12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268 |
- /*
- * AMR wideband decoder
- * Copyright (c) 2010 Marcelo Galvao Povoa
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * AMR wideband decoder
- */
- #include "libavutil/lfg.h"
- #include "avcodec.h"
- #include "lsp.h"
- #include "celp_math.h"
- #include "celp_filters.h"
- #include "acelp_filters.h"
- #include "acelp_vectors.h"
- #include "acelp_pitch_delay.h"
- #define AMR_USE_16BIT_TABLES
- #include "amr.h"
- #include "amrwbdata.h"
- #include "mips/amrwbdec_mips.h"
- typedef struct {
- AVFrame avframe; ///< AVFrame for decoded samples
- AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
- enum Mode fr_cur_mode; ///< mode index of current frame
- uint8_t fr_quality; ///< frame quality index (FQI)
- float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
- float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
- float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
- double isp[4][LP_ORDER]; ///< ISP vectors from current frame
- double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
- float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
- uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
- uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
- float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
- float *excitation; ///< points to current excitation in excitation_buf[]
- float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
- float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
- float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
- float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
- float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
- float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
- float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
- uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
- float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
- float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
- float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
- float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
- float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
- float demph_mem[1]; ///< previous value in the de-emphasis filter
- float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
- float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
- AVLFG prng; ///< random number generator for white noise excitation
- uint8_t first_frame; ///< flag active during decoding of the first frame
- ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
- ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
- CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
- CELPMContext celpm_ctx; ///< context for fixed point math operations
- } AMRWBContext;
- static av_cold int amrwb_decode_init(AVCodecContext *avctx)
- {
- AMRWBContext *ctx = avctx->priv_data;
- int i;
- avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
- av_lfg_init(&ctx->prng, 1);
- ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
- ctx->first_frame = 1;
- for (i = 0; i < LP_ORDER; i++)
- ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
- for (i = 0; i < 4; i++)
- ctx->prediction_error[i] = MIN_ENERGY;
- avcodec_get_frame_defaults(&ctx->avframe);
- avctx->coded_frame = &ctx->avframe;
- ff_acelp_filter_init(&ctx->acelpf_ctx);
- ff_acelp_vectors_init(&ctx->acelpv_ctx);
- ff_celp_filter_init(&ctx->celpf_ctx);
- ff_celp_math_init(&ctx->celpm_ctx);
- return 0;
- }
- /**
- * Decode the frame header in the "MIME/storage" format. This format
- * is simpler and does not carry the auxiliary frame information.
- *
- * @param[in] ctx The Context
- * @param[in] buf Pointer to the input buffer
- *
- * @return The decoded header length in bytes
- */
- static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
- {
- /* Decode frame header (1st octet) */
- ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
- ctx->fr_quality = (buf[0] & 0x4) != 0x4;
- return 1;
- }
- /**
- * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
- *
- * @param[in] ind Array of 5 indexes
- * @param[out] isf_q Buffer for isf_q[LP_ORDER]
- *
- */
- static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
- {
- int i;
- for (i = 0; i < 9; i++)
- isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 7; i++)
- isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 5; i++)
- isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 4; i++)
- isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 7; i++)
- isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
- }
- /**
- * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
- *
- * @param[in] ind Array of 7 indexes
- * @param[out] isf_q Buffer for isf_q[LP_ORDER]
- *
- */
- static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
- {
- int i;
- for (i = 0; i < 9; i++)
- isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 7; i++)
- isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 3; i++)
- isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 3; i++)
- isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 3; i++)
- isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 3; i++)
- isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
- for (i = 0; i < 4; i++)
- isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
- }
- /**
- * Apply mean and past ISF values using the prediction factor.
- * Updates past ISF vector.
- *
- * @param[in,out] isf_q Current quantized ISF
- * @param[in,out] isf_past Past quantized ISF
- *
- */
- static void isf_add_mean_and_past(float *isf_q, float *isf_past)
- {
- int i;
- float tmp;
- for (i = 0; i < LP_ORDER; i++) {
- tmp = isf_q[i];
- isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
- isf_q[i] += PRED_FACTOR * isf_past[i];
- isf_past[i] = tmp;
- }
- }
- /**
- * Interpolate the fourth ISP vector from current and past frames
- * to obtain an ISP vector for each subframe.
- *
- * @param[in,out] isp_q ISPs for each subframe
- * @param[in] isp4_past Past ISP for subframe 4
- */
- static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
- {
- int i, k;
- for (k = 0; k < 3; k++) {
- float c = isfp_inter[k];
- for (i = 0; i < LP_ORDER; i++)
- isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
- }
- }
- /**
- * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
- * Calculate integer lag and fractional lag always using 1/4 resolution.
- * In 1st and 3rd subframes the index is relative to last subframe integer lag.
- *
- * @param[out] lag_int Decoded integer pitch lag
- * @param[out] lag_frac Decoded fractional pitch lag
- * @param[in] pitch_index Adaptive codebook pitch index
- * @param[in,out] base_lag_int Base integer lag used in relative subframes
- * @param[in] subframe Current subframe index (0 to 3)
- */
- static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
- uint8_t *base_lag_int, int subframe)
- {
- if (subframe == 0 || subframe == 2) {
- if (pitch_index < 376) {
- *lag_int = (pitch_index + 137) >> 2;
- *lag_frac = pitch_index - (*lag_int << 2) + 136;
- } else if (pitch_index < 440) {
- *lag_int = (pitch_index + 257 - 376) >> 1;
- *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
- /* the actual resolution is 1/2 but expressed as 1/4 */
- } else {
- *lag_int = pitch_index - 280;
- *lag_frac = 0;
- }
- /* minimum lag for next subframe */
- *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
- AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
- // XXX: the spec states clearly that *base_lag_int should be
- // the nearest integer to *lag_int (minus 8), but the ref code
- // actually always uses its floor, I'm following the latter
- } else {
- *lag_int = (pitch_index + 1) >> 2;
- *lag_frac = pitch_index - (*lag_int << 2);
- *lag_int += *base_lag_int;
- }
- }
- /**
- * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
- * The description is analogous to decode_pitch_lag_high, but in 6k60 the
- * relative index is used for all subframes except the first.
- */
- static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
- uint8_t *base_lag_int, int subframe, enum Mode mode)
- {
- if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
- if (pitch_index < 116) {
- *lag_int = (pitch_index + 69) >> 1;
- *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
- } else {
- *lag_int = pitch_index - 24;
- *lag_frac = 0;
- }
- // XXX: same problem as before
- *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
- AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
- } else {
- *lag_int = (pitch_index + 1) >> 1;
- *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
- *lag_int += *base_lag_int;
- }
- }
- /**
- * Find the pitch vector by interpolating the past excitation at the
- * pitch delay, which is obtained in this function.
- *
- * @param[in,out] ctx The context
- * @param[in] amr_subframe Current subframe data
- * @param[in] subframe Current subframe index (0 to 3)
- */
- static void decode_pitch_vector(AMRWBContext *ctx,
- const AMRWBSubFrame *amr_subframe,
- const int subframe)
- {
- int pitch_lag_int, pitch_lag_frac;
- int i;
- float *exc = ctx->excitation;
- enum Mode mode = ctx->fr_cur_mode;
- if (mode <= MODE_8k85) {
- decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
- &ctx->base_pitch_lag, subframe, mode);
- } else
- decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
- &ctx->base_pitch_lag, subframe);
- ctx->pitch_lag_int = pitch_lag_int;
- pitch_lag_int += pitch_lag_frac > 0;
- /* Calculate the pitch vector by interpolating the past excitation at the
- pitch lag using a hamming windowed sinc function */
- ctx->acelpf_ctx.acelp_interpolatef(exc,
- exc + 1 - pitch_lag_int,
- ac_inter, 4,
- pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
- LP_ORDER, AMRWB_SFR_SIZE + 1);
- /* Check which pitch signal path should be used
- * 6k60 and 8k85 modes have the ltp flag set to 0 */
- if (amr_subframe->ltp) {
- memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
- } else {
- for (i = 0; i < AMRWB_SFR_SIZE; i++)
- ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
- 0.18 * exc[i + 1];
- memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
- }
- }
- /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
- #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
- /** Get the bit at specified position */
- #define BIT_POS(x, p) (((x) >> (p)) & 1)
- /**
- * The next six functions decode_[i]p_track decode exactly i pulses
- * positions and amplitudes (-1 or 1) in a subframe track using
- * an encoded pulse indexing (TS 26.190 section 5.8.2).
- *
- * The results are given in out[], in which a negative number means
- * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
- *
- * @param[out] out Output buffer (writes i elements)
- * @param[in] code Pulse index (no. of bits varies, see below)
- * @param[in] m (log2) Number of potential positions
- * @param[in] off Offset for decoded positions
- */
- static inline void decode_1p_track(int *out, int code, int m, int off)
- {
- int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
- out[0] = BIT_POS(code, m) ? -pos : pos;
- }
- static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
- {
- int pos0 = BIT_STR(code, m, m) + off;
- int pos1 = BIT_STR(code, 0, m) + off;
- out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
- out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
- out[1] = pos0 > pos1 ? -out[1] : out[1];
- }
- static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
- {
- int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
- decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
- m - 1, off + half_2p);
- decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
- }
- static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
- {
- int half_4p, subhalf_2p;
- int b_offset = 1 << (m - 1);
- switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
- case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
- half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
- subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
- decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
- m - 2, off + half_4p + subhalf_2p);
- decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
- m - 1, off + half_4p);
- break;
- case 1: /* 1 pulse in A, 3 pulses in B */
- decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
- m - 1, off);
- decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
- m - 1, off + b_offset);
- break;
- case 2: /* 2 pulses in each half */
- decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
- m - 1, off);
- decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
- m - 1, off + b_offset);
- break;
- case 3: /* 3 pulses in A, 1 pulse in B */
- decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
- m - 1, off);
- decode_1p_track(out + 3, BIT_STR(code, 0, m),
- m - 1, off + b_offset);
- break;
- }
- }
- static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
- {
- int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
- decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
- m - 1, off + half_3p);
- decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
- }
- static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
- {
- int b_offset = 1 << (m - 1);
- /* which half has more pulses in cases 0 to 2 */
- int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
- int half_other = b_offset - half_more;
- switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
- case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
- decode_1p_track(out, BIT_STR(code, 0, m),
- m - 1, off + half_more);
- decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
- m - 1, off + half_more);
- break;
- case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
- decode_1p_track(out, BIT_STR(code, 0, m),
- m - 1, off + half_other);
- decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
- m - 1, off + half_more);
- break;
- case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
- decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
- m - 1, off + half_other);
- decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
- m - 1, off + half_more);
- break;
- case 3: /* 3 pulses in A, 3 pulses in B */
- decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
- m - 1, off);
- decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
- m - 1, off + b_offset);
- break;
- }
- }
- /**
- * Decode the algebraic codebook index to pulse positions and signs,
- * then construct the algebraic codebook vector.
- *
- * @param[out] fixed_vector Buffer for the fixed codebook excitation
- * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
- * @param[in] pulse_lo LSBs part of the pulse index array
- * @param[in] mode Mode of the current frame
- */
- static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
- const uint16_t *pulse_lo, const enum Mode mode)
- {
- /* sig_pos stores for each track the decoded pulse position indexes
- * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
- int sig_pos[4][6];
- int spacing = (mode == MODE_6k60) ? 2 : 4;
- int i, j;
- switch (mode) {
- case MODE_6k60:
- for (i = 0; i < 2; i++)
- decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
- break;
- case MODE_8k85:
- for (i = 0; i < 4; i++)
- decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
- break;
- case MODE_12k65:
- for (i = 0; i < 4; i++)
- decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
- break;
- case MODE_14k25:
- for (i = 0; i < 2; i++)
- decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
- for (i = 2; i < 4; i++)
- decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
- break;
- case MODE_15k85:
- for (i = 0; i < 4; i++)
- decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
- break;
- case MODE_18k25:
- for (i = 0; i < 4; i++)
- decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
- ((int) pulse_hi[i] << 14), 4, 1);
- break;
- case MODE_19k85:
- for (i = 0; i < 2; i++)
- decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
- ((int) pulse_hi[i] << 10), 4, 1);
- for (i = 2; i < 4; i++)
- decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
- ((int) pulse_hi[i] << 14), 4, 1);
- break;
- case MODE_23k05:
- case MODE_23k85:
- for (i = 0; i < 4; i++)
- decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
- ((int) pulse_hi[i] << 11), 4, 1);
- break;
- }
- memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
- for (i = 0; i < 4; i++)
- for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
- int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
- fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
- }
- }
- /**
- * Decode pitch gain and fixed gain correction factor.
- *
- * @param[in] vq_gain Vector-quantized index for gains
- * @param[in] mode Mode of the current frame
- * @param[out] fixed_gain_factor Decoded fixed gain correction factor
- * @param[out] pitch_gain Decoded pitch gain
- */
- static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
- float *fixed_gain_factor, float *pitch_gain)
- {
- const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
- qua_gain_7b[vq_gain]);
- *pitch_gain = gains[0] * (1.0f / (1 << 14));
- *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
- }
- /**
- * Apply pitch sharpening filters to the fixed codebook vector.
- *
- * @param[in] ctx The context
- * @param[in,out] fixed_vector Fixed codebook excitation
- */
- // XXX: Spec states this procedure should be applied when the pitch
- // lag is less than 64, but this checking seems absent in reference and AMR-NB
- static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
- {
- int i;
- /* Tilt part */
- for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
- fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
- /* Periodicity enhancement part */
- for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
- fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
- }
- /**
- * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
- *
- * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
- * @param[in] p_gain, f_gain Pitch and fixed gains
- * @param[in] ctx The context
- */
- // XXX: There is something wrong with the precision here! The magnitudes
- // of the energies are not correct. Please check the reference code carefully
- static float voice_factor(float *p_vector, float p_gain,
- float *f_vector, float f_gain,
- CELPMContext *ctx)
- {
- double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
- AMRWB_SFR_SIZE) * p_gain * p_gain;
- double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
- AMRWB_SFR_SIZE) * f_gain * f_gain;
- return (p_ener - f_ener) / (p_ener + f_ener);
- }
- /**
- * Reduce fixed vector sparseness by smoothing with one of three IR filters,
- * also known as "adaptive phase dispersion".
- *
- * @param[in] ctx The context
- * @param[in,out] fixed_vector Unfiltered fixed vector
- * @param[out] buf Space for modified vector if necessary
- *
- * @return The potentially overwritten filtered fixed vector address
- */
- static float *anti_sparseness(AMRWBContext *ctx,
- float *fixed_vector, float *buf)
- {
- int ir_filter_nr;
- if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
- return fixed_vector;
- if (ctx->pitch_gain[0] < 0.6) {
- ir_filter_nr = 0; // strong filtering
- } else if (ctx->pitch_gain[0] < 0.9) {
- ir_filter_nr = 1; // medium filtering
- } else
- ir_filter_nr = 2; // no filtering
- /* detect 'onset' */
- if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
- if (ir_filter_nr < 2)
- ir_filter_nr++;
- } else {
- int i, count = 0;
- for (i = 0; i < 6; i++)
- if (ctx->pitch_gain[i] < 0.6)
- count++;
- if (count > 2)
- ir_filter_nr = 0;
- if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
- ir_filter_nr--;
- }
- /* update ir filter strength history */
- ctx->prev_ir_filter_nr = ir_filter_nr;
- ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
- if (ir_filter_nr < 2) {
- int i;
- const float *coef = ir_filters_lookup[ir_filter_nr];
- /* Circular convolution code in the reference
- * decoder was modified to avoid using one
- * extra array. The filtered vector is given by:
- *
- * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
- */
- memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
- for (i = 0; i < AMRWB_SFR_SIZE; i++)
- if (fixed_vector[i])
- ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
- AMRWB_SFR_SIZE);
- fixed_vector = buf;
- }
- return fixed_vector;
- }
- /**
- * Calculate a stability factor {teta} based on distance between
- * current and past isf. A value of 1 shows maximum signal stability.
- */
- static float stability_factor(const float *isf, const float *isf_past)
- {
- int i;
- float acc = 0.0;
- for (i = 0; i < LP_ORDER - 1; i++)
- acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
- // XXX: This part is not so clear from the reference code
- // the result is more accurate changing the "/ 256" to "* 512"
- return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
- }
- /**
- * Apply a non-linear fixed gain smoothing in order to reduce
- * fluctuation in the energy of excitation.
- *
- * @param[in] fixed_gain Unsmoothed fixed gain
- * @param[in,out] prev_tr_gain Previous threshold gain (updated)
- * @param[in] voice_fac Frame voicing factor
- * @param[in] stab_fac Frame stability factor
- *
- * @return The smoothed gain
- */
- static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
- float voice_fac, float stab_fac)
- {
- float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
- float g0;
- // XXX: the following fixed-point constants used to in(de)crement
- // gain by 1.5dB were taken from the reference code, maybe it could
- // be simpler
- if (fixed_gain < *prev_tr_gain) {
- g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
- (6226 * (1.0f / (1 << 15)))); // +1.5 dB
- } else
- g0 = FFMAX(*prev_tr_gain, fixed_gain *
- (27536 * (1.0f / (1 << 15)))); // -1.5 dB
- *prev_tr_gain = g0; // update next frame threshold
- return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
- }
- /**
- * Filter the fixed_vector to emphasize the higher frequencies.
- *
- * @param[in,out] fixed_vector Fixed codebook vector
- * @param[in] voice_fac Frame voicing factor
- */
- static void pitch_enhancer(float *fixed_vector, float voice_fac)
- {
- int i;
- float cpe = 0.125 * (1 + voice_fac);
- float last = fixed_vector[0]; // holds c(i - 1)
- fixed_vector[0] -= cpe * fixed_vector[1];
- for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
- float cur = fixed_vector[i];
- fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
- last = cur;
- }
- fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
- }
- /**
- * Conduct 16th order linear predictive coding synthesis from excitation.
- *
- * @param[in] ctx Pointer to the AMRWBContext
- * @param[in] lpc Pointer to the LPC coefficients
- * @param[out] excitation Buffer for synthesis final excitation
- * @param[in] fixed_gain Fixed codebook gain for synthesis
- * @param[in] fixed_vector Algebraic codebook vector
- * @param[in,out] samples Pointer to the output samples and memory
- */
- static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
- float fixed_gain, const float *fixed_vector,
- float *samples)
- {
- ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
- ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
- /* emphasize pitch vector contribution in low bitrate modes */
- if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
- int i;
- float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
- AMRWB_SFR_SIZE);
- // XXX: Weird part in both ref code and spec. A unknown parameter
- // {beta} seems to be identical to the current pitch gain
- float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
- for (i = 0; i < AMRWB_SFR_SIZE; i++)
- excitation[i] += pitch_factor * ctx->pitch_vector[i];
- ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
- energy, AMRWB_SFR_SIZE);
- }
- ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
- AMRWB_SFR_SIZE, LP_ORDER);
- }
- /**
- * Apply to synthesis a de-emphasis filter of the form:
- * H(z) = 1 / (1 - m * z^-1)
- *
- * @param[out] out Output buffer
- * @param[in] in Input samples array with in[-1]
- * @param[in] m Filter coefficient
- * @param[in,out] mem State from last filtering
- */
- static void de_emphasis(float *out, float *in, float m, float mem[1])
- {
- int i;
- out[0] = in[0] + m * mem[0];
- for (i = 1; i < AMRWB_SFR_SIZE; i++)
- out[i] = in[i] + out[i - 1] * m;
- mem[0] = out[AMRWB_SFR_SIZE - 1];
- }
- /**
- * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
- * a FIR interpolation filter. Uses past data from before *in address.
- *
- * @param[out] out Buffer for interpolated signal
- * @param[in] in Current signal data (length 0.8*o_size)
- * @param[in] o_size Output signal length
- * @param[in] ctx The context
- */
- static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
- {
- const float *in0 = in - UPS_FIR_SIZE + 1;
- int i, j, k;
- int int_part = 0, frac_part;
- i = 0;
- for (j = 0; j < o_size / 5; j++) {
- out[i] = in[int_part];
- frac_part = 4;
- i++;
- for (k = 1; k < 5; k++) {
- out[i] = ctx->dot_productf(in0 + int_part,
- upsample_fir[4 - frac_part],
- UPS_MEM_SIZE);
- int_part++;
- frac_part--;
- i++;
- }
- }
- }
- /**
- * Calculate the high-band gain based on encoded index (23k85 mode) or
- * on the low-band speech signal and the Voice Activity Detection flag.
- *
- * @param[in] ctx The context
- * @param[in] synth LB speech synthesis at 12.8k
- * @param[in] hb_idx Gain index for mode 23k85 only
- * @param[in] vad VAD flag for the frame
- */
- static float find_hb_gain(AMRWBContext *ctx, const float *synth,
- uint16_t hb_idx, uint8_t vad)
- {
- int wsp = (vad > 0);
- float tilt;
- if (ctx->fr_cur_mode == MODE_23k85)
- return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
- tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
- ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
- /* return gain bounded by [0.1, 1.0] */
- return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
- }
- /**
- * Generate the high-band excitation with the same energy from the lower
- * one and scaled by the given gain.
- *
- * @param[in] ctx The context
- * @param[out] hb_exc Buffer for the excitation
- * @param[in] synth_exc Low-band excitation used for synthesis
- * @param[in] hb_gain Wanted excitation gain
- */
- static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
- const float *synth_exc, float hb_gain)
- {
- int i;
- float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
- /* Generate a white-noise excitation */
- for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
- hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
- ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
- energy * hb_gain * hb_gain,
- AMRWB_SFR_SIZE_16k);
- }
- /**
- * Calculate the auto-correlation for the ISF difference vector.
- */
- static float auto_correlation(float *diff_isf, float mean, int lag)
- {
- int i;
- float sum = 0.0;
- for (i = 7; i < LP_ORDER - 2; i++) {
- float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
- sum += prod * prod;
- }
- return sum;
- }
- /**
- * Extrapolate a ISF vector to the 16kHz range (20th order LP)
- * used at mode 6k60 LP filter for the high frequency band.
- *
- * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
- * values on input
- */
- static void extrapolate_isf(float isf[LP_ORDER_16k])
- {
- float diff_isf[LP_ORDER - 2], diff_mean;
- float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
- float corr_lag[3];
- float est, scale;
- int i, i_max_corr;
- isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
- /* Calculate the difference vector */
- for (i = 0; i < LP_ORDER - 2; i++)
- diff_isf[i] = isf[i + 1] - isf[i];
- diff_mean = 0.0;
- for (i = 2; i < LP_ORDER - 2; i++)
- diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
- /* Find which is the maximum autocorrelation */
- i_max_corr = 0;
- for (i = 0; i < 3; i++) {
- corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
- if (corr_lag[i] > corr_lag[i_max_corr])
- i_max_corr = i;
- }
- i_max_corr++;
- for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
- isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
- - isf[i - 2 - i_max_corr];
- /* Calculate an estimate for ISF(18) and scale ISF based on the error */
- est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
- scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
- (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
- for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
- diff_hi[i] = scale * (isf[i] - isf[i - 1]);
- /* Stability insurance */
- for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
- if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
- if (diff_hi[i] > diff_hi[i - 1]) {
- diff_hi[i - 1] = 5.0 - diff_hi[i];
- } else
- diff_hi[i] = 5.0 - diff_hi[i - 1];
- }
- for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
- isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
- /* Scale the ISF vector for 16000 Hz */
- for (i = 0; i < LP_ORDER_16k - 1; i++)
- isf[i] *= 0.8;
- }
- /**
- * Spectral expand the LP coefficients using the equation:
- * y[i] = x[i] * (gamma ** i)
- *
- * @param[out] out Output buffer (may use input array)
- * @param[in] lpc LP coefficients array
- * @param[in] gamma Weighting factor
- * @param[in] size LP array size
- */
- static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
- {
- int i;
- float fac = gamma;
- for (i = 0; i < size; i++) {
- out[i] = lpc[i] * fac;
- fac *= gamma;
- }
- }
- /**
- * Conduct 20th order linear predictive coding synthesis for the high
- * frequency band excitation at 16kHz.
- *
- * @param[in] ctx The context
- * @param[in] subframe Current subframe index (0 to 3)
- * @param[in,out] samples Pointer to the output speech samples
- * @param[in] exc Generated white-noise scaled excitation
- * @param[in] isf Current frame isf vector
- * @param[in] isf_past Past frame final isf vector
- */
- static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
- const float *exc, const float *isf, const float *isf_past)
- {
- float hb_lpc[LP_ORDER_16k];
- enum Mode mode = ctx->fr_cur_mode;
- if (mode == MODE_6k60) {
- float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
- double e_isp[LP_ORDER_16k];
- ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
- 1.0 - isfp_inter[subframe], LP_ORDER);
- extrapolate_isf(e_isf);
- e_isf[LP_ORDER_16k - 1] *= 2.0;
- ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
- ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
- lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
- } else {
- lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
- }
- ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
- (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
- }
- /**
- * Apply a 15th order filter to high-band samples.
- * The filter characteristic depends on the given coefficients.
- *
- * @param[out] out Buffer for filtered output
- * @param[in] fir_coef Filter coefficients
- * @param[in,out] mem State from last filtering (updated)
- * @param[in] in Input speech data (high-band)
- *
- * @remark It is safe to pass the same array in in and out parameters
- */
- #ifndef hb_fir_filter
- static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
- float mem[HB_FIR_SIZE], const float *in)
- {
- int i, j;
- float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
- memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
- memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
- for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
- out[i] = 0.0;
- for (j = 0; j <= HB_FIR_SIZE; j++)
- out[i] += data[i + j] * fir_coef[j];
- }
- memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
- }
- #endif /* hb_fir_filter */
- /**
- * Update context state before the next subframe.
- */
- static void update_sub_state(AMRWBContext *ctx)
- {
- memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
- (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
- memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
- memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
- memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
- LP_ORDER * sizeof(float));
- memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
- UPS_MEM_SIZE * sizeof(float));
- memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
- LP_ORDER_16k * sizeof(float));
- }
- static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
- int *got_frame_ptr, AVPacket *avpkt)
- {
- AMRWBContext *ctx = avctx->priv_data;
- AMRWBFrame *cf = &ctx->frame;
- const uint8_t *buf = avpkt->data;
- int buf_size = avpkt->size;
- int expected_fr_size, header_size;
- float *buf_out;
- float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
- float fixed_gain_factor; // fixed gain correction factor (gamma)
- float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
- float synth_fixed_gain; // the fixed gain that synthesis should use
- float voice_fac, stab_fac; // parameters used for gain smoothing
- float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
- float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
- float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
- float hb_gain;
- int sub, i, ret;
- /* get output buffer */
- ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
- if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return ret;
- }
- buf_out = (float *)ctx->avframe.data[0];
- header_size = decode_mime_header(ctx, buf);
- if (ctx->fr_cur_mode > MODE_SID) {
- av_log(avctx, AV_LOG_ERROR,
- "Invalid mode %d\n", ctx->fr_cur_mode);
- return AVERROR_INVALIDDATA;
- }
- expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
- if (buf_size < expected_fr_size) {
- av_log(avctx, AV_LOG_ERROR,
- "Frame too small (%d bytes). Truncated file?\n", buf_size);
- *got_frame_ptr = 0;
- return AVERROR_INVALIDDATA;
- }
- if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
- av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
- if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
- av_log_missing_feature(avctx, "SID mode", 1);
- return -1;
- }
- ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
- buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
- /* Decode the quantized ISF vector */
- if (ctx->fr_cur_mode == MODE_6k60) {
- decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
- } else {
- decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
- }
- isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
- ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
- stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
- ctx->isf_cur[LP_ORDER - 1] *= 2.0;
- ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
- /* Generate a ISP vector for each subframe */
- if (ctx->first_frame) {
- ctx->first_frame = 0;
- memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
- }
- interpolate_isp(ctx->isp, ctx->isp_sub4_past);
- for (sub = 0; sub < 4; sub++)
- ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
- for (sub = 0; sub < 4; sub++) {
- const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
- float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
- /* Decode adaptive codebook (pitch vector) */
- decode_pitch_vector(ctx, cur_subframe, sub);
- /* Decode innovative codebook (fixed vector) */
- decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
- cur_subframe->pul_il, ctx->fr_cur_mode);
- pitch_sharpening(ctx, ctx->fixed_vector);
- decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
- &fixed_gain_factor, &ctx->pitch_gain[0]);
- ctx->fixed_gain[0] =
- ff_amr_set_fixed_gain(fixed_gain_factor,
- ctx->celpm_ctx.dot_productf(ctx->fixed_vector, ctx->fixed_vector,
- AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
- ctx->prediction_error,
- ENERGY_MEAN, energy_pred_fac);
- /* Calculate voice factor and store tilt for next subframe */
- voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
- ctx->fixed_vector, ctx->fixed_gain[0],
- &ctx->celpm_ctx);
- ctx->tilt_coef = voice_fac * 0.25 + 0.25;
- /* Construct current excitation */
- for (i = 0; i < AMRWB_SFR_SIZE; i++) {
- ctx->excitation[i] *= ctx->pitch_gain[0];
- ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
- ctx->excitation[i] = truncf(ctx->excitation[i]);
- }
- /* Post-processing of excitation elements */
- synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
- voice_fac, stab_fac);
- synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
- spare_vector);
- pitch_enhancer(synth_fixed_vector, voice_fac);
- synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
- synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
- /* Synthesis speech post-processing */
- de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
- &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
- ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
- &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
- hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
- upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
- AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
- /* High frequency band (6.4 - 7.0 kHz) generation part */
- ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
- &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
- hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
- hb_gain = find_hb_gain(ctx, hb_samples,
- cur_subframe->hb_gain, cf->vad);
- scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
- hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
- hb_exc, ctx->isf_cur, ctx->isf_past_final);
- /* High-band post-processing filters */
- hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
- &ctx->samples_hb[LP_ORDER_16k]);
- if (ctx->fr_cur_mode == MODE_23k85)
- hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
- hb_samples);
- /* Add the low and high frequency bands */
- for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
- sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
- /* Update buffers and history */
- update_sub_state(ctx);
- }
- /* update state for next frame */
- memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
- memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
- *got_frame_ptr = 1;
- *(AVFrame *)data = ctx->avframe;
- return expected_fr_size;
- }
- AVCodec ff_amrwb_decoder = {
- .name = "amrwb",
- .type = AVMEDIA_TYPE_AUDIO,
- .id = CODEC_ID_AMR_WB,
- .priv_data_size = sizeof(AMRWBContext),
- .init = amrwb_decode_init,
- .decode = amrwb_decode_frame,
- .capabilities = CODEC_CAP_DR1,
- .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
- .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
- AV_SAMPLE_FMT_NONE },
- };
|