mpegaudiodec.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294
  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder.
  24. */
  25. #include "libavutil/audioconvert.h"
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "dsputil.h"
  29. #include "mathops.h"
  30. #include "dct32.h"
  31. /*
  32. * TODO:
  33. * - test lsf / mpeg25 extensively.
  34. */
  35. #include "mpegaudio.h"
  36. #include "mpegaudiodecheader.h"
  37. #if CONFIG_FLOAT
  38. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  39. # define compute_antialias compute_antialias_float
  40. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  41. # define FIXR(x) ((float)(x))
  42. # define FIXHR(x) ((float)(x))
  43. # define MULH3(x, y, s) ((s)*(y)*(x))
  44. # define MULLx(x, y, s) ((y)*(x))
  45. # define RENAME(a) a ## _float
  46. # define OUT_FMT AV_SAMPLE_FMT_FLT
  47. #else
  48. # define SHR(a,b) ((a)>>(b))
  49. # define compute_antialias compute_antialias_integer
  50. /* WARNING: only correct for posititive numbers */
  51. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  52. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  53. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  54. # define MULH3(x, y, s) MULH((s)*(x), y)
  55. # define MULLx(x, y, s) MULL(x,y,s)
  56. # define RENAME(a) a ## _fixed
  57. # define OUT_FMT AV_SAMPLE_FMT_S16
  58. #endif
  59. /****************/
  60. #define HEADER_SIZE 4
  61. #include "mpegaudiodata.h"
  62. #include "mpegaudiodectab.h"
  63. static void compute_antialias(MPADecodeContext *s, GranuleDef *g);
  64. static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
  65. int *dither_state, OUT_INT *samples, int incr);
  66. /* vlc structure for decoding layer 3 huffman tables */
  67. static VLC huff_vlc[16];
  68. static VLC_TYPE huff_vlc_tables[
  69. 0+128+128+128+130+128+154+166+
  70. 142+204+190+170+542+460+662+414
  71. ][2];
  72. static const int huff_vlc_tables_sizes[16] = {
  73. 0, 128, 128, 128, 130, 128, 154, 166,
  74. 142, 204, 190, 170, 542, 460, 662, 414
  75. };
  76. static VLC huff_quad_vlc[2];
  77. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  78. static const int huff_quad_vlc_tables_sizes[2] = {
  79. 128, 16
  80. };
  81. /* computed from band_size_long */
  82. static uint16_t band_index_long[9][23];
  83. #include "mpegaudio_tablegen.h"
  84. /* intensity stereo coef table */
  85. static INTFLOAT is_table[2][16];
  86. static INTFLOAT is_table_lsf[2][2][16];
  87. static int32_t csa_table[8][4];
  88. static float csa_table_float[8][4];
  89. static INTFLOAT mdct_win[8][36];
  90. static int16_t division_tab3[1<<6 ];
  91. static int16_t division_tab5[1<<8 ];
  92. static int16_t division_tab9[1<<11];
  93. static int16_t * const division_tabs[4] = {
  94. division_tab3, division_tab5, NULL, division_tab9
  95. };
  96. /* lower 2 bits: modulo 3, higher bits: shift */
  97. static uint16_t scale_factor_modshift[64];
  98. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  99. static int32_t scale_factor_mult[15][3];
  100. /* mult table for layer 2 group quantization */
  101. #define SCALE_GEN(v) \
  102. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  103. static const int32_t scale_factor_mult2[3][3] = {
  104. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  105. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  106. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  107. };
  108. DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
  109. /**
  110. * Convert region offsets to region sizes and truncate
  111. * size to big_values.
  112. */
  113. static void ff_region_offset2size(GranuleDef *g){
  114. int i, k, j=0;
  115. g->region_size[2] = (576 / 2);
  116. for(i=0;i<3;i++) {
  117. k = FFMIN(g->region_size[i], g->big_values);
  118. g->region_size[i] = k - j;
  119. j = k;
  120. }
  121. }
  122. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  123. if (g->block_type == 2)
  124. g->region_size[0] = (36 / 2);
  125. else {
  126. if (s->sample_rate_index <= 2)
  127. g->region_size[0] = (36 / 2);
  128. else if (s->sample_rate_index != 8)
  129. g->region_size[0] = (54 / 2);
  130. else
  131. g->region_size[0] = (108 / 2);
  132. }
  133. g->region_size[1] = (576 / 2);
  134. }
  135. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  136. int l;
  137. g->region_size[0] =
  138. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  139. /* should not overflow */
  140. l = FFMIN(ra1 + ra2 + 2, 22);
  141. g->region_size[1] =
  142. band_index_long[s->sample_rate_index][l] >> 1;
  143. }
  144. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  145. if (g->block_type == 2) {
  146. if (g->switch_point) {
  147. /* if switched mode, we handle the 36 first samples as
  148. long blocks. For 8000Hz, we handle the 48 first
  149. exponents as long blocks (XXX: check this!) */
  150. if (s->sample_rate_index <= 2)
  151. g->long_end = 8;
  152. else if (s->sample_rate_index != 8)
  153. g->long_end = 6;
  154. else
  155. g->long_end = 4; /* 8000 Hz */
  156. g->short_start = 2 + (s->sample_rate_index != 8);
  157. } else {
  158. g->long_end = 0;
  159. g->short_start = 0;
  160. }
  161. } else {
  162. g->short_start = 13;
  163. g->long_end = 22;
  164. }
  165. }
  166. /* layer 1 unscaling */
  167. /* n = number of bits of the mantissa minus 1 */
  168. static inline int l1_unscale(int n, int mant, int scale_factor)
  169. {
  170. int shift, mod;
  171. int64_t val;
  172. shift = scale_factor_modshift[scale_factor];
  173. mod = shift & 3;
  174. shift >>= 2;
  175. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  176. shift += n;
  177. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  178. return (int)((val + (1LL << (shift - 1))) >> shift);
  179. }
  180. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  181. {
  182. int shift, mod, val;
  183. shift = scale_factor_modshift[scale_factor];
  184. mod = shift & 3;
  185. shift >>= 2;
  186. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  187. /* NOTE: at this point, 0 <= shift <= 21 */
  188. if (shift > 0)
  189. val = (val + (1 << (shift - 1))) >> shift;
  190. return val;
  191. }
  192. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  193. static inline int l3_unscale(int value, int exponent)
  194. {
  195. unsigned int m;
  196. int e;
  197. e = table_4_3_exp [4*value + (exponent&3)];
  198. m = table_4_3_value[4*value + (exponent&3)];
  199. e -= (exponent >> 2);
  200. assert(e>=1);
  201. if (e > 31)
  202. return 0;
  203. m = (m + (1 << (e-1))) >> e;
  204. return m;
  205. }
  206. /* all integer n^(4/3) computation code */
  207. #define DEV_ORDER 13
  208. #define POW_FRAC_BITS 24
  209. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  210. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  211. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  212. static int dev_4_3_coefs[DEV_ORDER];
  213. static av_cold void int_pow_init(void)
  214. {
  215. int i, a;
  216. a = POW_FIX(1.0);
  217. for(i=0;i<DEV_ORDER;i++) {
  218. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  219. dev_4_3_coefs[i] = a;
  220. }
  221. }
  222. static av_cold int decode_init(AVCodecContext * avctx)
  223. {
  224. MPADecodeContext *s = avctx->priv_data;
  225. static int init=0;
  226. int i, j, k;
  227. s->avctx = avctx;
  228. s->apply_window_mp3 = apply_window_mp3_c;
  229. #if HAVE_MMX && CONFIG_FLOAT
  230. ff_mpegaudiodec_init_mmx(s);
  231. #endif
  232. #if CONFIG_FLOAT
  233. ff_dct_init(&s->dct, 5, DCT_II);
  234. #endif
  235. if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);
  236. avctx->sample_fmt= OUT_FMT;
  237. s->error_recognition= avctx->error_recognition;
  238. if (!init && !avctx->parse_only) {
  239. int offset;
  240. /* scale factors table for layer 1/2 */
  241. for(i=0;i<64;i++) {
  242. int shift, mod;
  243. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  244. shift = (i / 3);
  245. mod = i % 3;
  246. scale_factor_modshift[i] = mod | (shift << 2);
  247. }
  248. /* scale factor multiply for layer 1 */
  249. for(i=0;i<15;i++) {
  250. int n, norm;
  251. n = i + 2;
  252. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  253. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  254. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  255. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  256. av_dlog(avctx, "%d: norm=%x s=%x %x %x\n",
  257. i, norm,
  258. scale_factor_mult[i][0],
  259. scale_factor_mult[i][1],
  260. scale_factor_mult[i][2]);
  261. }
  262. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  263. /* huffman decode tables */
  264. offset = 0;
  265. for(i=1;i<16;i++) {
  266. const HuffTable *h = &mpa_huff_tables[i];
  267. int xsize, x, y;
  268. uint8_t tmp_bits [512];
  269. uint16_t tmp_codes[512];
  270. memset(tmp_bits , 0, sizeof(tmp_bits ));
  271. memset(tmp_codes, 0, sizeof(tmp_codes));
  272. xsize = h->xsize;
  273. j = 0;
  274. for(x=0;x<xsize;x++) {
  275. for(y=0;y<xsize;y++){
  276. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  277. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  278. }
  279. }
  280. /* XXX: fail test */
  281. huff_vlc[i].table = huff_vlc_tables+offset;
  282. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  283. init_vlc(&huff_vlc[i], 7, 512,
  284. tmp_bits, 1, 1, tmp_codes, 2, 2,
  285. INIT_VLC_USE_NEW_STATIC);
  286. offset += huff_vlc_tables_sizes[i];
  287. }
  288. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  289. offset = 0;
  290. for(i=0;i<2;i++) {
  291. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  292. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  293. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  294. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  295. INIT_VLC_USE_NEW_STATIC);
  296. offset += huff_quad_vlc_tables_sizes[i];
  297. }
  298. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  299. for(i=0;i<9;i++) {
  300. k = 0;
  301. for(j=0;j<22;j++) {
  302. band_index_long[i][j] = k;
  303. k += band_size_long[i][j];
  304. }
  305. band_index_long[i][22] = k;
  306. }
  307. /* compute n ^ (4/3) and store it in mantissa/exp format */
  308. int_pow_init();
  309. mpegaudio_tableinit();
  310. for (i = 0; i < 4; i++)
  311. if (ff_mpa_quant_bits[i] < 0)
  312. for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) {
  313. int val1, val2, val3, steps;
  314. int val = j;
  315. steps = ff_mpa_quant_steps[i];
  316. val1 = val % steps;
  317. val /= steps;
  318. val2 = val % steps;
  319. val3 = val / steps;
  320. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  321. }
  322. for(i=0;i<7;i++) {
  323. float f;
  324. INTFLOAT v;
  325. if (i != 6) {
  326. f = tan((double)i * M_PI / 12.0);
  327. v = FIXR(f / (1.0 + f));
  328. } else {
  329. v = FIXR(1.0);
  330. }
  331. is_table[0][i] = v;
  332. is_table[1][6 - i] = v;
  333. }
  334. /* invalid values */
  335. for(i=7;i<16;i++)
  336. is_table[0][i] = is_table[1][i] = 0.0;
  337. for(i=0;i<16;i++) {
  338. double f;
  339. int e, k;
  340. for(j=0;j<2;j++) {
  341. e = -(j + 1) * ((i + 1) >> 1);
  342. f = pow(2.0, e / 4.0);
  343. k = i & 1;
  344. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  345. is_table_lsf[j][k][i] = FIXR(1.0);
  346. av_dlog(avctx, "is_table_lsf %d %d: %x %x\n",
  347. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  348. }
  349. }
  350. for(i=0;i<8;i++) {
  351. float ci, cs, ca;
  352. ci = ci_table[i];
  353. cs = 1.0 / sqrt(1.0 + ci * ci);
  354. ca = cs * ci;
  355. csa_table[i][0] = FIXHR(cs/4);
  356. csa_table[i][1] = FIXHR(ca/4);
  357. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  358. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  359. csa_table_float[i][0] = cs;
  360. csa_table_float[i][1] = ca;
  361. csa_table_float[i][2] = ca + cs;
  362. csa_table_float[i][3] = ca - cs;
  363. }
  364. /* compute mdct windows */
  365. for(i=0;i<36;i++) {
  366. for(j=0; j<4; j++){
  367. double d;
  368. if(j==2 && i%3 != 1)
  369. continue;
  370. d= sin(M_PI * (i + 0.5) / 36.0);
  371. if(j==1){
  372. if (i>=30) d= 0;
  373. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  374. else if(i>=18) d= 1;
  375. }else if(j==3){
  376. if (i< 6) d= 0;
  377. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  378. else if(i< 18) d= 1;
  379. }
  380. //merge last stage of imdct into the window coefficients
  381. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  382. if(j==2)
  383. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  384. else
  385. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  386. }
  387. }
  388. /* NOTE: we do frequency inversion adter the MDCT by changing
  389. the sign of the right window coefs */
  390. for(j=0;j<4;j++) {
  391. for(i=0;i<36;i+=2) {
  392. mdct_win[j + 4][i] = mdct_win[j][i];
  393. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  394. }
  395. }
  396. init = 1;
  397. }
  398. if (avctx->codec_id == CODEC_ID_MP3ADU)
  399. s->adu_mode = 1;
  400. return 0;
  401. }
  402. #if CONFIG_FLOAT
  403. static inline float round_sample(float *sum)
  404. {
  405. float sum1=*sum;
  406. *sum = 0;
  407. return sum1;
  408. }
  409. /* signed 16x16 -> 32 multiply add accumulate */
  410. #define MACS(rt, ra, rb) rt+=(ra)*(rb)
  411. /* signed 16x16 -> 32 multiply */
  412. #define MULS(ra, rb) ((ra)*(rb))
  413. #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
  414. #else
  415. static inline int round_sample(int64_t *sum)
  416. {
  417. int sum1;
  418. sum1 = (int)((*sum) >> OUT_SHIFT);
  419. *sum &= (1<<OUT_SHIFT)-1;
  420. return av_clip_int16(sum1);
  421. }
  422. # define MULS(ra, rb) MUL64(ra, rb)
  423. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  424. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  425. #endif
  426. #define SUM8(op, sum, w, p) \
  427. { \
  428. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  429. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  430. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  431. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  432. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  433. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  434. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  435. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  436. }
  437. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  438. { \
  439. INTFLOAT tmp;\
  440. tmp = p[0 * 64];\
  441. op1(sum1, (w1)[0 * 64], tmp);\
  442. op2(sum2, (w2)[0 * 64], tmp);\
  443. tmp = p[1 * 64];\
  444. op1(sum1, (w1)[1 * 64], tmp);\
  445. op2(sum2, (w2)[1 * 64], tmp);\
  446. tmp = p[2 * 64];\
  447. op1(sum1, (w1)[2 * 64], tmp);\
  448. op2(sum2, (w2)[2 * 64], tmp);\
  449. tmp = p[3 * 64];\
  450. op1(sum1, (w1)[3 * 64], tmp);\
  451. op2(sum2, (w2)[3 * 64], tmp);\
  452. tmp = p[4 * 64];\
  453. op1(sum1, (w1)[4 * 64], tmp);\
  454. op2(sum2, (w2)[4 * 64], tmp);\
  455. tmp = p[5 * 64];\
  456. op1(sum1, (w1)[5 * 64], tmp);\
  457. op2(sum2, (w2)[5 * 64], tmp);\
  458. tmp = p[6 * 64];\
  459. op1(sum1, (w1)[6 * 64], tmp);\
  460. op2(sum2, (w2)[6 * 64], tmp);\
  461. tmp = p[7 * 64];\
  462. op1(sum1, (w1)[7 * 64], tmp);\
  463. op2(sum2, (w2)[7 * 64], tmp);\
  464. }
  465. void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
  466. {
  467. int i, j;
  468. /* max = 18760, max sum over all 16 coefs : 44736 */
  469. for(i=0;i<257;i++) {
  470. INTFLOAT v;
  471. v = ff_mpa_enwindow[i];
  472. #if CONFIG_FLOAT
  473. v *= 1.0 / (1LL<<(16 + FRAC_BITS));
  474. #endif
  475. window[i] = v;
  476. if ((i & 63) != 0)
  477. v = -v;
  478. if (i != 0)
  479. window[512 - i] = v;
  480. }
  481. // Needed for avoiding shuffles in ASM implementations
  482. for(i=0; i < 8; i++)
  483. for(j=0; j < 16; j++)
  484. window[512+16*i+j] = window[64*i+32-j];
  485. for(i=0; i < 8; i++)
  486. for(j=0; j < 16; j++)
  487. window[512+128+16*i+j] = window[64*i+48-j];
  488. }
  489. static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
  490. int *dither_state, OUT_INT *samples, int incr)
  491. {
  492. register const MPA_INT *w, *w2, *p;
  493. int j;
  494. OUT_INT *samples2;
  495. #if CONFIG_FLOAT
  496. float sum, sum2;
  497. #else
  498. int64_t sum, sum2;
  499. #endif
  500. /* copy to avoid wrap */
  501. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
  502. samples2 = samples + 31 * incr;
  503. w = window;
  504. w2 = window + 31;
  505. sum = *dither_state;
  506. p = synth_buf + 16;
  507. SUM8(MACS, sum, w, p);
  508. p = synth_buf + 48;
  509. SUM8(MLSS, sum, w + 32, p);
  510. *samples = round_sample(&sum);
  511. samples += incr;
  512. w++;
  513. /* we calculate two samples at the same time to avoid one memory
  514. access per two sample */
  515. for(j=1;j<16;j++) {
  516. sum2 = 0;
  517. p = synth_buf + 16 + j;
  518. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  519. p = synth_buf + 48 - j;
  520. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  521. *samples = round_sample(&sum);
  522. samples += incr;
  523. sum += sum2;
  524. *samples2 = round_sample(&sum);
  525. samples2 -= incr;
  526. w++;
  527. w2--;
  528. }
  529. p = synth_buf + 32;
  530. SUM8(MLSS, sum, w + 32, p);
  531. *samples = round_sample(&sum);
  532. *dither_state= sum;
  533. }
  534. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  535. 32 samples. */
  536. /* XXX: optimize by avoiding ring buffer usage */
  537. #if !CONFIG_FLOAT
  538. void ff_mpa_synth_filter_fixed(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  539. MPA_INT *window, int *dither_state,
  540. OUT_INT *samples, int incr,
  541. INTFLOAT sb_samples[SBLIMIT])
  542. {
  543. register MPA_INT *synth_buf;
  544. int offset;
  545. offset = *synth_buf_offset;
  546. synth_buf = synth_buf_ptr + offset;
  547. ff_dct32_fixed(synth_buf, sb_samples);
  548. apply_window_mp3_c(synth_buf, window, dither_state, samples, incr);
  549. offset = (offset - 32) & 511;
  550. *synth_buf_offset = offset;
  551. }
  552. #endif
  553. #define C3 FIXHR(0.86602540378443864676/2)
  554. /* 0.5 / cos(pi*(2*i+1)/36) */
  555. static const INTFLOAT icos36[9] = {
  556. FIXR(0.50190991877167369479),
  557. FIXR(0.51763809020504152469), //0
  558. FIXR(0.55168895948124587824),
  559. FIXR(0.61038729438072803416),
  560. FIXR(0.70710678118654752439), //1
  561. FIXR(0.87172339781054900991),
  562. FIXR(1.18310079157624925896),
  563. FIXR(1.93185165257813657349), //2
  564. FIXR(5.73685662283492756461),
  565. };
  566. /* 0.5 / cos(pi*(2*i+1)/36) */
  567. static const INTFLOAT icos36h[9] = {
  568. FIXHR(0.50190991877167369479/2),
  569. FIXHR(0.51763809020504152469/2), //0
  570. FIXHR(0.55168895948124587824/2),
  571. FIXHR(0.61038729438072803416/2),
  572. FIXHR(0.70710678118654752439/2), //1
  573. FIXHR(0.87172339781054900991/2),
  574. FIXHR(1.18310079157624925896/4),
  575. FIXHR(1.93185165257813657349/4), //2
  576. // FIXHR(5.73685662283492756461),
  577. };
  578. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  579. cases. */
  580. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  581. {
  582. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  583. in0= in[0*3];
  584. in1= in[1*3] + in[0*3];
  585. in2= in[2*3] + in[1*3];
  586. in3= in[3*3] + in[2*3];
  587. in4= in[4*3] + in[3*3];
  588. in5= in[5*3] + in[4*3];
  589. in5 += in3;
  590. in3 += in1;
  591. in2= MULH3(in2, C3, 2);
  592. in3= MULH3(in3, C3, 4);
  593. t1 = in0 - in4;
  594. t2 = MULH3(in1 - in5, icos36h[4], 2);
  595. out[ 7]=
  596. out[10]= t1 + t2;
  597. out[ 1]=
  598. out[ 4]= t1 - t2;
  599. in0 += SHR(in4, 1);
  600. in4 = in0 + in2;
  601. in5 += 2*in1;
  602. in1 = MULH3(in5 + in3, icos36h[1], 1);
  603. out[ 8]=
  604. out[ 9]= in4 + in1;
  605. out[ 2]=
  606. out[ 3]= in4 - in1;
  607. in0 -= in2;
  608. in5 = MULH3(in5 - in3, icos36h[7], 2);
  609. out[ 0]=
  610. out[ 5]= in0 - in5;
  611. out[ 6]=
  612. out[11]= in0 + in5;
  613. }
  614. /* cos(pi*i/18) */
  615. #define C1 FIXHR(0.98480775301220805936/2)
  616. #define C2 FIXHR(0.93969262078590838405/2)
  617. #define C3 FIXHR(0.86602540378443864676/2)
  618. #define C4 FIXHR(0.76604444311897803520/2)
  619. #define C5 FIXHR(0.64278760968653932632/2)
  620. #define C6 FIXHR(0.5/2)
  621. #define C7 FIXHR(0.34202014332566873304/2)
  622. #define C8 FIXHR(0.17364817766693034885/2)
  623. /* using Lee like decomposition followed by hand coded 9 points DCT */
  624. static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
  625. {
  626. int i, j;
  627. INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
  628. INTFLOAT tmp[18], *tmp1, *in1;
  629. for(i=17;i>=1;i--)
  630. in[i] += in[i-1];
  631. for(i=17;i>=3;i-=2)
  632. in[i] += in[i-2];
  633. for(j=0;j<2;j++) {
  634. tmp1 = tmp + j;
  635. in1 = in + j;
  636. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  637. t3 = in1[2*0] + SHR(in1[2*6],1);
  638. t1 = in1[2*0] - in1[2*6];
  639. tmp1[ 6] = t1 - SHR(t2,1);
  640. tmp1[16] = t1 + t2;
  641. t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
  642. t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
  643. t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
  644. tmp1[10] = t3 - t0 - t2;
  645. tmp1[ 2] = t3 + t0 + t1;
  646. tmp1[14] = t3 + t2 - t1;
  647. tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
  648. t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
  649. t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
  650. t0 = MULH3(in1[2*3], C3, 2);
  651. t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
  652. tmp1[ 0] = t2 + t3 + t0;
  653. tmp1[12] = t2 + t1 - t0;
  654. tmp1[ 8] = t3 - t1 - t0;
  655. }
  656. i = 0;
  657. for(j=0;j<4;j++) {
  658. t0 = tmp[i];
  659. t1 = tmp[i + 2];
  660. s0 = t1 + t0;
  661. s2 = t1 - t0;
  662. t2 = tmp[i + 1];
  663. t3 = tmp[i + 3];
  664. s1 = MULH3(t3 + t2, icos36h[j], 2);
  665. s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
  666. t0 = s0 + s1;
  667. t1 = s0 - s1;
  668. out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
  669. out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
  670. buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
  671. buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
  672. t0 = s2 + s3;
  673. t1 = s2 - s3;
  674. out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
  675. out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
  676. buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
  677. buf[ + j] = MULH3(t0, win[18 + j], 1);
  678. i += 4;
  679. }
  680. s0 = tmp[16];
  681. s1 = MULH3(tmp[17], icos36h[4], 2);
  682. t0 = s0 + s1;
  683. t1 = s0 - s1;
  684. out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
  685. out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
  686. buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
  687. buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
  688. }
  689. /* return the number of decoded frames */
  690. static int mp_decode_layer1(MPADecodeContext *s)
  691. {
  692. int bound, i, v, n, ch, j, mant;
  693. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  694. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  695. if (s->mode == MPA_JSTEREO)
  696. bound = (s->mode_ext + 1) * 4;
  697. else
  698. bound = SBLIMIT;
  699. /* allocation bits */
  700. for(i=0;i<bound;i++) {
  701. for(ch=0;ch<s->nb_channels;ch++) {
  702. allocation[ch][i] = get_bits(&s->gb, 4);
  703. }
  704. }
  705. for(i=bound;i<SBLIMIT;i++) {
  706. allocation[0][i] = get_bits(&s->gb, 4);
  707. }
  708. /* scale factors */
  709. for(i=0;i<bound;i++) {
  710. for(ch=0;ch<s->nb_channels;ch++) {
  711. if (allocation[ch][i])
  712. scale_factors[ch][i] = get_bits(&s->gb, 6);
  713. }
  714. }
  715. for(i=bound;i<SBLIMIT;i++) {
  716. if (allocation[0][i]) {
  717. scale_factors[0][i] = get_bits(&s->gb, 6);
  718. scale_factors[1][i] = get_bits(&s->gb, 6);
  719. }
  720. }
  721. /* compute samples */
  722. for(j=0;j<12;j++) {
  723. for(i=0;i<bound;i++) {
  724. for(ch=0;ch<s->nb_channels;ch++) {
  725. n = allocation[ch][i];
  726. if (n) {
  727. mant = get_bits(&s->gb, n + 1);
  728. v = l1_unscale(n, mant, scale_factors[ch][i]);
  729. } else {
  730. v = 0;
  731. }
  732. s->sb_samples[ch][j][i] = v;
  733. }
  734. }
  735. for(i=bound;i<SBLIMIT;i++) {
  736. n = allocation[0][i];
  737. if (n) {
  738. mant = get_bits(&s->gb, n + 1);
  739. v = l1_unscale(n, mant, scale_factors[0][i]);
  740. s->sb_samples[0][j][i] = v;
  741. v = l1_unscale(n, mant, scale_factors[1][i]);
  742. s->sb_samples[1][j][i] = v;
  743. } else {
  744. s->sb_samples[0][j][i] = 0;
  745. s->sb_samples[1][j][i] = 0;
  746. }
  747. }
  748. }
  749. return 12;
  750. }
  751. static int mp_decode_layer2(MPADecodeContext *s)
  752. {
  753. int sblimit; /* number of used subbands */
  754. const unsigned char *alloc_table;
  755. int table, bit_alloc_bits, i, j, ch, bound, v;
  756. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  757. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  758. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  759. int scale, qindex, bits, steps, k, l, m, b;
  760. /* select decoding table */
  761. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  762. s->sample_rate, s->lsf);
  763. sblimit = ff_mpa_sblimit_table[table];
  764. alloc_table = ff_mpa_alloc_tables[table];
  765. if (s->mode == MPA_JSTEREO)
  766. bound = (s->mode_ext + 1) * 4;
  767. else
  768. bound = sblimit;
  769. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  770. /* sanity check */
  771. if( bound > sblimit ) bound = sblimit;
  772. /* parse bit allocation */
  773. j = 0;
  774. for(i=0;i<bound;i++) {
  775. bit_alloc_bits = alloc_table[j];
  776. for(ch=0;ch<s->nb_channels;ch++) {
  777. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  778. }
  779. j += 1 << bit_alloc_bits;
  780. }
  781. for(i=bound;i<sblimit;i++) {
  782. bit_alloc_bits = alloc_table[j];
  783. v = get_bits(&s->gb, bit_alloc_bits);
  784. bit_alloc[0][i] = v;
  785. bit_alloc[1][i] = v;
  786. j += 1 << bit_alloc_bits;
  787. }
  788. /* scale codes */
  789. for(i=0;i<sblimit;i++) {
  790. for(ch=0;ch<s->nb_channels;ch++) {
  791. if (bit_alloc[ch][i])
  792. scale_code[ch][i] = get_bits(&s->gb, 2);
  793. }
  794. }
  795. /* scale factors */
  796. for(i=0;i<sblimit;i++) {
  797. for(ch=0;ch<s->nb_channels;ch++) {
  798. if (bit_alloc[ch][i]) {
  799. sf = scale_factors[ch][i];
  800. switch(scale_code[ch][i]) {
  801. default:
  802. case 0:
  803. sf[0] = get_bits(&s->gb, 6);
  804. sf[1] = get_bits(&s->gb, 6);
  805. sf[2] = get_bits(&s->gb, 6);
  806. break;
  807. case 2:
  808. sf[0] = get_bits(&s->gb, 6);
  809. sf[1] = sf[0];
  810. sf[2] = sf[0];
  811. break;
  812. case 1:
  813. sf[0] = get_bits(&s->gb, 6);
  814. sf[2] = get_bits(&s->gb, 6);
  815. sf[1] = sf[0];
  816. break;
  817. case 3:
  818. sf[0] = get_bits(&s->gb, 6);
  819. sf[2] = get_bits(&s->gb, 6);
  820. sf[1] = sf[2];
  821. break;
  822. }
  823. }
  824. }
  825. }
  826. /* samples */
  827. for(k=0;k<3;k++) {
  828. for(l=0;l<12;l+=3) {
  829. j = 0;
  830. for(i=0;i<bound;i++) {
  831. bit_alloc_bits = alloc_table[j];
  832. for(ch=0;ch<s->nb_channels;ch++) {
  833. b = bit_alloc[ch][i];
  834. if (b) {
  835. scale = scale_factors[ch][i][k];
  836. qindex = alloc_table[j+b];
  837. bits = ff_mpa_quant_bits[qindex];
  838. if (bits < 0) {
  839. int v2;
  840. /* 3 values at the same time */
  841. v = get_bits(&s->gb, -bits);
  842. v2 = division_tabs[qindex][v];
  843. steps = ff_mpa_quant_steps[qindex];
  844. s->sb_samples[ch][k * 12 + l + 0][i] =
  845. l2_unscale_group(steps, v2 & 15, scale);
  846. s->sb_samples[ch][k * 12 + l + 1][i] =
  847. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  848. s->sb_samples[ch][k * 12 + l + 2][i] =
  849. l2_unscale_group(steps, v2 >> 8 , scale);
  850. } else {
  851. for(m=0;m<3;m++) {
  852. v = get_bits(&s->gb, bits);
  853. v = l1_unscale(bits - 1, v, scale);
  854. s->sb_samples[ch][k * 12 + l + m][i] = v;
  855. }
  856. }
  857. } else {
  858. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  859. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  860. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  861. }
  862. }
  863. /* next subband in alloc table */
  864. j += 1 << bit_alloc_bits;
  865. }
  866. /* XXX: find a way to avoid this duplication of code */
  867. for(i=bound;i<sblimit;i++) {
  868. bit_alloc_bits = alloc_table[j];
  869. b = bit_alloc[0][i];
  870. if (b) {
  871. int mant, scale0, scale1;
  872. scale0 = scale_factors[0][i][k];
  873. scale1 = scale_factors[1][i][k];
  874. qindex = alloc_table[j+b];
  875. bits = ff_mpa_quant_bits[qindex];
  876. if (bits < 0) {
  877. /* 3 values at the same time */
  878. v = get_bits(&s->gb, -bits);
  879. steps = ff_mpa_quant_steps[qindex];
  880. mant = v % steps;
  881. v = v / steps;
  882. s->sb_samples[0][k * 12 + l + 0][i] =
  883. l2_unscale_group(steps, mant, scale0);
  884. s->sb_samples[1][k * 12 + l + 0][i] =
  885. l2_unscale_group(steps, mant, scale1);
  886. mant = v % steps;
  887. v = v / steps;
  888. s->sb_samples[0][k * 12 + l + 1][i] =
  889. l2_unscale_group(steps, mant, scale0);
  890. s->sb_samples[1][k * 12 + l + 1][i] =
  891. l2_unscale_group(steps, mant, scale1);
  892. s->sb_samples[0][k * 12 + l + 2][i] =
  893. l2_unscale_group(steps, v, scale0);
  894. s->sb_samples[1][k * 12 + l + 2][i] =
  895. l2_unscale_group(steps, v, scale1);
  896. } else {
  897. for(m=0;m<3;m++) {
  898. mant = get_bits(&s->gb, bits);
  899. s->sb_samples[0][k * 12 + l + m][i] =
  900. l1_unscale(bits - 1, mant, scale0);
  901. s->sb_samples[1][k * 12 + l + m][i] =
  902. l1_unscale(bits - 1, mant, scale1);
  903. }
  904. }
  905. } else {
  906. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  907. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  908. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  909. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  910. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  911. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  912. }
  913. /* next subband in alloc table */
  914. j += 1 << bit_alloc_bits;
  915. }
  916. /* fill remaining samples to zero */
  917. for(i=sblimit;i<SBLIMIT;i++) {
  918. for(ch=0;ch<s->nb_channels;ch++) {
  919. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  920. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  921. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  922. }
  923. }
  924. }
  925. }
  926. return 3 * 12;
  927. }
  928. #define SPLIT(dst,sf,n)\
  929. if(n==3){\
  930. int m= (sf*171)>>9;\
  931. dst= sf - 3*m;\
  932. sf=m;\
  933. }else if(n==4){\
  934. dst= sf&3;\
  935. sf>>=2;\
  936. }else if(n==5){\
  937. int m= (sf*205)>>10;\
  938. dst= sf - 5*m;\
  939. sf=m;\
  940. }else if(n==6){\
  941. int m= (sf*171)>>10;\
  942. dst= sf - 6*m;\
  943. sf=m;\
  944. }else{\
  945. dst=0;\
  946. }
  947. static av_always_inline void lsf_sf_expand(int *slen,
  948. int sf, int n1, int n2, int n3)
  949. {
  950. SPLIT(slen[3], sf, n3)
  951. SPLIT(slen[2], sf, n2)
  952. SPLIT(slen[1], sf, n1)
  953. slen[0] = sf;
  954. }
  955. static void exponents_from_scale_factors(MPADecodeContext *s,
  956. GranuleDef *g,
  957. int16_t *exponents)
  958. {
  959. const uint8_t *bstab, *pretab;
  960. int len, i, j, k, l, v0, shift, gain, gains[3];
  961. int16_t *exp_ptr;
  962. exp_ptr = exponents;
  963. gain = g->global_gain - 210;
  964. shift = g->scalefac_scale + 1;
  965. bstab = band_size_long[s->sample_rate_index];
  966. pretab = mpa_pretab[g->preflag];
  967. for(i=0;i<g->long_end;i++) {
  968. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  969. len = bstab[i];
  970. for(j=len;j>0;j--)
  971. *exp_ptr++ = v0;
  972. }
  973. if (g->short_start < 13) {
  974. bstab = band_size_short[s->sample_rate_index];
  975. gains[0] = gain - (g->subblock_gain[0] << 3);
  976. gains[1] = gain - (g->subblock_gain[1] << 3);
  977. gains[2] = gain - (g->subblock_gain[2] << 3);
  978. k = g->long_end;
  979. for(i=g->short_start;i<13;i++) {
  980. len = bstab[i];
  981. for(l=0;l<3;l++) {
  982. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  983. for(j=len;j>0;j--)
  984. *exp_ptr++ = v0;
  985. }
  986. }
  987. }
  988. }
  989. /* handle n = 0 too */
  990. static inline int get_bitsz(GetBitContext *s, int n)
  991. {
  992. if (n == 0)
  993. return 0;
  994. else
  995. return get_bits(s, n);
  996. }
  997. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  998. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  999. s->gb= s->in_gb;
  1000. s->in_gb.buffer=NULL;
  1001. assert((get_bits_count(&s->gb) & 7) == 0);
  1002. skip_bits_long(&s->gb, *pos - *end_pos);
  1003. *end_pos2=
  1004. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1005. *pos= get_bits_count(&s->gb);
  1006. }
  1007. }
  1008. /* Following is a optimized code for
  1009. INTFLOAT v = *src
  1010. if(get_bits1(&s->gb))
  1011. v = -v;
  1012. *dst = v;
  1013. */
  1014. #if CONFIG_FLOAT
  1015. #define READ_FLIP_SIGN(dst,src)\
  1016. v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
  1017. AV_WN32A(dst, v);
  1018. #else
  1019. #define READ_FLIP_SIGN(dst,src)\
  1020. v= -get_bits1(&s->gb);\
  1021. *(dst) = (*(src) ^ v) - v;
  1022. #endif
  1023. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1024. int16_t *exponents, int end_pos2)
  1025. {
  1026. int s_index;
  1027. int i;
  1028. int last_pos, bits_left;
  1029. VLC *vlc;
  1030. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1031. /* low frequencies (called big values) */
  1032. s_index = 0;
  1033. for(i=0;i<3;i++) {
  1034. int j, k, l, linbits;
  1035. j = g->region_size[i];
  1036. if (j == 0)
  1037. continue;
  1038. /* select vlc table */
  1039. k = g->table_select[i];
  1040. l = mpa_huff_data[k][0];
  1041. linbits = mpa_huff_data[k][1];
  1042. vlc = &huff_vlc[l];
  1043. if(!l){
  1044. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1045. s_index += 2*j;
  1046. continue;
  1047. }
  1048. /* read huffcode and compute each couple */
  1049. for(;j>0;j--) {
  1050. int exponent, x, y;
  1051. int v;
  1052. int pos= get_bits_count(&s->gb);
  1053. if (pos >= end_pos){
  1054. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1055. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1056. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1057. if(pos >= end_pos)
  1058. break;
  1059. }
  1060. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1061. if(!y){
  1062. g->sb_hybrid[s_index ] =
  1063. g->sb_hybrid[s_index+1] = 0;
  1064. s_index += 2;
  1065. continue;
  1066. }
  1067. exponent= exponents[s_index];
  1068. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1069. i, g->region_size[i] - j, x, y, exponent);
  1070. if(y&16){
  1071. x = y >> 5;
  1072. y = y & 0x0f;
  1073. if (x < 15){
  1074. READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
  1075. }else{
  1076. x += get_bitsz(&s->gb, linbits);
  1077. v = l3_unscale(x, exponent);
  1078. if (get_bits1(&s->gb))
  1079. v = -v;
  1080. g->sb_hybrid[s_index] = v;
  1081. }
  1082. if (y < 15){
  1083. READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
  1084. }else{
  1085. y += get_bitsz(&s->gb, linbits);
  1086. v = l3_unscale(y, exponent);
  1087. if (get_bits1(&s->gb))
  1088. v = -v;
  1089. g->sb_hybrid[s_index+1] = v;
  1090. }
  1091. }else{
  1092. x = y >> 5;
  1093. y = y & 0x0f;
  1094. x += y;
  1095. if (x < 15){
  1096. READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
  1097. }else{
  1098. x += get_bitsz(&s->gb, linbits);
  1099. v = l3_unscale(x, exponent);
  1100. if (get_bits1(&s->gb))
  1101. v = -v;
  1102. g->sb_hybrid[s_index+!!y] = v;
  1103. }
  1104. g->sb_hybrid[s_index+ !y] = 0;
  1105. }
  1106. s_index+=2;
  1107. }
  1108. }
  1109. /* high frequencies */
  1110. vlc = &huff_quad_vlc[g->count1table_select];
  1111. last_pos=0;
  1112. while (s_index <= 572) {
  1113. int pos, code;
  1114. pos = get_bits_count(&s->gb);
  1115. if (pos >= end_pos) {
  1116. if (pos > end_pos2 && last_pos){
  1117. /* some encoders generate an incorrect size for this
  1118. part. We must go back into the data */
  1119. s_index -= 4;
  1120. skip_bits_long(&s->gb, last_pos - pos);
  1121. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1122. if(s->error_recognition >= FF_ER_COMPLIANT)
  1123. s_index=0;
  1124. break;
  1125. }
  1126. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1127. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1128. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1129. if(pos >= end_pos)
  1130. break;
  1131. }
  1132. last_pos= pos;
  1133. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1134. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1135. g->sb_hybrid[s_index+0]=
  1136. g->sb_hybrid[s_index+1]=
  1137. g->sb_hybrid[s_index+2]=
  1138. g->sb_hybrid[s_index+3]= 0;
  1139. while(code){
  1140. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1141. int v;
  1142. int pos= s_index+idxtab[code];
  1143. code ^= 8>>idxtab[code];
  1144. READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
  1145. }
  1146. s_index+=4;
  1147. }
  1148. /* skip extension bits */
  1149. bits_left = end_pos2 - get_bits_count(&s->gb);
  1150. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1151. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1152. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1153. s_index=0;
  1154. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1155. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1156. s_index=0;
  1157. }
  1158. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1159. skip_bits_long(&s->gb, bits_left);
  1160. i= get_bits_count(&s->gb);
  1161. switch_buffer(s, &i, &end_pos, &end_pos2);
  1162. return 0;
  1163. }
  1164. /* Reorder short blocks from bitstream order to interleaved order. It
  1165. would be faster to do it in parsing, but the code would be far more
  1166. complicated */
  1167. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1168. {
  1169. int i, j, len;
  1170. INTFLOAT *ptr, *dst, *ptr1;
  1171. INTFLOAT tmp[576];
  1172. if (g->block_type != 2)
  1173. return;
  1174. if (g->switch_point) {
  1175. if (s->sample_rate_index != 8) {
  1176. ptr = g->sb_hybrid + 36;
  1177. } else {
  1178. ptr = g->sb_hybrid + 48;
  1179. }
  1180. } else {
  1181. ptr = g->sb_hybrid;
  1182. }
  1183. for(i=g->short_start;i<13;i++) {
  1184. len = band_size_short[s->sample_rate_index][i];
  1185. ptr1 = ptr;
  1186. dst = tmp;
  1187. for(j=len;j>0;j--) {
  1188. *dst++ = ptr[0*len];
  1189. *dst++ = ptr[1*len];
  1190. *dst++ = ptr[2*len];
  1191. ptr++;
  1192. }
  1193. ptr+=2*len;
  1194. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1195. }
  1196. }
  1197. #define ISQRT2 FIXR(0.70710678118654752440)
  1198. static void compute_stereo(MPADecodeContext *s,
  1199. GranuleDef *g0, GranuleDef *g1)
  1200. {
  1201. int i, j, k, l;
  1202. int sf_max, sf, len, non_zero_found;
  1203. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  1204. int non_zero_found_short[3];
  1205. /* intensity stereo */
  1206. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1207. if (!s->lsf) {
  1208. is_tab = is_table;
  1209. sf_max = 7;
  1210. } else {
  1211. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1212. sf_max = 16;
  1213. }
  1214. tab0 = g0->sb_hybrid + 576;
  1215. tab1 = g1->sb_hybrid + 576;
  1216. non_zero_found_short[0] = 0;
  1217. non_zero_found_short[1] = 0;
  1218. non_zero_found_short[2] = 0;
  1219. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1220. for(i = 12;i >= g1->short_start;i--) {
  1221. /* for last band, use previous scale factor */
  1222. if (i != 11)
  1223. k -= 3;
  1224. len = band_size_short[s->sample_rate_index][i];
  1225. for(l=2;l>=0;l--) {
  1226. tab0 -= len;
  1227. tab1 -= len;
  1228. if (!non_zero_found_short[l]) {
  1229. /* test if non zero band. if so, stop doing i-stereo */
  1230. for(j=0;j<len;j++) {
  1231. if (tab1[j] != 0) {
  1232. non_zero_found_short[l] = 1;
  1233. goto found1;
  1234. }
  1235. }
  1236. sf = g1->scale_factors[k + l];
  1237. if (sf >= sf_max)
  1238. goto found1;
  1239. v1 = is_tab[0][sf];
  1240. v2 = is_tab[1][sf];
  1241. for(j=0;j<len;j++) {
  1242. tmp0 = tab0[j];
  1243. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1244. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1245. }
  1246. } else {
  1247. found1:
  1248. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1249. /* lower part of the spectrum : do ms stereo
  1250. if enabled */
  1251. for(j=0;j<len;j++) {
  1252. tmp0 = tab0[j];
  1253. tmp1 = tab1[j];
  1254. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1255. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1256. }
  1257. }
  1258. }
  1259. }
  1260. }
  1261. non_zero_found = non_zero_found_short[0] |
  1262. non_zero_found_short[1] |
  1263. non_zero_found_short[2];
  1264. for(i = g1->long_end - 1;i >= 0;i--) {
  1265. len = band_size_long[s->sample_rate_index][i];
  1266. tab0 -= len;
  1267. tab1 -= len;
  1268. /* test if non zero band. if so, stop doing i-stereo */
  1269. if (!non_zero_found) {
  1270. for(j=0;j<len;j++) {
  1271. if (tab1[j] != 0) {
  1272. non_zero_found = 1;
  1273. goto found2;
  1274. }
  1275. }
  1276. /* for last band, use previous scale factor */
  1277. k = (i == 21) ? 20 : i;
  1278. sf = g1->scale_factors[k];
  1279. if (sf >= sf_max)
  1280. goto found2;
  1281. v1 = is_tab[0][sf];
  1282. v2 = is_tab[1][sf];
  1283. for(j=0;j<len;j++) {
  1284. tmp0 = tab0[j];
  1285. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1286. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1287. }
  1288. } else {
  1289. found2:
  1290. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1291. /* lower part of the spectrum : do ms stereo
  1292. if enabled */
  1293. for(j=0;j<len;j++) {
  1294. tmp0 = tab0[j];
  1295. tmp1 = tab1[j];
  1296. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1297. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1298. }
  1299. }
  1300. }
  1301. }
  1302. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1303. /* ms stereo ONLY */
  1304. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1305. global gain */
  1306. tab0 = g0->sb_hybrid;
  1307. tab1 = g1->sb_hybrid;
  1308. for(i=0;i<576;i++) {
  1309. tmp0 = tab0[i];
  1310. tmp1 = tab1[i];
  1311. tab0[i] = tmp0 + tmp1;
  1312. tab1[i] = tmp0 - tmp1;
  1313. }
  1314. }
  1315. }
  1316. #if !CONFIG_FLOAT
  1317. static void compute_antialias_integer(MPADecodeContext *s,
  1318. GranuleDef *g)
  1319. {
  1320. int32_t *ptr, *csa;
  1321. int n, i;
  1322. /* we antialias only "long" bands */
  1323. if (g->block_type == 2) {
  1324. if (!g->switch_point)
  1325. return;
  1326. /* XXX: check this for 8000Hz case */
  1327. n = 1;
  1328. } else {
  1329. n = SBLIMIT - 1;
  1330. }
  1331. ptr = g->sb_hybrid + 18;
  1332. for(i = n;i > 0;i--) {
  1333. int tmp0, tmp1, tmp2;
  1334. csa = &csa_table[0][0];
  1335. #define INT_AA(j) \
  1336. tmp0 = ptr[-1-j];\
  1337. tmp1 = ptr[ j];\
  1338. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1339. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1340. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1341. INT_AA(0)
  1342. INT_AA(1)
  1343. INT_AA(2)
  1344. INT_AA(3)
  1345. INT_AA(4)
  1346. INT_AA(5)
  1347. INT_AA(6)
  1348. INT_AA(7)
  1349. ptr += 18;
  1350. }
  1351. }
  1352. #endif
  1353. static void compute_imdct(MPADecodeContext *s,
  1354. GranuleDef *g,
  1355. INTFLOAT *sb_samples,
  1356. INTFLOAT *mdct_buf)
  1357. {
  1358. INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
  1359. INTFLOAT out2[12];
  1360. int i, j, mdct_long_end, sblimit;
  1361. /* find last non zero block */
  1362. ptr = g->sb_hybrid + 576;
  1363. ptr1 = g->sb_hybrid + 2 * 18;
  1364. while (ptr >= ptr1) {
  1365. int32_t *p;
  1366. ptr -= 6;
  1367. p= (int32_t*)ptr;
  1368. if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1369. break;
  1370. }
  1371. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1372. if (g->block_type == 2) {
  1373. /* XXX: check for 8000 Hz */
  1374. if (g->switch_point)
  1375. mdct_long_end = 2;
  1376. else
  1377. mdct_long_end = 0;
  1378. } else {
  1379. mdct_long_end = sblimit;
  1380. }
  1381. buf = mdct_buf;
  1382. ptr = g->sb_hybrid;
  1383. for(j=0;j<mdct_long_end;j++) {
  1384. /* apply window & overlap with previous buffer */
  1385. out_ptr = sb_samples + j;
  1386. /* select window */
  1387. if (g->switch_point && j < 2)
  1388. win1 = mdct_win[0];
  1389. else
  1390. win1 = mdct_win[g->block_type];
  1391. /* select frequency inversion */
  1392. win = win1 + ((4 * 36) & -(j & 1));
  1393. imdct36(out_ptr, buf, ptr, win);
  1394. out_ptr += 18*SBLIMIT;
  1395. ptr += 18;
  1396. buf += 18;
  1397. }
  1398. for(j=mdct_long_end;j<sblimit;j++) {
  1399. /* select frequency inversion */
  1400. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1401. out_ptr = sb_samples + j;
  1402. for(i=0; i<6; i++){
  1403. *out_ptr = buf[i];
  1404. out_ptr += SBLIMIT;
  1405. }
  1406. imdct12(out2, ptr + 0);
  1407. for(i=0;i<6;i++) {
  1408. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
  1409. buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
  1410. out_ptr += SBLIMIT;
  1411. }
  1412. imdct12(out2, ptr + 1);
  1413. for(i=0;i<6;i++) {
  1414. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
  1415. buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
  1416. out_ptr += SBLIMIT;
  1417. }
  1418. imdct12(out2, ptr + 2);
  1419. for(i=0;i<6;i++) {
  1420. buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
  1421. buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
  1422. buf[i + 6*2] = 0;
  1423. }
  1424. ptr += 18;
  1425. buf += 18;
  1426. }
  1427. /* zero bands */
  1428. for(j=sblimit;j<SBLIMIT;j++) {
  1429. /* overlap */
  1430. out_ptr = sb_samples + j;
  1431. for(i=0;i<18;i++) {
  1432. *out_ptr = buf[i];
  1433. buf[i] = 0;
  1434. out_ptr += SBLIMIT;
  1435. }
  1436. buf += 18;
  1437. }
  1438. }
  1439. /* main layer3 decoding function */
  1440. static int mp_decode_layer3(MPADecodeContext *s)
  1441. {
  1442. int nb_granules, main_data_begin, private_bits;
  1443. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1444. GranuleDef *g;
  1445. int16_t exponents[576]; //FIXME try INTFLOAT
  1446. /* read side info */
  1447. if (s->lsf) {
  1448. main_data_begin = get_bits(&s->gb, 8);
  1449. private_bits = get_bits(&s->gb, s->nb_channels);
  1450. nb_granules = 1;
  1451. } else {
  1452. main_data_begin = get_bits(&s->gb, 9);
  1453. if (s->nb_channels == 2)
  1454. private_bits = get_bits(&s->gb, 3);
  1455. else
  1456. private_bits = get_bits(&s->gb, 5);
  1457. nb_granules = 2;
  1458. for(ch=0;ch<s->nb_channels;ch++) {
  1459. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1460. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1461. }
  1462. }
  1463. for(gr=0;gr<nb_granules;gr++) {
  1464. for(ch=0;ch<s->nb_channels;ch++) {
  1465. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1466. g = &s->granules[ch][gr];
  1467. g->part2_3_length = get_bits(&s->gb, 12);
  1468. g->big_values = get_bits(&s->gb, 9);
  1469. if(g->big_values > 288){
  1470. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1471. return -1;
  1472. }
  1473. g->global_gain = get_bits(&s->gb, 8);
  1474. /* if MS stereo only is selected, we precompute the
  1475. 1/sqrt(2) renormalization factor */
  1476. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1477. MODE_EXT_MS_STEREO)
  1478. g->global_gain -= 2;
  1479. if (s->lsf)
  1480. g->scalefac_compress = get_bits(&s->gb, 9);
  1481. else
  1482. g->scalefac_compress = get_bits(&s->gb, 4);
  1483. blocksplit_flag = get_bits1(&s->gb);
  1484. if (blocksplit_flag) {
  1485. g->block_type = get_bits(&s->gb, 2);
  1486. if (g->block_type == 0){
  1487. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1488. return -1;
  1489. }
  1490. g->switch_point = get_bits1(&s->gb);
  1491. for(i=0;i<2;i++)
  1492. g->table_select[i] = get_bits(&s->gb, 5);
  1493. for(i=0;i<3;i++)
  1494. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1495. ff_init_short_region(s, g);
  1496. } else {
  1497. int region_address1, region_address2;
  1498. g->block_type = 0;
  1499. g->switch_point = 0;
  1500. for(i=0;i<3;i++)
  1501. g->table_select[i] = get_bits(&s->gb, 5);
  1502. /* compute huffman coded region sizes */
  1503. region_address1 = get_bits(&s->gb, 4);
  1504. region_address2 = get_bits(&s->gb, 3);
  1505. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1506. region_address1, region_address2);
  1507. ff_init_long_region(s, g, region_address1, region_address2);
  1508. }
  1509. ff_region_offset2size(g);
  1510. ff_compute_band_indexes(s, g);
  1511. g->preflag = 0;
  1512. if (!s->lsf)
  1513. g->preflag = get_bits1(&s->gb);
  1514. g->scalefac_scale = get_bits1(&s->gb);
  1515. g->count1table_select = get_bits1(&s->gb);
  1516. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1517. g->block_type, g->switch_point);
  1518. }
  1519. }
  1520. if (!s->adu_mode) {
  1521. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1522. assert((get_bits_count(&s->gb) & 7) == 0);
  1523. /* now we get bits from the main_data_begin offset */
  1524. av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
  1525. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1526. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1527. s->in_gb= s->gb;
  1528. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1529. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1530. }
  1531. for(gr=0;gr<nb_granules;gr++) {
  1532. for(ch=0;ch<s->nb_channels;ch++) {
  1533. g = &s->granules[ch][gr];
  1534. if(get_bits_count(&s->gb)<0){
  1535. av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1536. main_data_begin, s->last_buf_size, gr);
  1537. skip_bits_long(&s->gb, g->part2_3_length);
  1538. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1539. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1540. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1541. s->gb= s->in_gb;
  1542. s->in_gb.buffer=NULL;
  1543. }
  1544. continue;
  1545. }
  1546. bits_pos = get_bits_count(&s->gb);
  1547. if (!s->lsf) {
  1548. uint8_t *sc;
  1549. int slen, slen1, slen2;
  1550. /* MPEG1 scale factors */
  1551. slen1 = slen_table[0][g->scalefac_compress];
  1552. slen2 = slen_table[1][g->scalefac_compress];
  1553. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1554. if (g->block_type == 2) {
  1555. n = g->switch_point ? 17 : 18;
  1556. j = 0;
  1557. if(slen1){
  1558. for(i=0;i<n;i++)
  1559. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1560. }else{
  1561. for(i=0;i<n;i++)
  1562. g->scale_factors[j++] = 0;
  1563. }
  1564. if(slen2){
  1565. for(i=0;i<18;i++)
  1566. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1567. for(i=0;i<3;i++)
  1568. g->scale_factors[j++] = 0;
  1569. }else{
  1570. for(i=0;i<21;i++)
  1571. g->scale_factors[j++] = 0;
  1572. }
  1573. } else {
  1574. sc = s->granules[ch][0].scale_factors;
  1575. j = 0;
  1576. for(k=0;k<4;k++) {
  1577. n = (k == 0 ? 6 : 5);
  1578. if ((g->scfsi & (0x8 >> k)) == 0) {
  1579. slen = (k < 2) ? slen1 : slen2;
  1580. if(slen){
  1581. for(i=0;i<n;i++)
  1582. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1583. }else{
  1584. for(i=0;i<n;i++)
  1585. g->scale_factors[j++] = 0;
  1586. }
  1587. } else {
  1588. /* simply copy from last granule */
  1589. for(i=0;i<n;i++) {
  1590. g->scale_factors[j] = sc[j];
  1591. j++;
  1592. }
  1593. }
  1594. }
  1595. g->scale_factors[j++] = 0;
  1596. }
  1597. } else {
  1598. int tindex, tindex2, slen[4], sl, sf;
  1599. /* LSF scale factors */
  1600. if (g->block_type == 2) {
  1601. tindex = g->switch_point ? 2 : 1;
  1602. } else {
  1603. tindex = 0;
  1604. }
  1605. sf = g->scalefac_compress;
  1606. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1607. /* intensity stereo case */
  1608. sf >>= 1;
  1609. if (sf < 180) {
  1610. lsf_sf_expand(slen, sf, 6, 6, 0);
  1611. tindex2 = 3;
  1612. } else if (sf < 244) {
  1613. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1614. tindex2 = 4;
  1615. } else {
  1616. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1617. tindex2 = 5;
  1618. }
  1619. } else {
  1620. /* normal case */
  1621. if (sf < 400) {
  1622. lsf_sf_expand(slen, sf, 5, 4, 4);
  1623. tindex2 = 0;
  1624. } else if (sf < 500) {
  1625. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1626. tindex2 = 1;
  1627. } else {
  1628. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1629. tindex2 = 2;
  1630. g->preflag = 1;
  1631. }
  1632. }
  1633. j = 0;
  1634. for(k=0;k<4;k++) {
  1635. n = lsf_nsf_table[tindex2][tindex][k];
  1636. sl = slen[k];
  1637. if(sl){
  1638. for(i=0;i<n;i++)
  1639. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1640. }else{
  1641. for(i=0;i<n;i++)
  1642. g->scale_factors[j++] = 0;
  1643. }
  1644. }
  1645. /* XXX: should compute exact size */
  1646. for(;j<40;j++)
  1647. g->scale_factors[j] = 0;
  1648. }
  1649. exponents_from_scale_factors(s, g, exponents);
  1650. /* read Huffman coded residue */
  1651. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1652. } /* ch */
  1653. if (s->nb_channels == 2)
  1654. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1655. for(ch=0;ch<s->nb_channels;ch++) {
  1656. g = &s->granules[ch][gr];
  1657. reorder_block(s, g);
  1658. compute_antialias(s, g);
  1659. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1660. }
  1661. } /* gr */
  1662. if(get_bits_count(&s->gb)<0)
  1663. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1664. return nb_granules * 18;
  1665. }
  1666. static int mp_decode_frame(MPADecodeContext *s,
  1667. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1668. {
  1669. int i, nb_frames, ch;
  1670. OUT_INT *samples_ptr;
  1671. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1672. /* skip error protection field */
  1673. if (s->error_protection)
  1674. skip_bits(&s->gb, 16);
  1675. av_dlog(s->avctx, "frame %d:\n", s->frame_count);
  1676. switch(s->layer) {
  1677. case 1:
  1678. s->avctx->frame_size = 384;
  1679. nb_frames = mp_decode_layer1(s);
  1680. break;
  1681. case 2:
  1682. s->avctx->frame_size = 1152;
  1683. nb_frames = mp_decode_layer2(s);
  1684. break;
  1685. case 3:
  1686. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1687. default:
  1688. nb_frames = mp_decode_layer3(s);
  1689. s->last_buf_size=0;
  1690. if(s->in_gb.buffer){
  1691. align_get_bits(&s->gb);
  1692. i= get_bits_left(&s->gb)>>3;
  1693. if(i >= 0 && i <= BACKSTEP_SIZE){
  1694. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1695. s->last_buf_size=i;
  1696. }else
  1697. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1698. s->gb= s->in_gb;
  1699. s->in_gb.buffer= NULL;
  1700. }
  1701. align_get_bits(&s->gb);
  1702. assert((get_bits_count(&s->gb) & 7) == 0);
  1703. i= get_bits_left(&s->gb)>>3;
  1704. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1705. if(i<0)
  1706. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1707. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1708. }
  1709. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1710. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1711. s->last_buf_size += i;
  1712. break;
  1713. }
  1714. /* apply the synthesis filter */
  1715. for(ch=0;ch<s->nb_channels;ch++) {
  1716. samples_ptr = samples + ch;
  1717. for(i=0;i<nb_frames;i++) {
  1718. RENAME(ff_mpa_synth_filter)(
  1719. #if CONFIG_FLOAT
  1720. s,
  1721. #endif
  1722. s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  1723. RENAME(ff_mpa_synth_window), &s->dither_state,
  1724. samples_ptr, s->nb_channels,
  1725. s->sb_samples[ch][i]);
  1726. samples_ptr += 32 * s->nb_channels;
  1727. }
  1728. }
  1729. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1730. }
  1731. static int decode_frame(AVCodecContext * avctx,
  1732. void *data, int *data_size,
  1733. AVPacket *avpkt)
  1734. {
  1735. const uint8_t *buf = avpkt->data;
  1736. int buf_size = avpkt->size;
  1737. MPADecodeContext *s = avctx->priv_data;
  1738. uint32_t header;
  1739. int out_size;
  1740. OUT_INT *out_samples = data;
  1741. if(buf_size < HEADER_SIZE)
  1742. return -1;
  1743. header = AV_RB32(buf);
  1744. if(ff_mpa_check_header(header) < 0){
  1745. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1746. return -1;
  1747. }
  1748. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1749. /* free format: prepare to compute frame size */
  1750. s->frame_size = -1;
  1751. return -1;
  1752. }
  1753. /* update codec info */
  1754. avctx->channels = s->nb_channels;
  1755. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1756. if (!avctx->bit_rate)
  1757. avctx->bit_rate = s->bit_rate;
  1758. avctx->sub_id = s->layer;
  1759. if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
  1760. return -1;
  1761. *data_size = 0;
  1762. if(s->frame_size<=0 || s->frame_size > buf_size){
  1763. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1764. return -1;
  1765. }else if(s->frame_size < buf_size){
  1766. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  1767. buf_size= s->frame_size;
  1768. }
  1769. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  1770. if(out_size>=0){
  1771. *data_size = out_size;
  1772. avctx->sample_rate = s->sample_rate;
  1773. //FIXME maybe move the other codec info stuff from above here too
  1774. }else
  1775. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  1776. s->frame_size = 0;
  1777. return buf_size;
  1778. }
  1779. static void flush(AVCodecContext *avctx){
  1780. MPADecodeContext *s = avctx->priv_data;
  1781. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  1782. s->last_buf_size= 0;
  1783. }
  1784. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1785. static int decode_frame_adu(AVCodecContext * avctx,
  1786. void *data, int *data_size,
  1787. AVPacket *avpkt)
  1788. {
  1789. const uint8_t *buf = avpkt->data;
  1790. int buf_size = avpkt->size;
  1791. MPADecodeContext *s = avctx->priv_data;
  1792. uint32_t header;
  1793. int len, out_size;
  1794. OUT_INT *out_samples = data;
  1795. len = buf_size;
  1796. // Discard too short frames
  1797. if (buf_size < HEADER_SIZE) {
  1798. *data_size = 0;
  1799. return buf_size;
  1800. }
  1801. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1802. len = MPA_MAX_CODED_FRAME_SIZE;
  1803. // Get header and restore sync word
  1804. header = AV_RB32(buf) | 0xffe00000;
  1805. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1806. *data_size = 0;
  1807. return buf_size;
  1808. }
  1809. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1810. /* update codec info */
  1811. avctx->sample_rate = s->sample_rate;
  1812. avctx->channels = s->nb_channels;
  1813. if (!avctx->bit_rate)
  1814. avctx->bit_rate = s->bit_rate;
  1815. avctx->sub_id = s->layer;
  1816. s->frame_size = len;
  1817. if (avctx->parse_only) {
  1818. out_size = buf_size;
  1819. } else {
  1820. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  1821. }
  1822. *data_size = out_size;
  1823. return buf_size;
  1824. }
  1825. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1826. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1827. /**
  1828. * Context for MP3On4 decoder
  1829. */
  1830. typedef struct MP3On4DecodeContext {
  1831. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1832. int syncword; ///< syncword patch
  1833. const uint8_t *coff; ///< channels offsets in output buffer
  1834. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1835. } MP3On4DecodeContext;
  1836. #include "mpeg4audio.h"
  1837. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1838. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  1839. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  1840. static const uint8_t chan_offset[8][5] = {
  1841. {0},
  1842. {0}, // C
  1843. {0}, // FLR
  1844. {2,0}, // C FLR
  1845. {2,0,3}, // C FLR BS
  1846. {4,0,2}, // C FLR BLRS
  1847. {4,0,2,5}, // C FLR BLRS LFE
  1848. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  1849. };
  1850. static int decode_init_mp3on4(AVCodecContext * avctx)
  1851. {
  1852. MP3On4DecodeContext *s = avctx->priv_data;
  1853. MPEG4AudioConfig cfg;
  1854. int i;
  1855. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1856. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1857. return -1;
  1858. }
  1859. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  1860. if (!cfg.chan_config || cfg.chan_config > 7) {
  1861. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1862. return -1;
  1863. }
  1864. s->frames = mp3Frames[cfg.chan_config];
  1865. s->coff = chan_offset[cfg.chan_config];
  1866. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1867. if (cfg.sample_rate < 16000)
  1868. s->syncword = 0xffe00000;
  1869. else
  1870. s->syncword = 0xfff00000;
  1871. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1872. * We replace avctx->priv_data with the context of the first decoder so that
  1873. * decode_init() does not have to be changed.
  1874. * Other decoders will be initialized here copying data from the first context
  1875. */
  1876. // Allocate zeroed memory for the first decoder context
  1877. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1878. // Put decoder context in place to make init_decode() happy
  1879. avctx->priv_data = s->mp3decctx[0];
  1880. decode_init(avctx);
  1881. // Restore mp3on4 context pointer
  1882. avctx->priv_data = s;
  1883. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1884. /* Create a separate codec/context for each frame (first is already ok).
  1885. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1886. */
  1887. for (i = 1; i < s->frames; i++) {
  1888. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1889. s->mp3decctx[i]->adu_mode = 1;
  1890. s->mp3decctx[i]->avctx = avctx;
  1891. }
  1892. return 0;
  1893. }
  1894. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1895. {
  1896. MP3On4DecodeContext *s = avctx->priv_data;
  1897. int i;
  1898. for (i = 0; i < s->frames; i++)
  1899. av_free(s->mp3decctx[i]);
  1900. return 0;
  1901. }
  1902. static int decode_frame_mp3on4(AVCodecContext * avctx,
  1903. void *data, int *data_size,
  1904. AVPacket *avpkt)
  1905. {
  1906. const uint8_t *buf = avpkt->data;
  1907. int buf_size = avpkt->size;
  1908. MP3On4DecodeContext *s = avctx->priv_data;
  1909. MPADecodeContext *m;
  1910. int fsize, len = buf_size, out_size = 0;
  1911. uint32_t header;
  1912. OUT_INT *out_samples = data;
  1913. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  1914. OUT_INT *outptr, *bp;
  1915. int fr, j, n;
  1916. if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
  1917. return -1;
  1918. *data_size = 0;
  1919. // Discard too short frames
  1920. if (buf_size < HEADER_SIZE)
  1921. return -1;
  1922. // If only one decoder interleave is not needed
  1923. outptr = s->frames == 1 ? out_samples : decoded_buf;
  1924. avctx->bit_rate = 0;
  1925. for (fr = 0; fr < s->frames; fr++) {
  1926. fsize = AV_RB16(buf) >> 4;
  1927. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1928. m = s->mp3decctx[fr];
  1929. assert (m != NULL);
  1930. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1931. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1932. break;
  1933. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1934. out_size += mp_decode_frame(m, outptr, buf, fsize);
  1935. buf += fsize;
  1936. len -= fsize;
  1937. if(s->frames > 1) {
  1938. n = m->avctx->frame_size*m->nb_channels;
  1939. /* interleave output data */
  1940. bp = out_samples + s->coff[fr];
  1941. if(m->nb_channels == 1) {
  1942. for(j = 0; j < n; j++) {
  1943. *bp = decoded_buf[j];
  1944. bp += avctx->channels;
  1945. }
  1946. } else {
  1947. for(j = 0; j < n; j++) {
  1948. bp[0] = decoded_buf[j++];
  1949. bp[1] = decoded_buf[j];
  1950. bp += avctx->channels;
  1951. }
  1952. }
  1953. }
  1954. avctx->bit_rate += m->bit_rate;
  1955. }
  1956. /* update codec info */
  1957. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1958. *data_size = out_size;
  1959. return buf_size;
  1960. }
  1961. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1962. #if !CONFIG_FLOAT
  1963. #if CONFIG_MP1_DECODER
  1964. AVCodec ff_mp1_decoder =
  1965. {
  1966. "mp1",
  1967. AVMEDIA_TYPE_AUDIO,
  1968. CODEC_ID_MP1,
  1969. sizeof(MPADecodeContext),
  1970. decode_init,
  1971. NULL,
  1972. NULL,
  1973. decode_frame,
  1974. CODEC_CAP_PARSE_ONLY,
  1975. .flush= flush,
  1976. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1977. };
  1978. #endif
  1979. #if CONFIG_MP2_DECODER
  1980. AVCodec ff_mp2_decoder =
  1981. {
  1982. "mp2",
  1983. AVMEDIA_TYPE_AUDIO,
  1984. CODEC_ID_MP2,
  1985. sizeof(MPADecodeContext),
  1986. decode_init,
  1987. NULL,
  1988. NULL,
  1989. decode_frame,
  1990. CODEC_CAP_PARSE_ONLY,
  1991. .flush= flush,
  1992. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1993. };
  1994. #endif
  1995. #if CONFIG_MP3_DECODER
  1996. AVCodec ff_mp3_decoder =
  1997. {
  1998. "mp3",
  1999. AVMEDIA_TYPE_AUDIO,
  2000. CODEC_ID_MP3,
  2001. sizeof(MPADecodeContext),
  2002. decode_init,
  2003. NULL,
  2004. NULL,
  2005. decode_frame,
  2006. CODEC_CAP_PARSE_ONLY,
  2007. .flush= flush,
  2008. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2009. };
  2010. #endif
  2011. #if CONFIG_MP3ADU_DECODER
  2012. AVCodec ff_mp3adu_decoder =
  2013. {
  2014. "mp3adu",
  2015. AVMEDIA_TYPE_AUDIO,
  2016. CODEC_ID_MP3ADU,
  2017. sizeof(MPADecodeContext),
  2018. decode_init,
  2019. NULL,
  2020. NULL,
  2021. decode_frame_adu,
  2022. CODEC_CAP_PARSE_ONLY,
  2023. .flush= flush,
  2024. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2025. };
  2026. #endif
  2027. #if CONFIG_MP3ON4_DECODER
  2028. AVCodec ff_mp3on4_decoder =
  2029. {
  2030. "mp3on4",
  2031. AVMEDIA_TYPE_AUDIO,
  2032. CODEC_ID_MP3ON4,
  2033. sizeof(MP3On4DecodeContext),
  2034. decode_init_mp3on4,
  2035. NULL,
  2036. decode_close_mp3on4,
  2037. decode_frame_mp3on4,
  2038. .flush= flush,
  2039. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2040. };
  2041. #endif
  2042. #endif