cof = ctx->lpc_cof[0];
  844. bd.prev_raw_samples = ctx->prev_raw_samples;
  845. bd.raw_samples = ctx->raw_samples[c];
  846. for (b = 0; b < ctx->num_blocks; b++) {
  847. bd.block_length = div_blocks[b];
  848. if (read_decode_block(ctx, &bd)) {
  849. // damaged block, write zero for the rest of the frame
  850. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  851. return -1;
  852. }
  853. bd.raw_samples += div_blocks[b];
  854. bd.ra_block = 0;
  855. }
  856. return 0;
  857. }
  858. /** Decode blocks dependently.
  859. */
  860. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  861. unsigned int c, const unsigned int *div_blocks,
  862. unsigned int *js_blocks)
  863. {
  864. ALSSpecificConfig *sconf = &ctx->sconf;
  865. unsigned int offset = 0;
  866. unsigned int b;
  867. ALSBlockData bd[2];
  868. memset(bd, 0, 2 * sizeof(ALSBlockData));
  869. bd[0].ra_block = ra_frame;
  870. bd[0].const_block = ctx->const_block;
  871. bd[0].shift_lsbs = ctx->shift_lsbs;
  872. bd[0].opt_order = ctx->opt_order;
  873. bd[0].store_prev_samples = ctx->store_prev_samples;
  874. bd[0].use_ltp = ctx->use_ltp;
  875. bd[0].ltp_lag = ctx->ltp_lag;
  876. bd[0].ltp_gain = ctx->ltp_gain[0];
  877. bd[0].quant_cof = ctx->quant_cof[0];
  878. bd[0].lpc_cof = ctx->lpc_cof[0];
  879. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  880. bd[0].js_blocks = *js_blocks;
  881. bd[1].ra_block = ra_frame;
  882. bd[1].const_block = ctx->const_block;
  883. bd[1].shift_lsbs = ctx->shift_lsbs;
  884. bd[1].opt_order = ctx->opt_order;
  885. bd[1].store_prev_samples = ctx->store_prev_samples;
  886. bd[1].use_ltp = ctx->use_ltp;
  887. bd[1].ltp_lag = ctx->ltp_lag;
  888. bd[1].ltp_gain = ctx->ltp_gain[0];
  889. bd[1].quant_cof = ctx->quant_cof[0];
  890. bd[1].lpc_cof = ctx->lpc_cof[0];
  891. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  892. bd[1].js_blocks = *(js_blocks + 1);
  893. // decode all blocks
  894. for (b = 0; b < ctx->num_blocks; b++) {
  895. unsigned int s;
  896. bd[0].block_length = div_blocks[b];
  897. bd[1].block_length = div_blocks[b];
  898. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  899. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  900. bd[0].raw_other = bd[1].raw_samples;
  901. bd[1].raw_other = bd[0].raw_samples;
  902. if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
  903. // damaged block, write zero for the rest of the frame
  904. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  905. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  906. return -1;
  907. }
  908. // reconstruct joint-stereo blocks
  909. if (bd[0].js_blocks) {
  910. if (bd[1].js_blocks)
  911. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
  912. for (s = 0; s < div_blocks[b]; s++)
  913. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  914. } else if (bd[1].js_blocks) {
  915. for (s = 0; s < div_blocks[b]; s++)
  916. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  917. }
  918. offset += div_blocks[b];
  919. bd[0].ra_block = 0;
  920. bd[1].ra_block = 0;
  921. }
  922. // store carryover raw samples,
  923. // the others channel raw samples are stored by the calling function.
  924. memmove(ctx->raw_samples[c] - sconf->max_order,
  925. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  926. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  927. return 0;
  928. }
  929. /** Read the channel data.
  930. */
  931. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  932. {
  933. GetBitContext *gb = &ctx->gb;
  934. ALSChannelData *current = cd;
  935. unsigned int channels = ctx->avctx->channels;
  936. int entries = 0;
  937. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  938. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  939. if (current->master_channel >= channels) {
  940. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
  941. return -1;
  942. }
  943. if (current->master_channel != c) {
  944. current->time_diff_flag = get_bits1(gb);
  945. current->weighting[0] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  946. current->weighting[1] = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 32)];
  947. current->weighting[2] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  948. if (current->time_diff_flag) {
  949. current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  950. current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  951. current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
  952. current->time_diff_sign = get_bits1(gb);
  953. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  954. }
  955. }
  956. current++;
  957. entries++;
  958. }
  959. if (entries == channels) {
  960. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
  961. return -1;
  962. }
  963. align_get_bits(gb);
  964. return 0;
  965. }
  966. /** Recursively reverts the inter-channel correlation for a block.
  967. */
  968. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  969. ALSChannelData **cd, int *reverted,
  970. unsigned int offset, int c)
  971. {
  972. ALSChannelData *ch = cd[c];
  973. unsigned int dep = 0;
  974. unsigned int channels = ctx->avctx->channels;
  975. if (reverted[c])
  976. return 0;
  977. reverted[c] = 1;
  978. while (dep < channels && !ch[dep].stop_flag) {
  979. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  980. ch[dep].master_channel);
  981. dep++;
  982. }
  983. if (dep == channels) {
  984. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
  985. return -1;
  986. }
  987. bd->const_block = ctx->const_block + c;
  988. bd->shift_lsbs = ctx->shift_lsbs + c;
  989. bd->opt_order = ctx->opt_order + c;
  990. bd->store_prev_samples = ctx->store_prev_samples + c;
  991. bd->use_ltp = ctx->use_ltp + c;
  992. bd->ltp_lag = ctx->ltp_lag + c;
  993. bd->ltp_gain = ctx->ltp_gain[c];
  994. bd->lpc_cof = ctx->lpc_cof[c];
  995. bd->quant_cof = ctx->quant_cof[c];
  996. bd->raw_samples = ctx->raw_samples[c] + offset;
  997. dep = 0;
  998. while (!ch[dep].stop_flag) {
  999. unsigned int smp;
  1000. unsigned int begin = 1;
  1001. unsigned int end = bd->block_length - 1;
  1002. int64_t y;
  1003. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1004. if (ch[dep].time_diff_flag) {
  1005. int t = ch[dep].time_diff_index;
  1006. if (ch[dep].time_diff_sign) {
  1007. t = -t;
  1008. begin -= t;
  1009. } else {
  1010. end -= t;
  1011. }
  1012. for (smp = begin; smp < end; smp++) {
  1013. y = (1 << 6) +
  1014. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1015. MUL64(ch[dep].weighting[1], master[smp ]) +
  1016. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1017. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1018. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1019. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1020. bd->raw_samples[smp] += y >> 7;
  1021. }
  1022. } else {
  1023. for (smp = begin; smp < end; smp++) {
  1024. y = (1 << 6) +
  1025. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1026. MUL64(ch[dep].weighting[1], master[smp ]) +
  1027. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1028. bd->raw_samples[smp] += y >> 7;
  1029. }
  1030. }
  1031. dep++;
  1032. }
  1033. return 0;
  1034. }
  1035. /** Read the frame data.
  1036. */
  1037. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1038. {
  1039. ALSSpecificConfig *sconf = &ctx->sconf;
  1040. AVCodecContext *avctx = ctx->avctx;
  1041. GetBitContext *gb = &ctx->gb;
  1042. unsigned int div_blocks[32]; ///< block sizes.
  1043. unsigned int c;
  1044. unsigned int js_blocks[2];
  1045. uint32_t bs_info = 0;
  1046. // skip the size of the ra unit if present in the frame
  1047. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1048. skip_bits_long(gb, 32);
  1049. if (sconf->mc_coding && sconf->joint_stereo) {
  1050. ctx->js_switch = get_bits1(gb);
  1051. align_get_bits(gb);
  1052. }
  1053. if (!sconf->mc_coding || ctx->js_switch) {
  1054. int independent_bs = !sconf->joint_stereo;
  1055. for (c = 0; c < avctx->channels; c++) {
  1056. js_blocks[0] = 0;
  1057. js_blocks[1] = 0;
  1058. get_block_sizes(ctx, div_blocks, &bs_info);
  1059. // if joint_stereo and block_switching is set, independent decoding
  1060. // is signaled via the first bit of bs_info
  1061. if (sconf->joint_stereo && sconf->block_switching)
  1062. if (bs_info >> 31)
  1063. independent_bs = 2;
  1064. // if this is the last channel, it has to be decoded independently
  1065. if (c == avctx->channels - 1)
  1066. independent_bs = 1;
  1067. if (independent_bs) {
  1068. if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
  1069. return -1;
  1070. independent_bs--;
  1071. } else {
  1072. if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
  1073. return -1;
  1074. c++;
  1075. }
  1076. // store carryover raw samples
  1077. memmove(ctx->raw_samples[c] - sconf->max_order,
  1078. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1079. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1080. }
  1081. } else { // multi-channel coding
  1082. ALSBlockData bd;
  1083. int b;
  1084. int *reverted_channels = ctx->reverted_channels;
  1085. unsigned int offset = 0;
  1086. for (c = 0; c < avctx->channels; c++)
  1087. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1088. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
  1089. return -1;
  1090. }
  1091. memset(&bd, 0, sizeof(ALSBlockData));
  1092. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1093. bd.ra_block = ra_frame;
  1094. bd.prev_raw_samples = ctx->prev_raw_samples;
  1095. get_block_sizes(ctx, div_blocks, &bs_info);
  1096. for (b = 0; b < ctx->num_blocks; b++) {
  1097. bd.block_length = div_blocks[b];
  1098. for (c = 0; c < avctx->channels; c++) {
  1099. bd.const_block = ctx->const_block + c;
  1100. bd.shift_lsbs = ctx->shift_lsbs + c;
  1101. bd.opt_order = ctx->opt_order + c;
  1102. bd.store_prev_samples = ctx->store_prev_samples + c;
  1103. bd.use_ltp = ctx->use_ltp + c;
  1104. bd.ltp_lag = ctx->ltp_lag + c;
  1105. bd.ltp_gain = ctx->ltp_gain[c];
  1106. bd.lpc_cof = ctx->lpc_cof[c];
  1107. bd.quant_cof = ctx->quant_cof[c];
  1108. bd.raw_samples = ctx->raw_samples[c] + offset;
  1109. bd.raw_other = NULL;
  1110. read_block(ctx, &bd);
  1111. if (read_channel_data(ctx, ctx->chan_data[c], c))
  1112. return -1;
  1113. }
  1114. for (c = 0; c < avctx->channels; c++)
  1115. if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1116. reverted_channels, offset, c))
  1117. return -1;
  1118. for (c = 0; c < avctx->channels; c++) {
  1119. bd.const_block = ctx->const_block + c;
  1120. bd.shift_lsbs = ctx->shift_lsbs + c;
  1121. bd.opt_order = ctx->opt_order + c;
  1122. bd.store_prev_samples = ctx->store_prev_samples + c;
  1123. bd.use_ltp = ctx->use_ltp + c;
  1124. bd.ltp_lag = ctx->ltp_lag + c;
  1125. bd.ltp_gain = ctx->ltp_gain[c];
  1126. bd.lpc_cof = ctx->lpc_cof[c];
  1127. bd.quant_cof = ctx->quant_cof[c];
  1128. bd.raw_samples = ctx->raw_samples[c] + offset;
  1129. decode_block(ctx, &bd);
  1130. }
  1131. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1132. offset += div_blocks[b];
  1133. bd.ra_block = 0;
  1134. }
  1135. // store carryover raw samples
  1136. for (c = 0; c < avctx->channels; c++)
  1137. memmove(ctx->raw_samples[c] - sconf->max_order,
  1138. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1139. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1140. }
  1141. // TODO: read_diff_float_data
  1142. return 0;
  1143. }
  1144. /** Decode an ALS frame.
  1145. */
  1146. static int decode_frame(AVCodecContext *avctx,
  1147. void *data, int *data_size,
  1148. AVPacket *avpkt)
  1149. {
  1150. ALSDecContext *ctx = avctx->priv_data;
  1151. ALSSpecificConfig *sconf = &ctx->sconf;
  1152. const uint8_t *buffer = avpkt->data;
  1153. int buffer_size = avpkt->size;
  1154. int invalid_frame, size;
  1155. unsigned int c, sample, ra_frame, bytes_read, shift;
  1156. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1157. // In the case that the distance between random access frames is set to zero
  1158. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1159. // For the first frame, if prediction is used, all samples used from the
  1160. // previous frame are assumed to be zero.
  1161. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1162. // the last frame to decode might have a different length
  1163. if (sconf->samples != 0xFFFFFFFF)
  1164. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1165. sconf->frame_length);
  1166. else
  1167. ctx->cur_frame_length = sconf->frame_length;
  1168. // decode the frame data
  1169. if ((invalid_frame = read_frame_data(ctx, ra_frame) < 0))
  1170. av_log(ctx->avctx, AV_LOG_WARNING,
  1171. "Reading frame data failed. Skipping RA unit.\n");
  1172. ctx->frame_id++;
  1173. // check for size of decoded data
  1174. size = ctx->cur_frame_length * avctx->channels *
  1175. av_get_bytes_per_sample(avctx->sample_fmt);
  1176. if (size > *data_size) {
  1177. av_log(avctx, AV_LOG_ERROR, "Decoded data exceeds buffer size.\n");
  1178. return -1;
  1179. }
  1180. *data_size = size;
  1181. // transform decoded frame into output format
  1182. #define INTERLEAVE_OUTPUT(bps) \
  1183. { \
  1184. int##bps##_t *dest = (int##bps##_t*) data; \
  1185. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1186. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1187. for (c = 0; c < avctx->channels; c++) \
  1188. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1189. }
  1190. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1191. INTERLEAVE_OUTPUT(16)
  1192. } else {
  1193. INTERLEAVE_OUTPUT(32)
  1194. }
  1195. // update CRC
  1196. if (sconf->crc_enabled && avctx->error_recognition >= FF_ER_CAREFUL) {
  1197. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1198. if (ctx->avctx->bits_per_raw_sample == 24) {
  1199. int32_t *src = data;
  1200. for (sample = 0;
  1201. sample < ctx->cur_frame_length * avctx->channels;
  1202. sample++) {
  1203. int32_t v;
  1204. if (swap)
  1205. v = av_bswap32(src[sample]);
  1206. else
  1207. v = src[sample];
  1208. if (!HAVE_BIGENDIAN)
  1209. v >>= 8;
  1210. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1211. }
  1212. } else {
  1213. uint8_t *crc_source;
  1214. if (swap) {
  1215. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1216. int16_t *src = (int16_t*) data;
  1217. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1218. for (sample = 0;
  1219. sample < ctx->cur_frame_length * avctx->channels;
  1220. sample++)
  1221. *dest++ = av_bswap16(src[sample]);
  1222. } else {
  1223. ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer, data,
  1224. ctx->cur_frame_length * avctx->channels);
  1225. }
  1226. crc_source = ctx->crc_buffer;
  1227. } else {
  1228. crc_source = data;
  1229. }
  1230. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source, size);
  1231. }
  1232. // check CRC sums if this is the last frame
  1233. if (ctx->cur_frame_length != sconf->frame_length &&
  1234. ctx->crc_org != ctx->crc) {
  1235. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1236. }
  1237. }
  1238. bytes_read = invalid_frame ? buffer_size :
  1239. (get_bits_count(&ctx->gb) + 7) >> 3;
  1240. return bytes_read;
  1241. }
  1242. /** Uninitialize the ALS decoder.
  1243. */
  1244. static av_cold int decode_end(AVCodecContext *avctx)
  1245. {
  1246. ALSDecContext *ctx = avctx->priv_data;
  1247. av_freep(&ctx->sconf.chan_pos);
  1248. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1249. av_freep(&ctx->const_block);
  1250. av_freep(&ctx->shift_lsbs);
  1251. av_freep(&ctx->opt_order);
  1252. av_freep(&ctx->store_prev_samples);
  1253. av_freep(&ctx->use_ltp);
  1254. av_freep(&ctx->ltp_lag);
  1255. av_freep(&ctx->ltp_gain);
  1256. av_freep(&ctx->ltp_gain_buffer);
  1257. av_freep(&ctx->quant_cof);
  1258. av_freep(&ctx->lpc_cof);
  1259. av_freep(&ctx->quant_cof_buffer);
  1260. av_freep(&ctx->lpc_cof_buffer);
  1261. av_freep(&ctx->lpc_cof_reversed_buffer);
  1262. av_freep(&ctx->prev_raw_samples);
  1263. av_freep(&ctx->raw_samples);
  1264. av_freep(&ctx->raw_buffer);
  1265. av_freep(&ctx->chan_data);
  1266. av_freep(&ctx->chan_data_buffer);
  1267. av_freep(&ctx->reverted_channels);
  1268. av_freep(&ctx->crc_buffer);
  1269. return 0;
  1270. }
  1271. /** Initialize the ALS decoder.
  1272. */
  1273. static av_cold int decode_init(AVCodecContext *avctx)
  1274. {
  1275. unsigned int c;
  1276. unsigned int channel_size;
  1277. int num_buffers;
  1278. ALSDecContext *ctx = avctx->priv_data;
  1279. ALSSpecificConfig *sconf = &ctx->sconf;
  1280. ctx->avctx = avctx;
  1281. if (!avctx->extradata) {
  1282. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1283. return -1;
  1284. }
  1285. if (read_specific_config(ctx)) {
  1286. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1287. decode_end(avctx);
  1288. return -1;
  1289. }
  1290. if (check_specific_config(ctx)) {
  1291. decode_end(avctx);
  1292. return -1;
  1293. }
  1294. if (sconf->bgmc)
  1295. ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1296. if (sconf->floating) {
  1297. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1298. avctx->bits_per_raw_sample = 32;
  1299. } else {
  1300. avctx->sample_fmt = sconf->resolution > 1
  1301. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1302. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1303. }
  1304. // set maximum Rice parameter for progressive decoding based on resolution
  1305. // This is not specified in 14496-3 but actually done by the reference
  1306. // codec RM22 revision 2.
  1307. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1308. // set lag value for long-term prediction
  1309. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1310. (avctx->sample_rate >= 192000);
  1311. // allocate quantized parcor coefficient buffer
  1312. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1313. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1314. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1315. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1316. num_buffers * sconf->max_order);
  1317. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1318. num_buffers * sconf->max_order);
  1319. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1320. sconf->max_order);
  1321. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1322. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1323. !ctx->lpc_cof_reversed_buffer) {
  1324. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1325. return AVERROR(ENOMEM);
  1326. }
  1327. // assign quantized parcor coefficient buffers
  1328. for (c = 0; c < num_buffers; c++) {
  1329. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1330. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1331. }
  1332. // allocate and assign lag and gain data buffer for ltp mode
  1333. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1334. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1335. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1336. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1337. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1338. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1339. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1340. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1341. num_buffers * 5);
  1342. if (!ctx->const_block || !ctx->shift_lsbs ||
  1343. !ctx->opt_order || !ctx->store_prev_samples ||
  1344. !ctx->use_ltp || !ctx->ltp_lag ||
  1345. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1346. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1347. decode_end(avctx);
  1348. return AVERROR(ENOMEM);
  1349. }
  1350. for (c = 0; c < num_buffers; c++)
  1351. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1352. // allocate and assign channel data buffer for mcc mode
  1353. if (sconf->mc_coding) {
  1354. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1355. num_buffers * num_buffers);
  1356. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1357. num_buffers);
  1358. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1359. num_buffers);
  1360. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1361. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1362. decode_end(avctx);
  1363. return AVERROR(ENOMEM);
  1364. }
  1365. for (c = 0; c < num_buffers; c++)
  1366. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1367. } else {
  1368. ctx->chan_data = NULL;
  1369. ctx->chan_data_buffer = NULL;
  1370. ctx->reverted_channels = NULL;
  1371. }
  1372. avctx->frame_size = sconf->frame_length;
  1373. channel_size = sconf->frame_length + sconf->max_order;
  1374. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1375. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1376. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1377. // allocate previous raw sample buffer
  1378. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1379. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1380. decode_end(avctx);
  1381. return AVERROR(ENOMEM);
  1382. }
  1383. // assign raw samples buffers
  1384. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1385. for (c = 1; c < avctx->channels; c++)
  1386. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1387. // allocate crc buffer
  1388. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1389. avctx->error_recognition >= FF_ER_CAREFUL) {
  1390. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1391. ctx->cur_frame_length *
  1392. avctx->channels *
  1393. av_get_bytes_per_sample(avctx->sample_fmt));
  1394. if (!ctx->crc_buffer) {
  1395. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1396. decode_end(avctx);
  1397. return AVERROR(ENOMEM);
  1398. }
  1399. }
  1400. dsputil_init(&ctx->dsp, avctx);
  1401. return 0;
  1402. }
  1403. /** Flush (reset) the frame ID after seeking.
  1404. */
  1405. static av_cold void flush(AVCodecContext *avctx)
  1406. {
  1407. ALSDecContext *ctx = avctx->priv_data;
  1408. ctx->frame_id = 0;
  1409. }
  1410. AVCodec ff_als_decoder = {
  1411. "als",
  1412. AVMEDIA_TYPE_AUDIO,
  1413. CODEC_ID_MP4ALS,
  1414. sizeof(ALSDecContext),
  1415. decode_init,
  1416. NULL,
  1417. decode_end,
  1418. decode_frame,
  1419. .flush = flush,
  1420. .capabilities = CODEC_CAP_SUBFRAMES,
  1421. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1422. };