rematrix.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. /*
  2. * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "swresample_internal.h"
  21. #include "libavutil/avassert.h"
  22. #include "libavutil/channel_layout.h"
  23. #define TEMPLATE_REMATRIX_FLT
  24. #include "rematrix_template.c"
  25. #undef TEMPLATE_REMATRIX_FLT
  26. #define TEMPLATE_REMATRIX_DBL
  27. #include "rematrix_template.c"
  28. #undef TEMPLATE_REMATRIX_DBL
  29. #define TEMPLATE_REMATRIX_S16
  30. #include "rematrix_template.c"
  31. #undef TEMPLATE_REMATRIX_S16
  32. #define FRONT_LEFT 0
  33. #define FRONT_RIGHT 1
  34. #define FRONT_CENTER 2
  35. #define LOW_FREQUENCY 3
  36. #define BACK_LEFT 4
  37. #define BACK_RIGHT 5
  38. #define FRONT_LEFT_OF_CENTER 6
  39. #define FRONT_RIGHT_OF_CENTER 7
  40. #define BACK_CENTER 8
  41. #define SIDE_LEFT 9
  42. #define SIDE_RIGHT 10
  43. #define TOP_CENTER 11
  44. #define TOP_FRONT_LEFT 12
  45. #define TOP_FRONT_CENTER 13
  46. #define TOP_FRONT_RIGHT 14
  47. #define TOP_BACK_LEFT 15
  48. #define TOP_BACK_CENTER 16
  49. #define TOP_BACK_RIGHT 17
  50. int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
  51. {
  52. int nb_in, nb_out, in, out;
  53. if (!s || s->in_convert) // s needs to be allocated but not initialized
  54. return AVERROR(EINVAL);
  55. memset(s->matrix, 0, sizeof(s->matrix));
  56. nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
  57. nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
  58. for (out = 0; out < nb_out; out++) {
  59. for (in = 0; in < nb_in; in++)
  60. s->matrix[out][in] = matrix[in];
  61. matrix += stride;
  62. }
  63. s->rematrix_custom = 1;
  64. return 0;
  65. }
  66. static int even(int64_t layout){
  67. if(!layout) return 1;
  68. if(layout&(layout-1)) return 1;
  69. return 0;
  70. }
  71. static int clean_layout(SwrContext *s, int64_t layout){
  72. if((layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == AV_CH_LAYOUT_STEREO_DOWNMIX)
  73. return AV_CH_LAYOUT_STEREO;
  74. if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
  75. char buf[128];
  76. av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
  77. av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
  78. return AV_CH_FRONT_CENTER;
  79. }
  80. return layout;
  81. }
  82. static int sane_layout(int64_t layout){
  83. if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
  84. return 0;
  85. if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
  86. return 0;
  87. if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
  88. return 0;
  89. if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
  90. return 0;
  91. if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
  92. return 0;
  93. if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
  94. return 0;
  95. return 1;
  96. }
  97. av_cold static int auto_matrix(SwrContext *s)
  98. {
  99. int i, j, out_i;
  100. double matrix[64][64]={{0}};
  101. int64_t unaccounted, in_ch_layout, out_ch_layout;
  102. double maxcoef=0;
  103. char buf[128];
  104. const int matrix_encoding = s->matrix_encoding;
  105. in_ch_layout = clean_layout(s, s->in_ch_layout);
  106. if(!sane_layout(in_ch_layout)){
  107. av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
  108. av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
  109. return AVERROR(EINVAL);
  110. }
  111. out_ch_layout = clean_layout(s, s->out_ch_layout);
  112. if(!sane_layout(out_ch_layout)){
  113. av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
  114. av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
  115. return AVERROR(EINVAL);
  116. }
  117. memset(s->matrix, 0, sizeof(s->matrix));
  118. for(i=0; i<64; i++){
  119. if(in_ch_layout & out_ch_layout & (1ULL<<i))
  120. matrix[i][i]= 1.0;
  121. }
  122. unaccounted= in_ch_layout & ~out_ch_layout;
  123. //FIXME implement dolby surround
  124. //FIXME implement full ac3
  125. if(unaccounted & AV_CH_FRONT_CENTER){
  126. if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
  127. if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
  128. matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
  129. matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
  130. } else {
  131. matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
  132. matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
  133. }
  134. }else
  135. av_assert0(0);
  136. }
  137. if(unaccounted & AV_CH_LAYOUT_STEREO){
  138. if(out_ch_layout & AV_CH_FRONT_CENTER){
  139. matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
  140. matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
  141. if(in_ch_layout & AV_CH_FRONT_CENTER)
  142. matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
  143. }else
  144. av_assert0(0);
  145. }
  146. if(unaccounted & AV_CH_BACK_CENTER){
  147. if(out_ch_layout & AV_CH_BACK_LEFT){
  148. matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
  149. matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
  150. }else if(out_ch_layout & AV_CH_SIDE_LEFT){
  151. matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
  152. matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
  153. }else if(out_ch_layout & AV_CH_FRONT_LEFT){
  154. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
  155. matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  156. if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
  157. matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
  158. matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
  159. } else {
  160. matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
  161. matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
  162. }
  163. } else {
  164. matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
  165. matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
  166. }
  167. }else if(out_ch_layout & AV_CH_FRONT_CENTER){
  168. matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
  169. }else
  170. av_assert0(0);
  171. }
  172. if(unaccounted & AV_CH_BACK_LEFT){
  173. if(out_ch_layout & AV_CH_BACK_CENTER){
  174. matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
  175. matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
  176. }else if(out_ch_layout & AV_CH_SIDE_LEFT){
  177. if(in_ch_layout & AV_CH_SIDE_LEFT){
  178. matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
  179. matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
  180. }else{
  181. matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
  182. matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
  183. }
  184. }else if(out_ch_layout & AV_CH_FRONT_LEFT){
  185. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  186. matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
  187. matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
  188. matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
  189. matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
  190. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  191. matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
  192. matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
  193. matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
  194. matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
  195. } else {
  196. matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
  197. matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
  198. }
  199. }else if(out_ch_layout & AV_CH_FRONT_CENTER){
  200. matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
  201. matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
  202. }else
  203. av_assert0(0);
  204. }
  205. if(unaccounted & AV_CH_SIDE_LEFT){
  206. if(out_ch_layout & AV_CH_BACK_LEFT){
  207. /* if back channels do not exist in the input, just copy side
  208. channels to back channels, otherwise mix side into back */
  209. if (in_ch_layout & AV_CH_BACK_LEFT) {
  210. matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
  211. matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
  212. } else {
  213. matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
  214. matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
  215. }
  216. }else if(out_ch_layout & AV_CH_BACK_CENTER){
  217. matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
  218. matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
  219. }else if(out_ch_layout & AV_CH_FRONT_LEFT){
  220. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  221. matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
  222. matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
  223. matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
  224. matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
  225. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  226. matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
  227. matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
  228. matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
  229. matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
  230. } else {
  231. matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
  232. matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
  233. }
  234. }else if(out_ch_layout & AV_CH_FRONT_CENTER){
  235. matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
  236. matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
  237. }else
  238. av_assert0(0);
  239. }
  240. if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
  241. if(out_ch_layout & AV_CH_FRONT_LEFT){
  242. matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
  243. matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
  244. }else if(out_ch_layout & AV_CH_FRONT_CENTER){
  245. matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
  246. matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
  247. }else
  248. av_assert0(0);
  249. }
  250. /* mix LFE into front left/right or center */
  251. if (unaccounted & AV_CH_LOW_FREQUENCY) {
  252. if (out_ch_layout & AV_CH_FRONT_CENTER) {
  253. matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
  254. } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
  255. matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
  256. matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
  257. } else
  258. av_assert0(0);
  259. }
  260. for(out_i=i=0; i<64; i++){
  261. double sum=0;
  262. int in_i=0;
  263. for(j=0; j<64; j++){
  264. s->matrix[out_i][in_i]= matrix[i][j];
  265. if(matrix[i][j]){
  266. sum += fabs(matrix[i][j]);
  267. }
  268. if(in_ch_layout & (1ULL<<j))
  269. in_i++;
  270. }
  271. maxcoef= FFMAX(maxcoef, sum);
  272. if(out_ch_layout & (1ULL<<i))
  273. out_i++;
  274. }
  275. if(s->rematrix_volume < 0)
  276. maxcoef = -s->rematrix_volume;
  277. if(( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
  278. || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) && maxcoef > 1.0){
  279. for(i=0; i<SWR_CH_MAX; i++)
  280. for(j=0; j<SWR_CH_MAX; j++){
  281. s->matrix[i][j] /= maxcoef;
  282. }
  283. }
  284. if(s->rematrix_volume > 0){
  285. for(i=0; i<SWR_CH_MAX; i++)
  286. for(j=0; j<SWR_CH_MAX; j++){
  287. s->matrix[i][j] *= s->rematrix_volume;
  288. }
  289. }
  290. for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
  291. for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
  292. av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
  293. }
  294. av_log(NULL, AV_LOG_DEBUG, "\n");
  295. }
  296. return 0;
  297. }
  298. av_cold int swri_rematrix_init(SwrContext *s){
  299. int i, j;
  300. int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
  301. int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
  302. s->mix_any_f = NULL;
  303. if (!s->rematrix_custom) {
  304. int r = auto_matrix(s);
  305. if (r)
  306. return r;
  307. }
  308. if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
  309. s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(int));
  310. s->native_one = av_mallocz(sizeof(int));
  311. for (i = 0; i < nb_out; i++)
  312. for (j = 0; j < nb_in; j++)
  313. ((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
  314. *((int*)s->native_one) = 32768;
  315. s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
  316. s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
  317. s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
  318. }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
  319. s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(float));
  320. s->native_one = av_mallocz(sizeof(float));
  321. for (i = 0; i < nb_out; i++)
  322. for (j = 0; j < nb_in; j++)
  323. ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
  324. *((float*)s->native_one) = 1.0;
  325. s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
  326. s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
  327. s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
  328. }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
  329. s->native_matrix = av_mallocz(nb_in * nb_out * sizeof(double));
  330. s->native_one = av_mallocz(sizeof(double));
  331. for (i = 0; i < nb_out; i++)
  332. for (j = 0; j < nb_in; j++)
  333. ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
  334. *((double*)s->native_one) = 1.0;
  335. s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
  336. s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
  337. s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
  338. }else
  339. av_assert0(0);
  340. //FIXME quantize for integeres
  341. for (i = 0; i < SWR_CH_MAX; i++) {
  342. int ch_in=0;
  343. for (j = 0; j < SWR_CH_MAX; j++) {
  344. s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
  345. if(s->matrix[i][j])
  346. s->matrix_ch[i][++ch_in]= j;
  347. }
  348. s->matrix_ch[i][0]= ch_in;
  349. }
  350. if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s);
  351. return 0;
  352. }
  353. av_cold void swri_rematrix_free(SwrContext *s){
  354. av_freep(&s->native_matrix);
  355. av_freep(&s->native_one);
  356. av_freep(&s->native_simd_matrix);
  357. }
  358. int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
  359. int out_i, in_i, i, j;
  360. int len1 = 0;
  361. int off = 0;
  362. if(s->mix_any_f) {
  363. s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
  364. return 0;
  365. }
  366. if(s->mix_2_1_simd || s->mix_1_1_simd){
  367. len1= len&~15;
  368. off = len1 * out->bps;
  369. }
  370. av_assert0(out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
  371. av_assert0(in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
  372. for(out_i=0; out_i<out->ch_count; out_i++){
  373. switch(s->matrix_ch[out_i][0]){
  374. case 0:
  375. if(mustcopy)
  376. memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
  377. break;
  378. case 1:
  379. in_i= s->matrix_ch[out_i][1];
  380. if(s->matrix[out_i][in_i]!=1.0){
  381. if(s->mix_1_1_simd && len1)
  382. s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
  383. if(len != len1)
  384. s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
  385. }else if(mustcopy){
  386. memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
  387. }else{
  388. out->ch[out_i]= in->ch[in_i];
  389. }
  390. break;
  391. case 2: {
  392. int in_i1 = s->matrix_ch[out_i][1];
  393. int in_i2 = s->matrix_ch[out_i][2];
  394. if(s->mix_2_1_simd && len1)
  395. s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
  396. else
  397. s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
  398. if(len != len1)
  399. s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
  400. break;}
  401. default:
  402. if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
  403. for(i=0; i<len; i++){
  404. float v=0;
  405. for(j=0; j<s->matrix_ch[out_i][0]; j++){
  406. in_i= s->matrix_ch[out_i][1+j];
  407. v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
  408. }
  409. ((float*)out->ch[out_i])[i]= v;
  410. }
  411. }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
  412. for(i=0; i<len; i++){
  413. double v=0;
  414. for(j=0; j<s->matrix_ch[out_i][0]; j++){
  415. in_i= s->matrix_ch[out_i][1+j];
  416. v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
  417. }
  418. ((double*)out->ch[out_i])[i]= v;
  419. }
  420. }else{
  421. for(i=0; i<len; i++){
  422. int v=0;
  423. for(j=0; j<s->matrix_ch[out_i][0]; j++){
  424. in_i= s->matrix_ch[out_i][1+j];
  425. v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
  426. }
  427. ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
  428. }
  429. }
  430. }
  431. }
  432. return 0;
  433. }