123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- # Copyright (c) 2019 Guo Yejun
- #
- # This file is part of FFmpeg.
- #
- # FFmpeg is free software; you can redistribute it and/or
- # modify it under the terms of the GNU Lesser General Public
- # License as published by the Free Software Foundation; either
- # version 2.1 of the License, or (at your option) any later version.
- #
- # FFmpeg is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- # Lesser General Public License for more details.
- #
- # You should have received a copy of the GNU Lesser General Public
- # License along with FFmpeg; if not, write to the Free Software
- # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- # ==============================================================================
- import tensorflow as tf
- import numpy as np
- import sys, struct
- __all__ = ['convert_from_tensorflow']
- # as the first step to be compatible with vf_sr, it is not general.
- # it will be refined step by step.
- class TFConverter:
- def __init__(self, graph_def, nodes, outfile):
- self.graph_def = graph_def
- self.nodes = nodes
- self.outfile = outfile
- self.layer_number = 0
- self.output_names = []
- self.name_node_dict = {}
- self.edges = {}
- self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'LeakyRelu':4}
- self.conv_paddings = {'VALID':2, 'SAME':1}
- self.converted_nodes = set()
- self.op2code = {'Conv2D':1, 'DepthToSpace':2}
- def dump_for_tensorboard(self):
- graph = tf.get_default_graph()
- tf.import_graph_def(self.graph_def, name="")
- # tensorboard --logdir=/tmp/graph
- tf.summary.FileWriter('/tmp/graph', graph)
- def get_conv2d_params(self, node):
- knode = self.name_node_dict[node.input[1]]
- bnode = None
- activation = 'None'
- next = self.edges[node.name][0]
- if next.op == 'BiasAdd':
- self.converted_nodes.add(next.name)
- bnode = self.name_node_dict[next.input[1]]
- next = self.edges[next.name][0]
- if next.op in self.conv_activations:
- self.converted_nodes.add(next.name)
- activation = next.op
- return knode, bnode, activation
- def dump_conv2d_to_file(self, node, f):
- assert(node.op == 'Conv2D')
- self.layer_number = self.layer_number + 1
- self.converted_nodes.add(node.name)
- knode, bnode, activation = self.get_conv2d_params(node)
- dilation = node.attr['dilations'].list.i[0]
- padding = node.attr['padding'].s
- padding = self.conv_paddings[padding.decode("utf-8")]
- ktensor = knode.attr['value'].tensor
- filter_height = ktensor.tensor_shape.dim[0].size
- filter_width = ktensor.tensor_shape.dim[1].size
- in_channels = ktensor.tensor_shape.dim[2].size
- out_channels = ktensor.tensor_shape.dim[3].size
- kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
- kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
- kernel = np.transpose(kernel, [3, 0, 1, 2])
- np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f)
- kernel.tofile(f)
- btensor = bnode.attr['value'].tensor
- if btensor.tensor_shape.dim[0].size == 1:
- bias = struct.pack("f", btensor.float_val[0])
- else:
- bias = btensor.tensor_content
- f.write(bias)
- def dump_depth2space_to_file(self, node, f):
- assert(node.op == 'DepthToSpace')
- self.layer_number = self.layer_number + 1
- block_size = node.attr['block_size'].i
- np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
- self.converted_nodes.add(node.name)
- def generate_layer_number(self):
- # in current hard code implementation, the layer number is the first data written to the native model file
- # it is not easy to know it at the beginning time in the general converter, so first do a dry run for compatibility
- # will be refined later.
- with open('/tmp/tmp.model', 'wb') as f:
- self.dump_layers_to_file(f)
- self.converted_nodes.clear()
- def dump_layers_to_file(self, f):
- for node in self.nodes:
- if node.name in self.converted_nodes:
- continue
- if node.op == 'Conv2D':
- self.dump_conv2d_to_file(node, f)
- elif node.op == 'DepthToSpace':
- self.dump_depth2space_to_file(node, f)
- def dump_to_file(self):
- self.generate_layer_number()
- with open(self.outfile, 'wb') as f:
- np.array([self.layer_number], dtype=np.uint32).tofile(f)
- self.dump_layers_to_file(f)
- def generate_name_node_dict(self):
- for node in self.nodes:
- self.name_node_dict[node.name] = node
- def generate_output_names(self):
- used_names = []
- for node in self.nodes:
- for input in node.input:
- used_names.append(input)
- for node in self.nodes:
- if node.name not in used_names:
- self.output_names.append(node.name)
- def remove_identity(self):
- id_nodes = []
- id_dict = {}
- for node in self.nodes:
- if node.op == 'Identity':
- name = node.name
- input = node.input[0]
- id_nodes.append(node)
- # do not change the output name
- if name in self.output_names:
- self.name_node_dict[input].name = name
- self.name_node_dict[name] = self.name_node_dict[input]
- del self.name_node_dict[input]
- else:
- id_dict[name] = input
- for idnode in id_nodes:
- self.nodes.remove(idnode)
- for node in self.nodes:
- for i in range(len(node.input)):
- input = node.input[i]
- if input in id_dict:
- node.input[i] = id_dict[input]
- def generate_edges(self):
- for node in self.nodes:
- for input in node.input:
- if input in self.edges:
- self.edges[input].append(node)
- else:
- self.edges[input] = [node]
- def run(self):
- self.generate_name_node_dict()
- self.generate_output_names()
- self.remove_identity()
- self.generate_edges()
- #check the graph with tensorboard with human eyes
- #self.dump_for_tensorboard()
- self.dump_to_file()
- def convert_from_tensorflow(infile, outfile):
- with open(infile, 'rb') as f:
- # read the file in .proto format
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- nodes = graph_def.node
- converter = TFConverter(graph_def, nodes, outfile)
- converter.run()
|