swresample.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. /*
  2. * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=2 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=2 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=2 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=2 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT , {.i64=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT , {.i64=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT , {.i64=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT , {.i64=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_NB-1+256, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT , {.i64=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_FLTP, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT , {.i64=AV_SAMPLE_FMT_NONE }, -1 , AV_SAMPLE_FMT_FLTP, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither_scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither_method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"filter_size" , "set resampling filter size" , OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=16 }, 0 , INT_MAX , PARAM },
  74. {"phase_shift" , "set resampling phase shift" , OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  75. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  76. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0.8 }, 0 , 1 , PARAM },
  77. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  78. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  79. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  80. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  81. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  82. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  83. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  84. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  85. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  86. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  87. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  88. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  89. { "filter_type" , "select filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  90. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  91. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  92. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  93. { "kaiser_beta" , "set Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  94. {0}
  95. };
  96. static const char* context_to_name(void* ptr) {
  97. return "SWR";
  98. }
  99. static const AVClass av_class = {
  100. .class_name = "SWResampler",
  101. .item_name = context_to_name,
  102. .option = options,
  103. .version = LIBAVUTIL_VERSION_INT,
  104. .log_level_offset_offset = OFFSET(log_level_offset),
  105. .parent_log_context_offset = OFFSET(log_ctx),
  106. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  107. };
  108. unsigned swresample_version(void)
  109. {
  110. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  111. return LIBSWRESAMPLE_VERSION_INT;
  112. }
  113. const char *swresample_configuration(void)
  114. {
  115. return FFMPEG_CONFIGURATION;
  116. }
  117. const char *swresample_license(void)
  118. {
  119. #define LICENSE_PREFIX "libswresample license: "
  120. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  121. }
  122. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  123. if(!s || s->in_convert) // s needs to be allocated but not initialized
  124. return AVERROR(EINVAL);
  125. s->channel_map = channel_map;
  126. return 0;
  127. }
  128. const AVClass *swr_get_class(void)
  129. {
  130. return &av_class;
  131. }
  132. av_cold struct SwrContext *swr_alloc(void){
  133. SwrContext *s= av_mallocz(sizeof(SwrContext));
  134. if(s){
  135. s->av_class= &av_class;
  136. av_opt_set_defaults(s);
  137. }
  138. return s;
  139. }
  140. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  141. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  142. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  143. int log_offset, void *log_ctx){
  144. if(!s) s= swr_alloc();
  145. if(!s) return NULL;
  146. s->log_level_offset= log_offset;
  147. s->log_ctx= log_ctx;
  148. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  149. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  150. av_opt_set_int(s, "osr", out_sample_rate, 0);
  151. av_opt_set_int(s, "icl", in_ch_layout, 0);
  152. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  153. av_opt_set_int(s, "isr", in_sample_rate, 0);
  154. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  155. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  156. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  157. av_opt_set_int(s, "uch", 0, 0);
  158. return s;
  159. }
  160. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  161. a->fmt = fmt;
  162. a->bps = av_get_bytes_per_sample(fmt);
  163. a->planar= av_sample_fmt_is_planar(fmt);
  164. }
  165. static void free_temp(AudioData *a){
  166. av_free(a->data);
  167. memset(a, 0, sizeof(*a));
  168. }
  169. av_cold void swr_free(SwrContext **ss){
  170. SwrContext *s= *ss;
  171. if(s){
  172. free_temp(&s->postin);
  173. free_temp(&s->midbuf);
  174. free_temp(&s->preout);
  175. free_temp(&s->in_buffer);
  176. free_temp(&s->dither);
  177. swri_audio_convert_free(&s-> in_convert);
  178. swri_audio_convert_free(&s->out_convert);
  179. swri_audio_convert_free(&s->full_convert);
  180. swri_resample_free(&s->resample);
  181. swri_rematrix_free(s);
  182. }
  183. av_freep(ss);
  184. }
  185. av_cold int swr_init(struct SwrContext *s){
  186. s->in_buffer_index= 0;
  187. s->in_buffer_count= 0;
  188. s->resample_in_constraint= 0;
  189. free_temp(&s->postin);
  190. free_temp(&s->midbuf);
  191. free_temp(&s->preout);
  192. free_temp(&s->in_buffer);
  193. free_temp(&s->dither);
  194. memset(s->in.ch, 0, sizeof(s->in.ch));
  195. memset(s->out.ch, 0, sizeof(s->out.ch));
  196. swri_audio_convert_free(&s-> in_convert);
  197. swri_audio_convert_free(&s->out_convert);
  198. swri_audio_convert_free(&s->full_convert);
  199. swri_rematrix_free(s);
  200. s->flushed = 0;
  201. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  202. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  203. return AVERROR(EINVAL);
  204. }
  205. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  206. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  207. return AVERROR(EINVAL);
  208. }
  209. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  210. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  211. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  212. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  213. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  214. }else{
  215. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  216. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  217. }
  218. }
  219. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  220. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  221. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  222. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  223. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  224. return AVERROR(EINVAL);
  225. }
  226. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  227. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  228. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  229. s->resample = swri_resample_init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta);
  230. }else
  231. swri_resample_free(&s->resample);
  232. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  233. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  234. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  235. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  236. && s->resample){
  237. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  238. return -1;
  239. }
  240. if(!s->used_ch_count)
  241. s->used_ch_count= s->in.ch_count;
  242. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  243. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  244. s-> in_ch_layout= 0;
  245. }
  246. if(!s-> in_ch_layout)
  247. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  248. if(!s->out_ch_layout)
  249. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  250. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  251. s->rematrix_custom;
  252. #define RSC 1 //FIXME finetune
  253. if(!s-> in.ch_count)
  254. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  255. if(!s->used_ch_count)
  256. s->used_ch_count= s->in.ch_count;
  257. if(!s->out.ch_count)
  258. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  259. if(!s-> in.ch_count){
  260. av_assert0(!s->in_ch_layout);
  261. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  262. return -1;
  263. }
  264. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  265. av_log(s, AV_LOG_ERROR, "Rematrix is needed but there is not enough information to do it\n");
  266. return -1;
  267. }
  268. av_assert0(s->used_ch_count);
  269. av_assert0(s->out.ch_count);
  270. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  271. s->in_buffer= s->in;
  272. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither_method){
  273. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  274. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  275. return 0;
  276. }
  277. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  278. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  279. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  280. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  281. s->postin= s->in;
  282. s->preout= s->out;
  283. s->midbuf= s->in;
  284. if(s->channel_map){
  285. s->postin.ch_count=
  286. s->midbuf.ch_count= s->used_ch_count;
  287. if(s->resample)
  288. s->in_buffer.ch_count= s->used_ch_count;
  289. }
  290. if(!s->resample_first){
  291. s->midbuf.ch_count= s->out.ch_count;
  292. if(s->resample)
  293. s->in_buffer.ch_count = s->out.ch_count;
  294. }
  295. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  296. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  297. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  298. if(s->resample){
  299. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  300. }
  301. s->dither = s->preout;
  302. if(s->rematrix || s->dither_method)
  303. return swri_rematrix_init(s);
  304. return 0;
  305. }
  306. static int realloc_audio(AudioData *a, int count){
  307. int i, countb;
  308. AudioData old;
  309. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  310. return AVERROR(EINVAL);
  311. if(a->count >= count)
  312. return 0;
  313. count*=2;
  314. countb= FFALIGN(count*a->bps, ALIGN);
  315. old= *a;
  316. av_assert0(a->bps);
  317. av_assert0(a->ch_count);
  318. a->data= av_mallocz(countb*a->ch_count);
  319. if(!a->data)
  320. return AVERROR(ENOMEM);
  321. for(i=0; i<a->ch_count; i++){
  322. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  323. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  324. }
  325. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  326. av_free(old.data);
  327. a->count= count;
  328. return 1;
  329. }
  330. static void copy(AudioData *out, AudioData *in,
  331. int count){
  332. av_assert0(out->planar == in->planar);
  333. av_assert0(out->bps == in->bps);
  334. av_assert0(out->ch_count == in->ch_count);
  335. if(out->planar){
  336. int ch;
  337. for(ch=0; ch<out->ch_count; ch++)
  338. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  339. }else
  340. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  341. }
  342. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  343. int i;
  344. if(!in_arg){
  345. memset(out->ch, 0, sizeof(out->ch));
  346. }else if(out->planar){
  347. for(i=0; i<out->ch_count; i++)
  348. out->ch[i]= in_arg[i];
  349. }else{
  350. for(i=0; i<out->ch_count; i++)
  351. out->ch[i]= in_arg[0] + i*out->bps;
  352. }
  353. }
  354. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  355. int i;
  356. if(out->planar){
  357. for(i=0; i<out->ch_count; i++)
  358. in_arg[i]= out->ch[i];
  359. }else{
  360. in_arg[0]= out->ch[0];
  361. }
  362. }
  363. /**
  364. *
  365. * out may be equal in.
  366. */
  367. static void buf_set(AudioData *out, AudioData *in, int count){
  368. int ch;
  369. if(in->planar){
  370. for(ch=0; ch<out->ch_count; ch++)
  371. out->ch[ch]= in->ch[ch] + count*out->bps;
  372. }else{
  373. for(ch=out->ch_count-1; ch>=0; ch--)
  374. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  375. }
  376. }
  377. /**
  378. *
  379. * @return number of samples output per channel
  380. */
  381. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  382. const AudioData * in_param, int in_count){
  383. AudioData in, out, tmp;
  384. int ret_sum=0;
  385. int border=0;
  386. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  387. av_assert1(s->in_buffer.planar == in_param->planar);
  388. av_assert1(s->in_buffer.fmt == in_param->fmt);
  389. tmp=out=*out_param;
  390. in = *in_param;
  391. do{
  392. int ret, size, consumed;
  393. if(!s->resample_in_constraint && s->in_buffer_count){
  394. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  395. ret= swri_multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  396. out_count -= ret;
  397. ret_sum += ret;
  398. buf_set(&out, &out, ret);
  399. s->in_buffer_count -= consumed;
  400. s->in_buffer_index += consumed;
  401. if(!in_count)
  402. break;
  403. if(s->in_buffer_count <= border){
  404. buf_set(&in, &in, -s->in_buffer_count);
  405. in_count += s->in_buffer_count;
  406. s->in_buffer_count=0;
  407. s->in_buffer_index=0;
  408. border = 0;
  409. }
  410. }
  411. if(in_count && !s->in_buffer_count){
  412. s->in_buffer_index=0;
  413. ret= swri_multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  414. out_count -= ret;
  415. ret_sum += ret;
  416. buf_set(&out, &out, ret);
  417. in_count -= consumed;
  418. buf_set(&in, &in, consumed);
  419. }
  420. //TODO is this check sane considering the advanced copy avoidance below
  421. size= s->in_buffer_index + s->in_buffer_count + in_count;
  422. if( size > s->in_buffer.count
  423. && s->in_buffer_count + in_count <= s->in_buffer_index){
  424. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  425. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  426. s->in_buffer_index=0;
  427. }else
  428. if((ret=realloc_audio(&s->in_buffer, size)) < 0)
  429. return ret;
  430. if(in_count){
  431. int count= in_count;
  432. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  433. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  434. copy(&tmp, &in, /*in_*/count);
  435. s->in_buffer_count += count;
  436. in_count -= count;
  437. border += count;
  438. buf_set(&in, &in, count);
  439. s->resample_in_constraint= 0;
  440. if(s->in_buffer_count != count || in_count)
  441. continue;
  442. }
  443. break;
  444. }while(1);
  445. s->resample_in_constraint= !!out_count;
  446. return ret_sum;
  447. }
  448. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  449. AudioData *in , int in_count){
  450. AudioData *postin, *midbuf, *preout;
  451. int ret/*, in_max*/;
  452. AudioData preout_tmp, midbuf_tmp;
  453. if(s->full_convert){
  454. av_assert0(!s->resample);
  455. swri_audio_convert(s->full_convert, out, in, in_count);
  456. return out_count;
  457. }
  458. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  459. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  460. if((ret=realloc_audio(&s->postin, in_count))<0)
  461. return ret;
  462. if(s->resample_first){
  463. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  464. if((ret=realloc_audio(&s->midbuf, out_count))<0)
  465. return ret;
  466. }else{
  467. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  468. if((ret=realloc_audio(&s->midbuf, in_count))<0)
  469. return ret;
  470. }
  471. if((ret=realloc_audio(&s->preout, out_count))<0)
  472. return ret;
  473. postin= &s->postin;
  474. midbuf_tmp= s->midbuf;
  475. midbuf= &midbuf_tmp;
  476. preout_tmp= s->preout;
  477. preout= &preout_tmp;
  478. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  479. postin= in;
  480. if(s->resample_first ? !s->resample : !s->rematrix)
  481. midbuf= postin;
  482. if(s->resample_first ? !s->rematrix : !s->resample)
  483. preout= midbuf;
  484. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  485. if(preout==in){
  486. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  487. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  488. copy(out, in, out_count);
  489. return out_count;
  490. }
  491. else if(preout==postin) preout= midbuf= postin= out;
  492. else if(preout==midbuf) preout= midbuf= out;
  493. else preout= out;
  494. }
  495. if(in != postin){
  496. swri_audio_convert(s->in_convert, postin, in, in_count);
  497. }
  498. if(s->resample_first){
  499. if(postin != midbuf)
  500. out_count= resample(s, midbuf, out_count, postin, in_count);
  501. if(midbuf != preout)
  502. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  503. }else{
  504. if(postin != midbuf)
  505. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  506. if(midbuf != preout)
  507. out_count= resample(s, preout, out_count, midbuf, in_count);
  508. }
  509. if(preout != out && out_count){
  510. if(s->dither_method){
  511. int ch;
  512. int dither_count= FFMAX(out_count, 1<<16);
  513. av_assert0(preout != in);
  514. if((ret=realloc_audio(&s->dither, dither_count))<0)
  515. return ret;
  516. if(ret)
  517. for(ch=0; ch<s->dither.ch_count; ch++)
  518. swri_get_dither(s, s->dither.ch[ch], s->dither.count, 12345678913579<<ch, s->out_sample_fmt, s->int_sample_fmt);
  519. av_assert0(s->dither.ch_count == preout->ch_count);
  520. if(s->dither_pos + out_count > s->dither.count)
  521. s->dither_pos = 0;
  522. for(ch=0; ch<preout->ch_count; ch++)
  523. s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.ch[ch] + s->dither.bps * s->dither_pos, s->native_one, 0, 0, out_count);
  524. s->dither_pos += out_count;
  525. }
  526. //FIXME packed doesnt need more than 1 chan here!
  527. swri_audio_convert(s->out_convert, out, preout, out_count);
  528. }
  529. return out_count;
  530. }
  531. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  532. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  533. AudioData * in= &s->in;
  534. AudioData *out= &s->out;
  535. if(s->drop_output > 0){
  536. int ret;
  537. AudioData tmp = s->out;
  538. uint8_t *tmp_arg[SWR_CH_MAX];
  539. tmp.count = 0;
  540. tmp.data = NULL;
  541. if((ret=realloc_audio(&tmp, s->drop_output))<0)
  542. return ret;
  543. reversefill_audiodata(&tmp, tmp_arg);
  544. s->drop_output *= -1; //FIXME find a less hackish solution
  545. ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  546. s->drop_output *= -1;
  547. if(ret>0)
  548. s->drop_output -= ret;
  549. av_freep(&tmp.data);
  550. if(s->drop_output || !out_arg)
  551. return 0;
  552. in_count = 0;
  553. }
  554. if(!in_arg){
  555. if(s->in_buffer_count){
  556. if (s->resample && !s->flushed) {
  557. AudioData *a= &s->in_buffer;
  558. int i, j, ret;
  559. if((ret=realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
  560. return ret;
  561. av_assert0(a->planar);
  562. for(i=0; i<a->ch_count; i++){
  563. for(j=0; j<s->in_buffer_count; j++){
  564. memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
  565. a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
  566. }
  567. }
  568. s->in_buffer_count += (s->in_buffer_count+1)/2;
  569. s->resample_in_constraint = 0;
  570. s->flushed = 1;
  571. }
  572. }else{
  573. return 0;
  574. }
  575. }else
  576. fill_audiodata(in , (void*)in_arg);
  577. fill_audiodata(out, out_arg);
  578. if(s->resample){
  579. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  580. if(ret>0 && !s->drop_output)
  581. s->outpts += ret * (int64_t)s->in_sample_rate;
  582. return ret;
  583. }else{
  584. AudioData tmp= *in;
  585. int ret2=0;
  586. int ret, size;
  587. size = FFMIN(out_count, s->in_buffer_count);
  588. if(size){
  589. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  590. ret= swr_convert_internal(s, out, size, &tmp, size);
  591. if(ret<0)
  592. return ret;
  593. ret2= ret;
  594. s->in_buffer_count -= ret;
  595. s->in_buffer_index += ret;
  596. buf_set(out, out, ret);
  597. out_count -= ret;
  598. if(!s->in_buffer_count)
  599. s->in_buffer_index = 0;
  600. }
  601. if(in_count){
  602. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  603. if(in_count > out_count) { //FIXME move after swr_convert_internal
  604. if( size > s->in_buffer.count
  605. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  606. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  607. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  608. s->in_buffer_index=0;
  609. }else
  610. if((ret=realloc_audio(&s->in_buffer, size)) < 0)
  611. return ret;
  612. }
  613. if(out_count){
  614. size = FFMIN(in_count, out_count);
  615. ret= swr_convert_internal(s, out, size, in, size);
  616. if(ret<0)
  617. return ret;
  618. buf_set(in, in, ret);
  619. in_count -= ret;
  620. ret2 += ret;
  621. }
  622. if(in_count){
  623. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  624. copy(&tmp, in, in_count);
  625. s->in_buffer_count += in_count;
  626. }
  627. }
  628. if(ret2>0 && !s->drop_output)
  629. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  630. return ret2;
  631. }
  632. }
  633. int swr_drop_output(struct SwrContext *s, int count){
  634. s->drop_output += count;
  635. if(s->drop_output <= 0)
  636. return 0;
  637. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  638. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  639. }
  640. int swr_inject_silence(struct SwrContext *s, int count){
  641. int ret, i;
  642. AudioData silence = s->in;
  643. uint8_t *tmp_arg[SWR_CH_MAX];
  644. if(count <= 0)
  645. return 0;
  646. silence.count = 0;
  647. silence.data = NULL;
  648. if((ret=realloc_audio(&silence, count))<0)
  649. return ret;
  650. if(silence.planar) for(i=0; i<silence.ch_count; i++) {
  651. memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
  652. } else
  653. memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
  654. reversefill_audiodata(&silence, tmp_arg);
  655. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  656. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  657. av_freep(&silence.data);
  658. return ret;
  659. }
  660. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  661. if(pts == INT64_MIN)
  662. return s->outpts;
  663. if(s->min_compensation >= FLT_MAX) {
  664. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  665. } else {
  666. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
  667. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  668. if(fabs(fdelta) > s->min_compensation) {
  669. if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
  670. int ret;
  671. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  672. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  673. if(ret<0){
  674. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  675. }
  676. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  677. int duration = s->out_sample_rate * s->soft_compensation_duration;
  678. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  679. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  680. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  681. swr_set_compensation(s, comp, duration);
  682. }
  683. }
  684. return s->outpts;
  685. }
  686. }