123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842 |
- /*
- * The simplest AC-3 encoder
- * Copyright (c) 2000 Fabrice Bellard
- * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
- * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * The simplest AC-3 encoder.
- */
- //#define DEBUG
- //#define ASSERT_LEVEL 2
- #include "libavutil/audioconvert.h"
- #include "libavutil/avassert.h"
- #include "libavutil/crc.h"
- #include "avcodec.h"
- #include "put_bits.h"
- #include "dsputil.h"
- #include "ac3dsp.h"
- #include "ac3.h"
- #include "audioconvert.h"
- #ifndef CONFIG_AC3ENC_FLOAT
- #define CONFIG_AC3ENC_FLOAT 0
- #endif
- /** Maximum number of exponent groups. +1 for separate DC exponent. */
- #define AC3_MAX_EXP_GROUPS 85
- /* stereo rematrixing algorithms */
- #define AC3_REMATRIXING_IS_STATIC 0x1
- #define AC3_REMATRIXING_SUMS 0
- #define AC3_REMATRIXING_NONE 1
- #define AC3_REMATRIXING_ALWAYS 3
- /** Scale a float value by 2^bits and convert to an integer. */
- #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
- #if CONFIG_AC3ENC_FLOAT
- #include "ac3enc_float.h"
- #else
- #include "ac3enc_fixed.h"
- #endif
- /**
- * Data for a single audio block.
- */
- typedef struct AC3Block {
- uint8_t **bap; ///< bit allocation pointers (bap)
- CoefType **mdct_coef; ///< MDCT coefficients
- int32_t **fixed_coef; ///< fixed-point MDCT coefficients
- uint8_t **exp; ///< original exponents
- uint8_t **grouped_exp; ///< grouped exponents
- int16_t **psd; ///< psd per frequency bin
- int16_t **band_psd; ///< psd per critical band
- int16_t **mask; ///< masking curve
- uint16_t **qmant; ///< quantized mantissas
- uint8_t coeff_shift[AC3_MAX_CHANNELS]; ///< fixed-point coefficient shift values
- uint8_t new_rematrixing_strategy; ///< send new rematrixing flags in this block
- uint8_t rematrixing_flags[4]; ///< rematrixing flags
- } AC3Block;
- /**
- * AC-3 encoder private context.
- */
- typedef struct AC3EncodeContext {
- PutBitContext pb; ///< bitstream writer context
- DSPContext dsp;
- AC3DSPContext ac3dsp; ///< AC-3 optimized functions
- AC3MDCTContext mdct; ///< MDCT context
- AC3Block blocks[AC3_MAX_BLOCKS]; ///< per-block info
- int bitstream_id; ///< bitstream id (bsid)
- int bitstream_mode; ///< bitstream mode (bsmod)
- int bit_rate; ///< target bit rate, in bits-per-second
- int sample_rate; ///< sampling frequency, in Hz
- int frame_size_min; ///< minimum frame size in case rounding is necessary
- int frame_size; ///< current frame size in bytes
- int frame_size_code; ///< frame size code (frmsizecod)
- uint16_t crc_inv[2];
- int bits_written; ///< bit count (used to avg. bitrate)
- int samples_written; ///< sample count (used to avg. bitrate)
- int fbw_channels; ///< number of full-bandwidth channels (nfchans)
- int channels; ///< total number of channels (nchans)
- int lfe_on; ///< indicates if there is an LFE channel (lfeon)
- int lfe_channel; ///< channel index of the LFE channel
- int channel_mode; ///< channel mode (acmod)
- const uint8_t *channel_map; ///< channel map used to reorder channels
- int cutoff; ///< user-specified cutoff frequency, in Hz
- int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod)
- int nb_coefs[AC3_MAX_CHANNELS];
- int rematrixing; ///< determines how rematrixing strategy is calculated
- int num_rematrixing_bands; ///< number of rematrixing bands
- /* bitrate allocation control */
- int slow_gain_code; ///< slow gain code (sgaincod)
- int slow_decay_code; ///< slow decay code (sdcycod)
- int fast_decay_code; ///< fast decay code (fdcycod)
- int db_per_bit_code; ///< dB/bit code (dbpbcod)
- int floor_code; ///< floor code (floorcod)
- AC3BitAllocParameters bit_alloc; ///< bit allocation parameters
- int coarse_snr_offset; ///< coarse SNR offsets (csnroffst)
- int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod)
- int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst)
- int frame_bits_fixed; ///< number of non-coefficient bits for fixed parameters
- int frame_bits; ///< all frame bits except exponents and mantissas
- int exponent_bits; ///< number of bits used for exponents
- /* mantissa encoding */
- int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
- uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
- SampleType **planar_samples;
- uint8_t *bap_buffer;
- uint8_t *bap1_buffer;
- CoefType *mdct_coef_buffer;
- int32_t *fixed_coef_buffer;
- uint8_t *exp_buffer;
- uint8_t *grouped_exp_buffer;
- int16_t *psd_buffer;
- int16_t *band_psd_buffer;
- int16_t *mask_buffer;
- uint16_t *qmant_buffer;
- uint8_t exp_strategy[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; ///< exponent strategies
- DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE];
- } AC3EncodeContext;
- /* prototypes for functions in ac3enc_fixed.c and ac3enc_float.c */
- static av_cold void mdct_end(AC3MDCTContext *mdct);
- static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
- int nbits);
- static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in);
- static void apply_window(DSPContext *dsp, SampleType *output, const SampleType *input,
- const SampleType *window, int n);
- static int normalize_samples(AC3EncodeContext *s);
- static void scale_coefficients(AC3EncodeContext *s);
- /**
- * LUT for number of exponent groups.
- * exponent_group_tab[exponent strategy-1][number of coefficients]
- */
- static uint8_t exponent_group_tab[3][256];
- /**
- * List of supported channel layouts.
- */
- static const int64_t ac3_channel_layouts[] = {
- AV_CH_LAYOUT_MONO,
- AV_CH_LAYOUT_STEREO,
- AV_CH_LAYOUT_2_1,
- AV_CH_LAYOUT_SURROUND,
- AV_CH_LAYOUT_2_2,
- AV_CH_LAYOUT_QUAD,
- AV_CH_LAYOUT_4POINT0,
- AV_CH_LAYOUT_5POINT0,
- AV_CH_LAYOUT_5POINT0_BACK,
- (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
- AV_CH_LAYOUT_5POINT1,
- AV_CH_LAYOUT_5POINT1_BACK,
- 0
- };
- /**
- * Adjust the frame size to make the average bit rate match the target bit rate.
- * This is only needed for 11025, 22050, and 44100 sample rates.
- */
- static void adjust_frame_size(AC3EncodeContext *s)
- {
- while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
- s->bits_written -= s->bit_rate;
- s->samples_written -= s->sample_rate;
- }
- s->frame_size = s->frame_size_min +
- 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
- s->bits_written += s->frame_size * 8;
- s->samples_written += AC3_FRAME_SIZE;
- }
- /**
- * Deinterleave input samples.
- * Channels are reordered from FFmpeg's default order to AC-3 order.
- */
- static void deinterleave_input_samples(AC3EncodeContext *s,
- const SampleType *samples)
- {
- int ch, i;
- /* deinterleave and remap input samples */
- for (ch = 0; ch < s->channels; ch++) {
- const SampleType *sptr;
- int sinc;
- /* copy last 256 samples of previous frame to the start of the current frame */
- memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
- AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
- /* deinterleave */
- sinc = s->channels;
- sptr = samples + s->channel_map[ch];
- for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
- s->planar_samples[ch][i] = *sptr;
- sptr += sinc;
- }
- }
- }
- /**
- * Apply the MDCT to input samples to generate frequency coefficients.
- * This applies the KBD window and normalizes the input to reduce precision
- * loss due to fixed-point calculations.
- */
- static void apply_mdct(AC3EncodeContext *s)
- {
- int blk, ch;
- for (ch = 0; ch < s->channels; ch++) {
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
- apply_window(&s->dsp, s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE);
- block->coeff_shift[ch] = normalize_samples(s);
- mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
- }
- }
- }
- /**
- * Initialize stereo rematrixing.
- * If the strategy does not change for each frame, set the rematrixing flags.
- */
- static void rematrixing_init(AC3EncodeContext *s)
- {
- if (s->channel_mode == AC3_CHMODE_STEREO)
- s->rematrixing = AC3_REMATRIXING_SUMS;
- else
- s->rematrixing = AC3_REMATRIXING_NONE;
- /* NOTE: AC3_REMATRIXING_ALWAYS might be used in
- the future in conjunction with channel coupling. */
- if (s->rematrixing & AC3_REMATRIXING_IS_STATIC) {
- int flag = (s->rematrixing == AC3_REMATRIXING_ALWAYS);
- s->blocks[0].new_rematrixing_strategy = 1;
- memset(s->blocks[0].rematrixing_flags, flag,
- sizeof(s->blocks[0].rematrixing_flags));
- }
- }
- /**
- * Determine rematrixing flags for each block and band.
- */
- static void compute_rematrixing_strategy(AC3EncodeContext *s)
- {
- int nb_coefs;
- int blk, bnd, i;
- AC3Block *block, *block0;
- s->num_rematrixing_bands = 4;
- if (s->rematrixing & AC3_REMATRIXING_IS_STATIC)
- return;
- nb_coefs = FFMIN(s->nb_coefs[0], s->nb_coefs[1]);
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- block = &s->blocks[blk];
- block->new_rematrixing_strategy = !blk;
- for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
- /* calculate calculate sum of squared coeffs for one band in one block */
- int start = ff_ac3_rematrix_band_tab[bnd];
- int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
- CoefSumType sum[4] = {0,};
- for (i = start; i < end; i++) {
- CoefType lt = block->mdct_coef[0][i];
- CoefType rt = block->mdct_coef[1][i];
- CoefType md = lt + rt;
- CoefType sd = lt - rt;
- MAC_COEF(sum[0], lt, lt);
- MAC_COEF(sum[1], rt, rt);
- MAC_COEF(sum[2], md, md);
- MAC_COEF(sum[3], sd, sd);
- }
- /* compare sums to determine if rematrixing will be used for this band */
- if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
- block->rematrixing_flags[bnd] = 1;
- else
- block->rematrixing_flags[bnd] = 0;
- /* determine if new rematrixing flags will be sent */
- if (blk &&
- block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
- block->new_rematrixing_strategy = 1;
- }
- }
- block0 = block;
- }
- }
- /**
- * Apply stereo rematrixing to coefficients based on rematrixing flags.
- */
- static void apply_rematrixing(AC3EncodeContext *s)
- {
- int nb_coefs;
- int blk, bnd, i;
- int start, end;
- uint8_t *flags;
- if (s->rematrixing == AC3_REMATRIXING_NONE)
- return;
- nb_coefs = FFMIN(s->nb_coefs[0], s->nb_coefs[1]);
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- if (block->new_rematrixing_strategy)
- flags = block->rematrixing_flags;
- for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
- if (flags[bnd]) {
- start = ff_ac3_rematrix_band_tab[bnd];
- end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
- for (i = start; i < end; i++) {
- int32_t lt = block->fixed_coef[0][i];
- int32_t rt = block->fixed_coef[1][i];
- block->fixed_coef[0][i] = (lt + rt) >> 1;
- block->fixed_coef[1][i] = (lt - rt) >> 1;
- }
- }
- }
- }
- }
- /**
- * Initialize exponent tables.
- */
- static av_cold void exponent_init(AC3EncodeContext *s)
- {
- int i;
- for (i = 73; i < 256; i++) {
- exponent_group_tab[0][i] = (i - 1) / 3;
- exponent_group_tab[1][i] = (i + 2) / 6;
- exponent_group_tab[2][i] = (i + 8) / 12;
- }
- /* LFE */
- exponent_group_tab[0][7] = 2;
- }
- /**
- * Extract exponents from the MDCT coefficients.
- * This takes into account the normalization that was done to the input samples
- * by adjusting the exponents by the exponent shift values.
- */
- static void extract_exponents(AC3EncodeContext *s)
- {
- int blk, ch, i;
- for (ch = 0; ch < s->channels; ch++) {
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- uint8_t *exp = block->exp[ch];
- int32_t *coef = block->fixed_coef[ch];
- for (i = 0; i < AC3_MAX_COEFS; i++) {
- int e;
- int v = abs(coef[i]);
- if (v == 0)
- e = 24;
- else {
- e = 23 - av_log2(v);
- if (e >= 24) {
- e = 24;
- coef[i] = 0;
- }
- av_assert2(e >= 0);
- }
- exp[i] = e;
- }
- }
- }
- }
- /**
- * Exponent Difference Threshold.
- * New exponents are sent if their SAD exceed this number.
- */
- #define EXP_DIFF_THRESHOLD 500
- /**
- * Calculate exponent strategies for all blocks in a single channel.
- */
- static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy,
- uint8_t *exp)
- {
- int blk, blk1;
- int exp_diff;
- /* estimate if the exponent variation & decide if they should be
- reused in the next frame */
- exp_strategy[0] = EXP_NEW;
- exp += AC3_MAX_COEFS;
- for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
- exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
- if (exp_diff > EXP_DIFF_THRESHOLD)
- exp_strategy[blk] = EXP_NEW;
- else
- exp_strategy[blk] = EXP_REUSE;
- exp += AC3_MAX_COEFS;
- }
- /* now select the encoding strategy type : if exponents are often
- recoded, we use a coarse encoding */
- blk = 0;
- while (blk < AC3_MAX_BLOCKS) {
- blk1 = blk + 1;
- while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
- blk1++;
- switch (blk1 - blk) {
- case 1: exp_strategy[blk] = EXP_D45; break;
- case 2:
- case 3: exp_strategy[blk] = EXP_D25; break;
- default: exp_strategy[blk] = EXP_D15; break;
- }
- blk = blk1;
- }
- }
- /**
- * Calculate exponent strategies for all channels.
- * Array arrangement is reversed to simplify the per-channel calculation.
- */
- static void compute_exp_strategy(AC3EncodeContext *s)
- {
- int ch, blk;
- for (ch = 0; ch < s->fbw_channels; ch++) {
- compute_exp_strategy_ch(s, s->exp_strategy[ch], s->blocks[0].exp[ch]);
- }
- if (s->lfe_on) {
- ch = s->lfe_channel;
- s->exp_strategy[ch][0] = EXP_D15;
- for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
- s->exp_strategy[ch][blk] = EXP_REUSE;
- }
- }
- /**
- * Update the exponents so that they are the ones the decoder will decode.
- */
- static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy)
- {
- int nb_groups, i, k;
- nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3;
- /* for each group, compute the minimum exponent */
- switch(exp_strategy) {
- case EXP_D25:
- for (i = 1, k = 1; i <= nb_groups; i++) {
- uint8_t exp_min = exp[k];
- if (exp[k+1] < exp_min)
- exp_min = exp[k+1];
- exp[i] = exp_min;
- k += 2;
- }
- break;
- case EXP_D45:
- for (i = 1, k = 1; i <= nb_groups; i++) {
- uint8_t exp_min = exp[k];
- if (exp[k+1] < exp_min)
- exp_min = exp[k+1];
- if (exp[k+2] < exp_min)
- exp_min = exp[k+2];
- if (exp[k+3] < exp_min)
- exp_min = exp[k+3];
- exp[i] = exp_min;
- k += 4;
- }
- break;
- }
- /* constraint for DC exponent */
- if (exp[0] > 15)
- exp[0] = 15;
- /* decrease the delta between each groups to within 2 so that they can be
- differentially encoded */
- for (i = 1; i <= nb_groups; i++)
- exp[i] = FFMIN(exp[i], exp[i-1] + 2);
- i--;
- while (--i >= 0)
- exp[i] = FFMIN(exp[i], exp[i+1] + 2);
- /* now we have the exponent values the decoder will see */
- switch (exp_strategy) {
- case EXP_D25:
- for (i = nb_groups, k = nb_groups * 2; i > 0; i--) {
- uint8_t exp1 = exp[i];
- exp[k--] = exp1;
- exp[k--] = exp1;
- }
- break;
- case EXP_D45:
- for (i = nb_groups, k = nb_groups * 4; i > 0; i--) {
- exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i];
- k -= 4;
- }
- break;
- }
- }
- /**
- * Encode exponents from original extracted form to what the decoder will see.
- * This copies and groups exponents based on exponent strategy and reduces
- * deltas between adjacent exponent groups so that they can be differentially
- * encoded.
- */
- static void encode_exponents(AC3EncodeContext *s)
- {
- int blk, blk1, ch;
- uint8_t *exp, *exp1, *exp_strategy;
- int nb_coefs, num_reuse_blocks;
- for (ch = 0; ch < s->channels; ch++) {
- exp = s->blocks[0].exp[ch];
- exp_strategy = s->exp_strategy[ch];
- nb_coefs = s->nb_coefs[ch];
- blk = 0;
- while (blk < AC3_MAX_BLOCKS) {
- blk1 = blk + 1;
- /* count the number of EXP_REUSE blocks after the current block */
- while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
- blk1++;
- num_reuse_blocks = blk1 - blk - 1;
- /* for the EXP_REUSE case we select the min of the exponents */
- s->ac3dsp.ac3_exponent_min(exp, num_reuse_blocks, nb_coefs);
- encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk]);
- /* copy encoded exponents for reuse case */
- exp1 = exp + AC3_MAX_COEFS;
- while (blk < blk1-1) {
- memcpy(exp1, exp, nb_coefs * sizeof(*exp));
- exp1 += AC3_MAX_COEFS;
- blk++;
- }
- blk = blk1;
- exp = exp1;
- }
- }
- }
- /**
- * Group exponents.
- * 3 delta-encoded exponents are in each 7-bit group. The number of groups
- * varies depending on exponent strategy and bandwidth.
- */
- static void group_exponents(AC3EncodeContext *s)
- {
- int blk, ch, i;
- int group_size, nb_groups, bit_count;
- uint8_t *p;
- int delta0, delta1, delta2;
- int exp0, exp1;
- bit_count = 0;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- for (ch = 0; ch < s->channels; ch++) {
- int exp_strategy = s->exp_strategy[ch][blk];
- if (exp_strategy == EXP_REUSE)
- continue;
- group_size = exp_strategy + (exp_strategy == EXP_D45);
- nb_groups = exponent_group_tab[exp_strategy-1][s->nb_coefs[ch]];
- bit_count += 4 + (nb_groups * 7);
- p = block->exp[ch];
- /* DC exponent */
- exp1 = *p++;
- block->grouped_exp[ch][0] = exp1;
- /* remaining exponents are delta encoded */
- for (i = 1; i <= nb_groups; i++) {
- /* merge three delta in one code */
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta0 = exp1 - exp0 + 2;
- av_assert2(delta0 >= 0 && delta0 <= 4);
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta1 = exp1 - exp0 + 2;
- av_assert2(delta1 >= 0 && delta1 <= 4);
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta2 = exp1 - exp0 + 2;
- av_assert2(delta2 >= 0 && delta2 <= 4);
- block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
- }
- }
- }
- s->exponent_bits = bit_count;
- }
- /**
- * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
- * Extract exponents from MDCT coefficients, calculate exponent strategies,
- * and encode final exponents.
- */
- static void process_exponents(AC3EncodeContext *s)
- {
- extract_exponents(s);
- compute_exp_strategy(s);
- encode_exponents(s);
- group_exponents(s);
- emms_c();
- }
- /**
- * Count frame bits that are based solely on fixed parameters.
- * This only has to be run once when the encoder is initialized.
- */
- static void count_frame_bits_fixed(AC3EncodeContext *s)
- {
- static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
- int blk;
- int frame_bits;
- /* assumptions:
- * no dynamic range codes
- * no channel coupling
- * bit allocation parameters do not change between blocks
- * SNR offsets do not change between blocks
- * no delta bit allocation
- * no skipped data
- * no auxilliary data
- */
- /* header size */
- frame_bits = 65;
- frame_bits += frame_bits_inc[s->channel_mode];
- /* audio blocks */
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
- if (s->channel_mode == AC3_CHMODE_STEREO) {
- frame_bits++; /* rematstr */
- }
- frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
- if (s->lfe_on)
- frame_bits++; /* lfeexpstr */
- frame_bits++; /* baie */
- frame_bits++; /* snr */
- frame_bits += 2; /* delta / skip */
- }
- frame_bits++; /* cplinu for block 0 */
- /* bit alloc info */
- /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
- /* csnroffset[6] */
- /* (fsnoffset[4] + fgaincod[4]) * c */
- frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
- /* auxdatae, crcrsv */
- frame_bits += 2;
- /* CRC */
- frame_bits += 16;
- s->frame_bits_fixed = frame_bits;
- }
- /**
- * Initialize bit allocation.
- * Set default parameter codes and calculate parameter values.
- */
- static void bit_alloc_init(AC3EncodeContext *s)
- {
- int ch;
- /* init default parameters */
- s->slow_decay_code = 2;
- s->fast_decay_code = 1;
- s->slow_gain_code = 1;
- s->db_per_bit_code = 3;
- s->floor_code = 7;
- for (ch = 0; ch < s->channels; ch++)
- s->fast_gain_code[ch] = 4;
- /* initial snr offset */
- s->coarse_snr_offset = 40;
- /* compute real values */
- /* currently none of these values change during encoding, so we can just
- set them once at initialization */
- s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
- s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
- s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
- s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
- s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
- count_frame_bits_fixed(s);
- }
- /**
- * Count the bits used to encode the frame, minus exponents and mantissas.
- * Bits based on fixed parameters have already been counted, so now we just
- * have to add the bits based on parameters that change during encoding.
- */
- static void count_frame_bits(AC3EncodeContext *s)
- {
- int blk, ch;
- int frame_bits = 0;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- /* stereo rematrixing */
- if (s->channel_mode == AC3_CHMODE_STEREO &&
- s->blocks[blk].new_rematrixing_strategy) {
- frame_bits += s->num_rematrixing_bands;
- }
- for (ch = 0; ch < s->fbw_channels; ch++) {
- if (s->exp_strategy[ch][blk] != EXP_REUSE)
- frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
- }
- }
- s->frame_bits = s->frame_bits_fixed + frame_bits;
- }
- /**
- * Calculate the number of bits needed to encode a set of mantissas.
- */
- static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs)
- {
- int bits, b, i;
- bits = 0;
- for (i = 0; i < nb_coefs; i++) {
- b = bap[i];
- if (b <= 4) {
- // bap=1 to bap=4 will be counted in compute_mantissa_size_final
- mant_cnt[b]++;
- } else if (b <= 13) {
- // bap=5 to bap=13 use (bap-1) bits
- bits += b - 1;
- } else {
- // bap=14 uses 14 bits and bap=15 uses 16 bits
- bits += (b == 14) ? 14 : 16;
- }
- }
- return bits;
- }
- /**
- * Finalize the mantissa bit count by adding in the grouped mantissas.
- */
- static int compute_mantissa_size_final(int mant_cnt[5])
- {
- // bap=1 : 3 mantissas in 5 bits
- int bits = (mant_cnt[1] / 3) * 5;
- // bap=2 : 3 mantissas in 7 bits
- // bap=4 : 2 mantissas in 7 bits
- bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7;
- // bap=3 : each mantissa is 3 bits
- bits += mant_cnt[3] * 3;
- return bits;
- }
- /**
- * Calculate masking curve based on the final exponents.
- * Also calculate the power spectral densities to use in future calculations.
- */
- static void bit_alloc_masking(AC3EncodeContext *s)
- {
- int blk, ch;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- for (ch = 0; ch < s->channels; ch++) {
- /* We only need psd and mask for calculating bap.
- Since we currently do not calculate bap when exponent
- strategy is EXP_REUSE we do not need to calculate psd or mask. */
- if (s->exp_strategy[ch][blk] != EXP_REUSE) {
- ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
- s->nb_coefs[ch],
- block->psd[ch], block->band_psd[ch]);
- ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
- 0, s->nb_coefs[ch],
- ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
- ch == s->lfe_channel,
- DBA_NONE, 0, NULL, NULL, NULL,
- block->mask[ch]);
- }
- }
- }
- }
- /**
- * Ensure that bap for each block and channel point to the current bap_buffer.
- * They may have been switched during the bit allocation search.
- */
- static void reset_block_bap(AC3EncodeContext *s)
- {
- int blk, ch;
- if (s->blocks[0].bap[0] == s->bap_buffer)
- return;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- for (ch = 0; ch < s->channels; ch++) {
- s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
- }
- }
- }
- /**
- * Run the bit allocation with a given SNR offset.
- * This calculates the bit allocation pointers that will be used to determine
- * the quantization of each mantissa.
- * @return the number of bits needed for mantissas if the given SNR offset is
- * is used.
- */
- static int bit_alloc(AC3EncodeContext *s, int snr_offset)
- {
- int blk, ch;
- int mantissa_bits;
- int mant_cnt[5];
- snr_offset = (snr_offset - 240) << 2;
- reset_block_bap(s);
- mantissa_bits = 0;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- // initialize grouped mantissa counts. these are set so that they are
- // padded to the next whole group size when bits are counted in
- // compute_mantissa_size_final
- mant_cnt[0] = mant_cnt[3] = 0;
- mant_cnt[1] = mant_cnt[2] = 2;
- mant_cnt[4] = 1;
- for (ch = 0; ch < s->channels; ch++) {
- /* Currently the only bit allocation parameters which vary across
- blocks within a frame are the exponent values. We can take
- advantage of that by reusing the bit allocation pointers
- whenever we reuse exponents. */
- if (s->exp_strategy[ch][blk] == EXP_REUSE) {
- memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
- } else {
- ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
- s->nb_coefs[ch], snr_offset,
- s->bit_alloc.floor, ff_ac3_bap_tab,
- block->bap[ch]);
- }
- mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]);
- }
- mantissa_bits += compute_mantissa_size_final(mant_cnt);
- }
- return mantissa_bits;
- }
- /**
- * Constant bitrate bit allocation search.
- * Find the largest SNR offset that will allow data to fit in the frame.
- */
- static int cbr_bit_allocation(AC3EncodeContext *s)
- {
- int ch;
- int bits_left;
- int snr_offset, snr_incr;
- bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
- av_assert2(bits_left >= 0);
- snr_offset = s->coarse_snr_offset << 4;
- /* if previous frame SNR offset was 1023, check if current frame can also
- use SNR offset of 1023. if so, skip the search. */
- if ((snr_offset | s->fine_snr_offset[0]) == 1023) {
- if (bit_alloc(s, 1023) <= bits_left)
- return 0;
- }
- while (snr_offset >= 0 &&
- bit_alloc(s, snr_offset) > bits_left) {
- snr_offset -= 64;
- }
- if (snr_offset < 0)
- return AVERROR(EINVAL);
- FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
- for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
- while (snr_offset + snr_incr <= 1023 &&
- bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
- snr_offset += snr_incr;
- FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
- }
- }
- FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
- reset_block_bap(s);
- s->coarse_snr_offset = snr_offset >> 4;
- for (ch = 0; ch < s->channels; ch++)
- s->fine_snr_offset[ch] = snr_offset & 0xF;
- return 0;
- }
- /**
- * Downgrade exponent strategies to reduce the bits used by the exponents.
- * This is a fallback for when bit allocation fails with the normal exponent
- * strategies. Each time this function is run it only downgrades the
- * strategy in 1 channel of 1 block.
- * @return non-zero if downgrade was unsuccessful
- */
- static int downgrade_exponents(AC3EncodeContext *s)
- {
- int ch, blk;
- for (ch = 0; ch < s->fbw_channels; ch++) {
- for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
- if (s->exp_strategy[ch][blk] == EXP_D15) {
- s->exp_strategy[ch][blk] = EXP_D25;
- return 0;
- }
- }
- }
- for (ch = 0; ch < s->fbw_channels; ch++) {
- for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
- if (s->exp_strategy[ch][blk] == EXP_D25) {
- s->exp_strategy[ch][blk] = EXP_D45;
- return 0;
- }
- }
- }
- for (ch = 0; ch < s->fbw_channels; ch++) {
- /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
- the block number > 0 */
- for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
- if (s->exp_strategy[ch][blk] > EXP_REUSE) {
- s->exp_strategy[ch][blk] = EXP_REUSE;
- return 0;
- }
- }
- }
- return -1;
- }
- /**
- * Reduce the bandwidth to reduce the number of bits used for a given SNR offset.
- * This is a second fallback for when bit allocation still fails after exponents
- * have been downgraded.
- * @return non-zero if bandwidth reduction was unsuccessful
- */
- static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code)
- {
- int ch;
- if (s->bandwidth_code[0] > min_bw_code) {
- for (ch = 0; ch < s->fbw_channels; ch++) {
- s->bandwidth_code[ch]--;
- s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73;
- }
- return 0;
- }
- return -1;
- }
- /**
- * Perform bit allocation search.
- * Finds the SNR offset value that maximizes quality and fits in the specified
- * frame size. Output is the SNR offset and a set of bit allocation pointers
- * used to quantize the mantissas.
- */
- static int compute_bit_allocation(AC3EncodeContext *s)
- {
- int ret;
- count_frame_bits(s);
- bit_alloc_masking(s);
- ret = cbr_bit_allocation(s);
- while (ret) {
- /* fallback 1: downgrade exponents */
- if (!downgrade_exponents(s)) {
- extract_exponents(s);
- encode_exponents(s);
- group_exponents(s);
- ret = compute_bit_allocation(s);
- continue;
- }
- /* fallback 2: reduce bandwidth */
- /* only do this if the user has not specified a specific cutoff
- frequency */
- if (!s->cutoff && !reduce_bandwidth(s, 0)) {
- process_exponents(s);
- ret = compute_bit_allocation(s);
- continue;
- }
- /* fallbacks were not enough... */
- break;
- }
- return ret;
- }
- /**
- * Symmetric quantization on 'levels' levels.
- */
- static inline int sym_quant(int c, int e, int levels)
- {
- int v = ((((levels * c) >> (24 - e)) + 1) >> 1) + (levels >> 1);
- av_assert2(v >= 0 && v < levels);
- return v;
- }
- /**
- * Asymmetric quantization on 2^qbits levels.
- */
- static inline int asym_quant(int c, int e, int qbits)
- {
- int lshift, m, v;
- lshift = e + qbits - 24;
- if (lshift >= 0)
- v = c << lshift;
- else
- v = c >> (-lshift);
- /* rounding */
- v = (v + 1) >> 1;
- m = (1 << (qbits-1));
- if (v >= m)
- v = m - 1;
- av_assert2(v >= -m);
- return v & ((1 << qbits)-1);
- }
- /**
- * Quantize a set of mantissas for a single channel in a single block.
- */
- static void quantize_mantissas_blk_ch(AC3EncodeContext *s, int32_t *fixed_coef,
- uint8_t *exp,
- uint8_t *bap, uint16_t *qmant, int n)
- {
- int i;
- for (i = 0; i < n; i++) {
- int v;
- int c = fixed_coef[i];
- int e = exp[i];
- int b = bap[i];
- switch (b) {
- case 0:
- v = 0;
- break;
- case 1:
- v = sym_quant(c, e, 3);
- switch (s->mant1_cnt) {
- case 0:
- s->qmant1_ptr = &qmant[i];
- v = 9 * v;
- s->mant1_cnt = 1;
- break;
- case 1:
- *s->qmant1_ptr += 3 * v;
- s->mant1_cnt = 2;
- v = 128;
- break;
- default:
- *s->qmant1_ptr += v;
- s->mant1_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 2:
- v = sym_quant(c, e, 5);
- switch (s->mant2_cnt) {
- case 0:
- s->qmant2_ptr = &qmant[i];
- v = 25 * v;
- s->mant2_cnt = 1;
- break;
- case 1:
- *s->qmant2_ptr += 5 * v;
- s->mant2_cnt = 2;
- v = 128;
- break;
- default:
- *s->qmant2_ptr += v;
- s->mant2_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 3:
- v = sym_quant(c, e, 7);
- break;
- case 4:
- v = sym_quant(c, e, 11);
- switch (s->mant4_cnt) {
- case 0:
- s->qmant4_ptr = &qmant[i];
- v = 11 * v;
- s->mant4_cnt = 1;
- break;
- default:
- *s->qmant4_ptr += v;
- s->mant4_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 5:
- v = sym_quant(c, e, 15);
- break;
- case 14:
- v = asym_quant(c, e, 14);
- break;
- case 15:
- v = asym_quant(c, e, 16);
- break;
- default:
- v = asym_quant(c, e, b - 1);
- break;
- }
- qmant[i] = v;
- }
- }
- /**
- * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
- */
- static void quantize_mantissas(AC3EncodeContext *s)
- {
- int blk, ch;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- s->mant1_cnt = s->mant2_cnt = s->mant4_cnt = 0;
- s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
- for (ch = 0; ch < s->channels; ch++) {
- quantize_mantissas_blk_ch(s, block->fixed_coef[ch],
- block->exp[ch], block->bap[ch],
- block->qmant[ch], s->nb_coefs[ch]);
- }
- }
- }
- /**
- * Write the AC-3 frame header to the output bitstream.
- */
- static void output_frame_header(AC3EncodeContext *s)
- {
- put_bits(&s->pb, 16, 0x0b77); /* frame header */
- put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
- put_bits(&s->pb, 2, s->bit_alloc.sr_code);
- put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
- put_bits(&s->pb, 5, s->bitstream_id);
- put_bits(&s->pb, 3, s->bitstream_mode);
- put_bits(&s->pb, 3, s->channel_mode);
- if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
- put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
- if (s->channel_mode & 0x04)
- put_bits(&s->pb, 2, 1); /* XXX -6 dB */
- if (s->channel_mode == AC3_CHMODE_STEREO)
- put_bits(&s->pb, 2, 0); /* surround not indicated */
- put_bits(&s->pb, 1, s->lfe_on); /* LFE */
- put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
- put_bits(&s->pb, 1, 0); /* no compression control word */
- put_bits(&s->pb, 1, 0); /* no lang code */
- put_bits(&s->pb, 1, 0); /* no audio production info */
- put_bits(&s->pb, 1, 0); /* no copyright */
- put_bits(&s->pb, 1, 1); /* original bitstream */
- put_bits(&s->pb, 1, 0); /* no time code 1 */
- put_bits(&s->pb, 1, 0); /* no time code 2 */
- put_bits(&s->pb, 1, 0); /* no additional bit stream info */
- }
- /**
- * Write one audio block to the output bitstream.
- */
- static void output_audio_block(AC3EncodeContext *s, int blk)
- {
- int ch, i, baie, rbnd;
- AC3Block *block = &s->blocks[blk];
- /* block switching */
- for (ch = 0; ch < s->fbw_channels; ch++)
- put_bits(&s->pb, 1, 0);
- /* dither flags */
- for (ch = 0; ch < s->fbw_channels; ch++)
- put_bits(&s->pb, 1, 1);
- /* dynamic range codes */
- put_bits(&s->pb, 1, 0);
- /* channel coupling */
- if (!blk) {
- put_bits(&s->pb, 1, 1); /* coupling strategy present */
- put_bits(&s->pb, 1, 0); /* no coupling strategy */
- } else {
- put_bits(&s->pb, 1, 0); /* no new coupling strategy */
- }
- /* stereo rematrixing */
- if (s->channel_mode == AC3_CHMODE_STEREO) {
- put_bits(&s->pb, 1, block->new_rematrixing_strategy);
- if (block->new_rematrixing_strategy) {
- /* rematrixing flags */
- for (rbnd = 0; rbnd < s->num_rematrixing_bands; rbnd++)
- put_bits(&s->pb, 1, block->rematrixing_flags[rbnd]);
- }
- }
- /* exponent strategy */
- for (ch = 0; ch < s->fbw_channels; ch++)
- put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
- if (s->lfe_on)
- put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
- /* bandwidth */
- for (ch = 0; ch < s->fbw_channels; ch++) {
- if (s->exp_strategy[ch][blk] != EXP_REUSE)
- put_bits(&s->pb, 6, s->bandwidth_code[ch]);
- }
- /* exponents */
- for (ch = 0; ch < s->channels; ch++) {
- int nb_groups;
- if (s->exp_strategy[ch][blk] == EXP_REUSE)
- continue;
- /* DC exponent */
- put_bits(&s->pb, 4, block->grouped_exp[ch][0]);
- /* exponent groups */
- nb_groups = exponent_group_tab[s->exp_strategy[ch][blk]-1][s->nb_coefs[ch]];
- for (i = 1; i <= nb_groups; i++)
- put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
- /* gain range info */
- if (ch != s->lfe_channel)
- put_bits(&s->pb, 2, 0);
- }
- /* bit allocation info */
- baie = (blk == 0);
- put_bits(&s->pb, 1, baie);
- if (baie) {
- put_bits(&s->pb, 2, s->slow_decay_code);
- put_bits(&s->pb, 2, s->fast_decay_code);
- put_bits(&s->pb, 2, s->slow_gain_code);
- put_bits(&s->pb, 2, s->db_per_bit_code);
- put_bits(&s->pb, 3, s->floor_code);
- }
- /* snr offset */
- put_bits(&s->pb, 1, baie);
- if (baie) {
- put_bits(&s->pb, 6, s->coarse_snr_offset);
- for (ch = 0; ch < s->channels; ch++) {
- put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
- put_bits(&s->pb, 3, s->fast_gain_code[ch]);
- }
- }
- put_bits(&s->pb, 1, 0); /* no delta bit allocation */
- put_bits(&s->pb, 1, 0); /* no data to skip */
- /* mantissas */
- for (ch = 0; ch < s->channels; ch++) {
- int b, q;
- for (i = 0; i < s->nb_coefs[ch]; i++) {
- q = block->qmant[ch][i];
- b = block->bap[ch][i];
- switch (b) {
- case 0: break;
- case 1: if (q != 128) put_bits(&s->pb, 5, q); break;
- case 2: if (q != 128) put_bits(&s->pb, 7, q); break;
- case 3: put_bits(&s->pb, 3, q); break;
- case 4: if (q != 128) put_bits(&s->pb, 7, q); break;
- case 14: put_bits(&s->pb, 14, q); break;
- case 15: put_bits(&s->pb, 16, q); break;
- default: put_bits(&s->pb, b-1, q); break;
- }
- }
- }
- }
- /** CRC-16 Polynomial */
- #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
- static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
- {
- unsigned int c;
- c = 0;
- while (a) {
- if (a & 1)
- c ^= b;
- a = a >> 1;
- b = b << 1;
- if (b & (1 << 16))
- b ^= poly;
- }
- return c;
- }
- static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
- {
- unsigned int r;
- r = 1;
- while (n) {
- if (n & 1)
- r = mul_poly(r, a, poly);
- a = mul_poly(a, a, poly);
- n >>= 1;
- }
- return r;
- }
- /**
- * Fill the end of the frame with 0's and compute the two CRCs.
- */
- static void output_frame_end(AC3EncodeContext *s)
- {
- const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
- int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
- uint8_t *frame;
- frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
- /* pad the remainder of the frame with zeros */
- av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
- flush_put_bits(&s->pb);
- frame = s->pb.buf;
- pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
- av_assert2(pad_bytes >= 0);
- if (pad_bytes > 0)
- memset(put_bits_ptr(&s->pb), 0, pad_bytes);
- /* compute crc1 */
- /* this is not so easy because it is at the beginning of the data... */
- crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
- crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
- crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
- AV_WB16(frame + 2, crc1);
- /* compute crc2 */
- crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
- s->frame_size - frame_size_58 - 3);
- crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
- /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
- if (crc2 == 0x770B) {
- frame[s->frame_size - 3] ^= 0x1;
- crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
- }
- crc2 = av_bswap16(crc2);
- AV_WB16(frame + s->frame_size - 2, crc2);
- }
- /**
- * Write the frame to the output bitstream.
- */
- static void output_frame(AC3EncodeContext *s, unsigned char *frame)
- {
- int blk;
- init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
- output_frame_header(s);
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
- output_audio_block(s, blk);
- output_frame_end(s);
- }
- /**
- * Encode a single AC-3 frame.
- */
- static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame,
- int buf_size, void *data)
- {
- AC3EncodeContext *s = avctx->priv_data;
- const SampleType *samples = data;
- int ret;
- if (s->bit_alloc.sr_code == 1)
- adjust_frame_size(s);
- deinterleave_input_samples(s, samples);
- apply_mdct(s);
- scale_coefficients(s);
- compute_rematrixing_strategy(s);
- apply_rematrixing(s);
- process_exponents(s);
- ret = compute_bit_allocation(s);
- if (ret) {
- av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
- return ret;
- }
- quantize_mantissas(s);
- output_frame(s, frame);
- return s->frame_size;
- }
- /**
- * Finalize encoding and free any memory allocated by the encoder.
- */
- static av_cold int ac3_encode_close(AVCodecContext *avctx)
- {
- int blk, ch;
- AC3EncodeContext *s = avctx->priv_data;
- for (ch = 0; ch < s->channels; ch++)
- av_freep(&s->planar_samples[ch]);
- av_freep(&s->planar_samples);
- av_freep(&s->bap_buffer);
- av_freep(&s->bap1_buffer);
- av_freep(&s->mdct_coef_buffer);
- av_freep(&s->fixed_coef_buffer);
- av_freep(&s->exp_buffer);
- av_freep(&s->grouped_exp_buffer);
- av_freep(&s->psd_buffer);
- av_freep(&s->band_psd_buffer);
- av_freep(&s->mask_buffer);
- av_freep(&s->qmant_buffer);
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- av_freep(&block->bap);
- av_freep(&block->mdct_coef);
- av_freep(&block->fixed_coef);
- av_freep(&block->exp);
- av_freep(&block->grouped_exp);
- av_freep(&block->psd);
- av_freep(&block->band_psd);
- av_freep(&block->mask);
- av_freep(&block->qmant);
- }
- mdct_end(&s->mdct);
- av_freep(&avctx->coded_frame);
- return 0;
- }
- /**
- * Set channel information during initialization.
- */
- static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
- int64_t *channel_layout)
- {
- int ch_layout;
- if (channels < 1 || channels > AC3_MAX_CHANNELS)
- return AVERROR(EINVAL);
- if ((uint64_t)*channel_layout > 0x7FF)
- return AVERROR(EINVAL);
- ch_layout = *channel_layout;
- if (!ch_layout)
- ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
- if (av_get_channel_layout_nb_channels(ch_layout) != channels)
- return AVERROR(EINVAL);
- s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
- s->channels = channels;
- s->fbw_channels = channels - s->lfe_on;
- s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
- if (s->lfe_on)
- ch_layout -= AV_CH_LOW_FREQUENCY;
- switch (ch_layout) {
- case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
- case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
- case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
- case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
- case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
- case AV_CH_LAYOUT_QUAD:
- case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
- case AV_CH_LAYOUT_5POINT0:
- case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
- default:
- return AVERROR(EINVAL);
- }
- s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
- *channel_layout = ch_layout;
- if (s->lfe_on)
- *channel_layout |= AV_CH_LOW_FREQUENCY;
- return 0;
- }
- static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
- {
- int i, ret;
- /* validate channel layout */
- if (!avctx->channel_layout) {
- av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
- "encoder will guess the layout, but it "
- "might be incorrect.\n");
- }
- ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
- if (ret) {
- av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
- return ret;
- }
- /* validate sample rate */
- for (i = 0; i < 9; i++) {
- if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
- break;
- }
- if (i == 9) {
- av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
- return AVERROR(EINVAL);
- }
- s->sample_rate = avctx->sample_rate;
- s->bit_alloc.sr_shift = i % 3;
- s->bit_alloc.sr_code = i / 3;
- /* validate bit rate */
- for (i = 0; i < 19; i++) {
- if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
- break;
- }
- if (i == 19) {
- av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
- return AVERROR(EINVAL);
- }
- s->bit_rate = avctx->bit_rate;
- s->frame_size_code = i << 1;
- /* validate cutoff */
- if (avctx->cutoff < 0) {
- av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
- return AVERROR(EINVAL);
- }
- s->cutoff = avctx->cutoff;
- if (s->cutoff > (s->sample_rate >> 1))
- s->cutoff = s->sample_rate >> 1;
- return 0;
- }
- /**
- * Set bandwidth for all channels.
- * The user can optionally supply a cutoff frequency. Otherwise an appropriate
- * default value will be used.
- */
- static av_cold void set_bandwidth(AC3EncodeContext *s)
- {
- int ch, bw_code;
- if (s->cutoff) {
- /* calculate bandwidth based on user-specified cutoff frequency */
- int fbw_coeffs;
- fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
- bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
- } else {
- /* use default bandwidth setting */
- /* XXX: should compute the bandwidth according to the frame
- size, so that we avoid annoying high frequency artifacts */
- bw_code = 50;
- }
- /* set number of coefficients for each channel */
- for (ch = 0; ch < s->fbw_channels; ch++) {
- s->bandwidth_code[ch] = bw_code;
- s->nb_coefs[ch] = bw_code * 3 + 73;
- }
- if (s->lfe_on)
- s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
- }
- static av_cold int allocate_buffers(AVCodecContext *avctx)
- {
- int blk, ch;
- AC3EncodeContext *s = avctx->priv_data;
- FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
- alloc_fail);
- for (ch = 0; ch < s->channels; ch++) {
- FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch],
- (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
- alloc_fail);
- }
- FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->bap_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels *
- 128 * sizeof(*s->grouped_exp_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels *
- 64 * sizeof(*s->band_psd_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels *
- 64 * sizeof(*s->mask_buffer), alloc_fail);
- FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask),
- alloc_fail);
- FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant),
- alloc_fail);
- for (ch = 0; ch < s->channels; ch++) {
- /* arrangement: block, channel, coeff */
- block->bap[ch] = &s->bap_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)];
- block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)];
- block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * s->channels + ch)];
- block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)];
- block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * s->channels + ch)];
- block->mask[ch] = &s->mask_buffer [64 * (blk * s->channels + ch)];
- block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)];
- /* arrangement: channel, block, coeff */
- block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)];
- }
- }
- if (CONFIG_AC3ENC_FLOAT) {
- FF_ALLOC_OR_GOTO(avctx, s->fixed_coef_buffer, AC3_MAX_BLOCKS * s->channels *
- AC3_MAX_COEFS * sizeof(*s->fixed_coef_buffer), alloc_fail);
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, s->channels *
- sizeof(*block->fixed_coef), alloc_fail);
- for (ch = 0; ch < s->channels; ch++)
- block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
- }
- } else {
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- AC3Block *block = &s->blocks[blk];
- FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, s->channels *
- sizeof(*block->fixed_coef), alloc_fail);
- for (ch = 0; ch < s->channels; ch++)
- block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
- }
- }
- return 0;
- alloc_fail:
- return AVERROR(ENOMEM);
- }
- /**
- * Initialize the encoder.
- */
- static av_cold int ac3_encode_init(AVCodecContext *avctx)
- {
- AC3EncodeContext *s = avctx->priv_data;
- int ret, frame_size_58;
- avctx->frame_size = AC3_FRAME_SIZE;
- ff_ac3_common_init();
- ret = validate_options(avctx, s);
- if (ret)
- return ret;
- s->bitstream_id = 8 + s->bit_alloc.sr_shift;
- s->bitstream_mode = 0; /* complete main audio service */
- s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
- s->bits_written = 0;
- s->samples_written = 0;
- s->frame_size = s->frame_size_min;
- /* calculate crc_inv for both possible frame sizes */
- frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
- s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
- if (s->bit_alloc.sr_code == 1) {
- frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
- s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
- }
- set_bandwidth(s);
- rematrixing_init(s);
- exponent_init(s);
- bit_alloc_init(s);
- ret = mdct_init(avctx, &s->mdct, 9);
- if (ret)
- goto init_fail;
- ret = allocate_buffers(avctx);
- if (ret)
- goto init_fail;
- avctx->coded_frame= avcodec_alloc_frame();
- dsputil_init(&s->dsp, avctx);
- ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
- return 0;
- init_fail:
- ac3_encode_close(avctx);
- return ret;
- }
|