amrwbdec.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/lfg.h"
  26. #include "avcodec.h"
  27. #include "lsp.h"
  28. #include "celp_math.h"
  29. #include "celp_filters.h"
  30. #include "acelp_filters.h"
  31. #include "acelp_vectors.h"
  32. #include "acelp_pitch_delay.h"
  33. #define AMR_USE_16BIT_TABLES
  34. #include "amr.h"
  35. #include "amrwbdata.h"
  36. #include "mips/amrwbdec_mips.h"
  37. typedef struct {
  38. AVFrame avframe; ///< AVFrame for decoded samples
  39. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  40. enum Mode fr_cur_mode; ///< mode index of current frame
  41. uint8_t fr_quality; ///< frame quality index (FQI)
  42. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  43. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  44. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  45. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  46. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  47. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  48. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  49. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  50. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  51. float *excitation; ///< points to current excitation in excitation_buf[]
  52. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  53. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  54. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  55. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  56. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  57. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  58. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  59. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  60. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  61. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  62. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  63. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  64. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  65. float demph_mem[1]; ///< previous value in the de-emphasis filter
  66. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  67. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  68. AVLFG prng; ///< random number generator for white noise excitation
  69. uint8_t first_frame; ///< flag active during decoding of the first frame
  70. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  71. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  72. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  73. CELPMContext celpm_ctx; ///< context for fixed point math operations
  74. } AMRWBContext;
  75. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  76. {
  77. AMRWBContext *ctx = avctx->priv_data;
  78. int i;
  79. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  80. av_lfg_init(&ctx->prng, 1);
  81. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  82. ctx->first_frame = 1;
  83. for (i = 0; i < LP_ORDER; i++)
  84. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  85. for (i = 0; i < 4; i++)
  86. ctx->prediction_error[i] = MIN_ENERGY;
  87. avcodec_get_frame_defaults(&ctx->avframe);
  88. avctx->coded_frame = &ctx->avframe;
  89. ff_acelp_filter_init(&ctx->acelpf_ctx);
  90. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  91. ff_celp_filter_init(&ctx->celpf_ctx);
  92. ff_celp_math_init(&ctx->celpm_ctx);
  93. return 0;
  94. }
  95. /**
  96. * Decode the frame header in the "MIME/storage" format. This format
  97. * is simpler and does not carry the auxiliary frame information.
  98. *
  99. * @param[in] ctx The Context
  100. * @param[in] buf Pointer to the input buffer
  101. *
  102. * @return The decoded header length in bytes
  103. */
  104. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  105. {
  106. /* Decode frame header (1st octet) */
  107. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  108. ctx->fr_quality = (buf[0] & 0x4) != 0x4;
  109. return 1;
  110. }
  111. /**
  112. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  113. *
  114. * @param[in] ind Array of 5 indexes
  115. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  116. *
  117. */
  118. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  119. {
  120. int i;
  121. for (i = 0; i < 9; i++)
  122. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  123. for (i = 0; i < 7; i++)
  124. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  125. for (i = 0; i < 5; i++)
  126. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  127. for (i = 0; i < 4; i++)
  128. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  129. for (i = 0; i < 7; i++)
  130. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  131. }
  132. /**
  133. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  134. *
  135. * @param[in] ind Array of 7 indexes
  136. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  137. *
  138. */
  139. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  140. {
  141. int i;
  142. for (i = 0; i < 9; i++)
  143. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  144. for (i = 0; i < 7; i++)
  145. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 3; i++)
  147. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  148. for (i = 0; i < 3; i++)
  149. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  150. for (i = 0; i < 3; i++)
  151. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  152. for (i = 0; i < 3; i++)
  153. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  154. for (i = 0; i < 4; i++)
  155. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  156. }
  157. /**
  158. * Apply mean and past ISF values using the prediction factor.
  159. * Updates past ISF vector.
  160. *
  161. * @param[in,out] isf_q Current quantized ISF
  162. * @param[in,out] isf_past Past quantized ISF
  163. *
  164. */
  165. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  166. {
  167. int i;
  168. float tmp;
  169. for (i = 0; i < LP_ORDER; i++) {
  170. tmp = isf_q[i];
  171. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  172. isf_q[i] += PRED_FACTOR * isf_past[i];
  173. isf_past[i] = tmp;
  174. }
  175. }
  176. /**
  177. * Interpolate the fourth ISP vector from current and past frames
  178. * to obtain an ISP vector for each subframe.
  179. *
  180. * @param[in,out] isp_q ISPs for each subframe
  181. * @param[in] isp4_past Past ISP for subframe 4
  182. */
  183. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  184. {
  185. int i, k;
  186. for (k = 0; k < 3; k++) {
  187. float c = isfp_inter[k];
  188. for (i = 0; i < LP_ORDER; i++)
  189. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  190. }
  191. }
  192. /**
  193. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  194. * Calculate integer lag and fractional lag always using 1/4 resolution.
  195. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  196. *
  197. * @param[out] lag_int Decoded integer pitch lag
  198. * @param[out] lag_frac Decoded fractional pitch lag
  199. * @param[in] pitch_index Adaptive codebook pitch index
  200. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  201. * @param[in] subframe Current subframe index (0 to 3)
  202. */
  203. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  204. uint8_t *base_lag_int, int subframe)
  205. {
  206. if (subframe == 0 || subframe == 2) {
  207. if (pitch_index < 376) {
  208. *lag_int = (pitch_index + 137) >> 2;
  209. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  210. } else if (pitch_index < 440) {
  211. *lag_int = (pitch_index + 257 - 376) >> 1;
  212. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  213. /* the actual resolution is 1/2 but expressed as 1/4 */
  214. } else {
  215. *lag_int = pitch_index - 280;
  216. *lag_frac = 0;
  217. }
  218. /* minimum lag for next subframe */
  219. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  220. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  221. // XXX: the spec states clearly that *base_lag_int should be
  222. // the nearest integer to *lag_int (minus 8), but the ref code
  223. // actually always uses its floor, I'm following the latter
  224. } else {
  225. *lag_int = (pitch_index + 1) >> 2;
  226. *lag_frac = pitch_index - (*lag_int << 2);
  227. *lag_int += *base_lag_int;
  228. }
  229. }
  230. /**
  231. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  232. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  233. * relative index is used for all subframes except the first.
  234. */
  235. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  236. uint8_t *base_lag_int, int subframe, enum Mode mode)
  237. {
  238. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  239. if (pitch_index < 116) {
  240. *lag_int = (pitch_index + 69) >> 1;
  241. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  242. } else {
  243. *lag_int = pitch_index - 24;
  244. *lag_frac = 0;
  245. }
  246. // XXX: same problem as before
  247. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  248. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  249. } else {
  250. *lag_int = (pitch_index + 1) >> 1;
  251. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  252. *lag_int += *base_lag_int;
  253. }
  254. }
  255. /**
  256. * Find the pitch vector by interpolating the past excitation at the
  257. * pitch delay, which is obtained in this function.
  258. *
  259. * @param[in,out] ctx The context
  260. * @param[in] amr_subframe Current subframe data
  261. * @param[in] subframe Current subframe index (0 to 3)
  262. */
  263. static void decode_pitch_vector(AMRWBContext *ctx,
  264. const AMRWBSubFrame *amr_subframe,
  265. const int subframe)
  266. {
  267. int pitch_lag_int, pitch_lag_frac;
  268. int i;
  269. float *exc = ctx->excitation;
  270. enum Mode mode = ctx->fr_cur_mode;
  271. if (mode <= MODE_8k85) {
  272. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  273. &ctx->base_pitch_lag, subframe, mode);
  274. } else
  275. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  276. &ctx->base_pitch_lag, subframe);
  277. ctx->pitch_lag_int = pitch_lag_int;
  278. pitch_lag_int += pitch_lag_frac > 0;
  279. /* Calculate the pitch vector by interpolating the past excitation at the
  280. pitch lag using a hamming windowed sinc function */
  281. ctx->acelpf_ctx.acelp_interpolatef(exc,
  282. exc + 1 - pitch_lag_int,
  283. ac_inter, 4,
  284. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  285. LP_ORDER, AMRWB_SFR_SIZE + 1);
  286. /* Check which pitch signal path should be used
  287. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  288. if (amr_subframe->ltp) {
  289. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  290. } else {
  291. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  292. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  293. 0.18 * exc[i + 1];
  294. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  295. }
  296. }
  297. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  298. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  299. /** Get the bit at specified position */
  300. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  301. /**
  302. * The next six functions decode_[i]p_track decode exactly i pulses
  303. * positions and amplitudes (-1 or 1) in a subframe track using
  304. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  305. *
  306. * The results are given in out[], in which a negative number means
  307. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  308. *
  309. * @param[out] out Output buffer (writes i elements)
  310. * @param[in] code Pulse index (no. of bits varies, see below)
  311. * @param[in] m (log2) Number of potential positions
  312. * @param[in] off Offset for decoded positions
  313. */
  314. static inline void decode_1p_track(int *out, int code, int m, int off)
  315. {
  316. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  317. out[0] = BIT_POS(code, m) ? -pos : pos;
  318. }
  319. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  320. {
  321. int pos0 = BIT_STR(code, m, m) + off;
  322. int pos1 = BIT_STR(code, 0, m) + off;
  323. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  324. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  325. out[1] = pos0 > pos1 ? -out[1] : out[1];
  326. }
  327. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  328. {
  329. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  330. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  331. m - 1, off + half_2p);
  332. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  333. }
  334. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  335. {
  336. int half_4p, subhalf_2p;
  337. int b_offset = 1 << (m - 1);
  338. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  339. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  340. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  341. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  342. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  343. m - 2, off + half_4p + subhalf_2p);
  344. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  345. m - 1, off + half_4p);
  346. break;
  347. case 1: /* 1 pulse in A, 3 pulses in B */
  348. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  349. m - 1, off);
  350. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  351. m - 1, off + b_offset);
  352. break;
  353. case 2: /* 2 pulses in each half */
  354. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  355. m - 1, off);
  356. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  357. m - 1, off + b_offset);
  358. break;
  359. case 3: /* 3 pulses in A, 1 pulse in B */
  360. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  361. m - 1, off);
  362. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  363. m - 1, off + b_offset);
  364. break;
  365. }
  366. }
  367. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  368. {
  369. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  370. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  371. m - 1, off + half_3p);
  372. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  373. }
  374. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  375. {
  376. int b_offset = 1 << (m - 1);
  377. /* which half has more pulses in cases 0 to 2 */
  378. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  379. int half_other = b_offset - half_more;
  380. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  381. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  382. decode_1p_track(out, BIT_STR(code, 0, m),
  383. m - 1, off + half_more);
  384. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  385. m - 1, off + half_more);
  386. break;
  387. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  388. decode_1p_track(out, BIT_STR(code, 0, m),
  389. m - 1, off + half_other);
  390. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  391. m - 1, off + half_more);
  392. break;
  393. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  394. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  395. m - 1, off + half_other);
  396. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  397. m - 1, off + half_more);
  398. break;
  399. case 3: /* 3 pulses in A, 3 pulses in B */
  400. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  401. m - 1, off);
  402. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  403. m - 1, off + b_offset);
  404. break;
  405. }
  406. }
  407. /**
  408. * Decode the algebraic codebook index to pulse positions and signs,
  409. * then construct the algebraic codebook vector.
  410. *
  411. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  412. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  413. * @param[in] pulse_lo LSBs part of the pulse index array
  414. * @param[in] mode Mode of the current frame
  415. */
  416. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  417. const uint16_t *pulse_lo, const enum Mode mode)
  418. {
  419. /* sig_pos stores for each track the decoded pulse position indexes
  420. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  421. int sig_pos[4][6];
  422. int spacing = (mode == MODE_6k60) ? 2 : 4;
  423. int i, j;
  424. switch (mode) {
  425. case MODE_6k60:
  426. for (i = 0; i < 2; i++)
  427. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  428. break;
  429. case MODE_8k85:
  430. for (i = 0; i < 4; i++)
  431. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  432. break;
  433. case MODE_12k65:
  434. for (i = 0; i < 4; i++)
  435. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  436. break;
  437. case MODE_14k25:
  438. for (i = 0; i < 2; i++)
  439. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  440. for (i = 2; i < 4; i++)
  441. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  442. break;
  443. case MODE_15k85:
  444. for (i = 0; i < 4; i++)
  445. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  446. break;
  447. case MODE_18k25:
  448. for (i = 0; i < 4; i++)
  449. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  450. ((int) pulse_hi[i] << 14), 4, 1);
  451. break;
  452. case MODE_19k85:
  453. for (i = 0; i < 2; i++)
  454. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  455. ((int) pulse_hi[i] << 10), 4, 1);
  456. for (i = 2; i < 4; i++)
  457. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  458. ((int) pulse_hi[i] << 14), 4, 1);
  459. break;
  460. case MODE_23k05:
  461. case MODE_23k85:
  462. for (i = 0; i < 4; i++)
  463. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  464. ((int) pulse_hi[i] << 11), 4, 1);
  465. break;
  466. }
  467. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  468. for (i = 0; i < 4; i++)
  469. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  470. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  471. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  472. }
  473. }
  474. /**
  475. * Decode pitch gain and fixed gain correction factor.
  476. *
  477. * @param[in] vq_gain Vector-quantized index for gains
  478. * @param[in] mode Mode of the current frame
  479. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  480. * @param[out] pitch_gain Decoded pitch gain
  481. */
  482. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  483. float *fixed_gain_factor, float *pitch_gain)
  484. {
  485. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  486. qua_gain_7b[vq_gain]);
  487. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  488. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  489. }
  490. /**
  491. * Apply pitch sharpening filters to the fixed codebook vector.
  492. *
  493. * @param[in] ctx The context
  494. * @param[in,out] fixed_vector Fixed codebook excitation
  495. */
  496. // XXX: Spec states this procedure should be applied when the pitch
  497. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  498. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  499. {
  500. int i;
  501. /* Tilt part */
  502. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  503. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  504. /* Periodicity enhancement part */
  505. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  506. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  507. }
  508. /**
  509. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  510. *
  511. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  512. * @param[in] p_gain, f_gain Pitch and fixed gains
  513. * @param[in] ctx The context
  514. */
  515. // XXX: There is something wrong with the precision here! The magnitudes
  516. // of the energies are not correct. Please check the reference code carefully
  517. static float voice_factor(float *p_vector, float p_gain,
  518. float *f_vector, float f_gain,
  519. CELPMContext *ctx)
  520. {
  521. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  522. AMRWB_SFR_SIZE) * p_gain * p_gain;
  523. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  524. AMRWB_SFR_SIZE) * f_gain * f_gain;
  525. return (p_ener - f_ener) / (p_ener + f_ener);
  526. }
  527. /**
  528. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  529. * also known as "adaptive phase dispersion".
  530. *
  531. * @param[in] ctx The context
  532. * @param[in,out] fixed_vector Unfiltered fixed vector
  533. * @param[out] buf Space for modified vector if necessary
  534. *
  535. * @return The potentially overwritten filtered fixed vector address
  536. */
  537. static float *anti_sparseness(AMRWBContext *ctx,
  538. float *fixed_vector, float *buf)
  539. {
  540. int ir_filter_nr;
  541. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  542. return fixed_vector;
  543. if (ctx->pitch_gain[0] < 0.6) {
  544. ir_filter_nr = 0; // strong filtering
  545. } else if (ctx->pitch_gain[0] < 0.9) {
  546. ir_filter_nr = 1; // medium filtering
  547. } else
  548. ir_filter_nr = 2; // no filtering
  549. /* detect 'onset' */
  550. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  551. if (ir_filter_nr < 2)
  552. ir_filter_nr++;
  553. } else {
  554. int i, count = 0;
  555. for (i = 0; i < 6; i++)
  556. if (ctx->pitch_gain[i] < 0.6)
  557. count++;
  558. if (count > 2)
  559. ir_filter_nr = 0;
  560. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  561. ir_filter_nr--;
  562. }
  563. /* update ir filter strength history */
  564. ctx->prev_ir_filter_nr = ir_filter_nr;
  565. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  566. if (ir_filter_nr < 2) {
  567. int i;
  568. const float *coef = ir_filters_lookup[ir_filter_nr];
  569. /* Circular convolution code in the reference
  570. * decoder was modified to avoid using one
  571. * extra array. The filtered vector is given by:
  572. *
  573. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  574. */
  575. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  576. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  577. if (fixed_vector[i])
  578. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  579. AMRWB_SFR_SIZE);
  580. fixed_vector = buf;
  581. }
  582. return fixed_vector;
  583. }
  584. /**
  585. * Calculate a stability factor {teta} based on distance between
  586. * current and past isf. A value of 1 shows maximum signal stability.
  587. */
  588. static float stability_factor(const float *isf, const float *isf_past)
  589. {
  590. int i;
  591. float acc = 0.0;
  592. for (i = 0; i < LP_ORDER - 1; i++)
  593. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  594. // XXX: This part is not so clear from the reference code
  595. // the result is more accurate changing the "/ 256" to "* 512"
  596. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  597. }
  598. /**
  599. * Apply a non-linear fixed gain smoothing in order to reduce
  600. * fluctuation in the energy of excitation.
  601. *
  602. * @param[in] fixed_gain Unsmoothed fixed gain
  603. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  604. * @param[in] voice_fac Frame voicing factor
  605. * @param[in] stab_fac Frame stability factor
  606. *
  607. * @return The smoothed gain
  608. */
  609. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  610. float voice_fac, float stab_fac)
  611. {
  612. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  613. float g0;
  614. // XXX: the following fixed-point constants used to in(de)crement
  615. // gain by 1.5dB were taken from the reference code, maybe it could
  616. // be simpler
  617. if (fixed_gain < *prev_tr_gain) {
  618. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  619. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  620. } else
  621. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  622. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  623. *prev_tr_gain = g0; // update next frame threshold
  624. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  625. }
  626. /**
  627. * Filter the fixed_vector to emphasize the higher frequencies.
  628. *
  629. * @param[in,out] fixed_vector Fixed codebook vector
  630. * @param[in] voice_fac Frame voicing factor
  631. */
  632. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  633. {
  634. int i;
  635. float cpe = 0.125 * (1 + voice_fac);
  636. float last = fixed_vector[0]; // holds c(i - 1)
  637. fixed_vector[0] -= cpe * fixed_vector[1];
  638. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  639. float cur = fixed_vector[i];
  640. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  641. last = cur;
  642. }
  643. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  644. }
  645. /**
  646. * Conduct 16th order linear predictive coding synthesis from excitation.
  647. *
  648. * @param[in] ctx Pointer to the AMRWBContext
  649. * @param[in] lpc Pointer to the LPC coefficients
  650. * @param[out] excitation Buffer for synthesis final excitation
  651. * @param[in] fixed_gain Fixed codebook gain for synthesis
  652. * @param[in] fixed_vector Algebraic codebook vector
  653. * @param[in,out] samples Pointer to the output samples and memory
  654. */
  655. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  656. float fixed_gain, const float *fixed_vector,
  657. float *samples)
  658. {
  659. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  660. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  661. /* emphasize pitch vector contribution in low bitrate modes */
  662. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  663. int i;
  664. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  665. AMRWB_SFR_SIZE);
  666. // XXX: Weird part in both ref code and spec. A unknown parameter
  667. // {beta} seems to be identical to the current pitch gain
  668. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  669. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  670. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  671. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  672. energy, AMRWB_SFR_SIZE);
  673. }
  674. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  675. AMRWB_SFR_SIZE, LP_ORDER);
  676. }
  677. /**
  678. * Apply to synthesis a de-emphasis filter of the form:
  679. * H(z) = 1 / (1 - m * z^-1)
  680. *
  681. * @param[out] out Output buffer
  682. * @param[in] in Input samples array with in[-1]
  683. * @param[in] m Filter coefficient
  684. * @param[in,out] mem State from last filtering
  685. */
  686. static void de_emphasis(float *out, float *in, float m, float mem[1])
  687. {
  688. int i;
  689. out[0] = in[0] + m * mem[0];
  690. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  691. out[i] = in[i] + out[i - 1] * m;
  692. mem[0] = out[AMRWB_SFR_SIZE - 1];
  693. }
  694. /**
  695. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  696. * a FIR interpolation filter. Uses past data from before *in address.
  697. *
  698. * @param[out] out Buffer for interpolated signal
  699. * @param[in] in Current signal data (length 0.8*o_size)
  700. * @param[in] o_size Output signal length
  701. * @param[in] ctx The context
  702. */
  703. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  704. {
  705. const float *in0 = in - UPS_FIR_SIZE + 1;
  706. int i, j, k;
  707. int int_part = 0, frac_part;
  708. i = 0;
  709. for (j = 0; j < o_size / 5; j++) {
  710. out[i] = in[int_part];
  711. frac_part = 4;
  712. i++;
  713. for (k = 1; k < 5; k++) {
  714. out[i] = ctx->dot_productf(in0 + int_part,
  715. upsample_fir[4 - frac_part],
  716. UPS_MEM_SIZE);
  717. int_part++;
  718. frac_part--;
  719. i++;
  720. }
  721. }
  722. }
  723. /**
  724. * Calculate the high-band gain based on encoded index (23k85 mode) or
  725. * on the low-band speech signal and the Voice Activity Detection flag.
  726. *
  727. * @param[in] ctx The context
  728. * @param[in] synth LB speech synthesis at 12.8k
  729. * @param[in] hb_idx Gain index for mode 23k85 only
  730. * @param[in] vad VAD flag for the frame
  731. */
  732. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  733. uint16_t hb_idx, uint8_t vad)
  734. {
  735. int wsp = (vad > 0);
  736. float tilt;
  737. if (ctx->fr_cur_mode == MODE_23k85)
  738. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  739. tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  740. ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  741. /* return gain bounded by [0.1, 1.0] */
  742. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  743. }
  744. /**
  745. * Generate the high-band excitation with the same energy from the lower
  746. * one and scaled by the given gain.
  747. *
  748. * @param[in] ctx The context
  749. * @param[out] hb_exc Buffer for the excitation
  750. * @param[in] synth_exc Low-band excitation used for synthesis
  751. * @param[in] hb_gain Wanted excitation gain
  752. */
  753. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  754. const float *synth_exc, float hb_gain)
  755. {
  756. int i;
  757. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  758. /* Generate a white-noise excitation */
  759. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  760. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  761. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  762. energy * hb_gain * hb_gain,
  763. AMRWB_SFR_SIZE_16k);
  764. }
  765. /**
  766. * Calculate the auto-correlation for the ISF difference vector.
  767. */
  768. static float auto_correlation(float *diff_isf, float mean, int lag)
  769. {
  770. int i;
  771. float sum = 0.0;
  772. for (i = 7; i < LP_ORDER - 2; i++) {
  773. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  774. sum += prod * prod;
  775. }
  776. return sum;
  777. }
  778. /**
  779. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  780. * used at mode 6k60 LP filter for the high frequency band.
  781. *
  782. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  783. * values on input
  784. */
  785. static void extrapolate_isf(float isf[LP_ORDER_16k])
  786. {
  787. float diff_isf[LP_ORDER - 2], diff_mean;
  788. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  789. float corr_lag[3];
  790. float est, scale;
  791. int i, i_max_corr;
  792. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  793. /* Calculate the difference vector */
  794. for (i = 0; i < LP_ORDER - 2; i++)
  795. diff_isf[i] = isf[i + 1] - isf[i];
  796. diff_mean = 0.0;
  797. for (i = 2; i < LP_ORDER - 2; i++)
  798. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  799. /* Find which is the maximum autocorrelation */
  800. i_max_corr = 0;
  801. for (i = 0; i < 3; i++) {
  802. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  803. if (corr_lag[i] > corr_lag[i_max_corr])
  804. i_max_corr = i;
  805. }
  806. i_max_corr++;
  807. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  808. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  809. - isf[i - 2 - i_max_corr];
  810. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  811. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  812. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  813. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  814. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  815. diff_hi[i] = scale * (isf[i] - isf[i - 1]);
  816. /* Stability insurance */
  817. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  818. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  819. if (diff_hi[i] > diff_hi[i - 1]) {
  820. diff_hi[i - 1] = 5.0 - diff_hi[i];
  821. } else
  822. diff_hi[i] = 5.0 - diff_hi[i - 1];
  823. }
  824. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  825. isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  826. /* Scale the ISF vector for 16000 Hz */
  827. for (i = 0; i < LP_ORDER_16k - 1; i++)
  828. isf[i] *= 0.8;
  829. }
  830. /**
  831. * Spectral expand the LP coefficients using the equation:
  832. * y[i] = x[i] * (gamma ** i)
  833. *
  834. * @param[out] out Output buffer (may use input array)
  835. * @param[in] lpc LP coefficients array
  836. * @param[in] gamma Weighting factor
  837. * @param[in] size LP array size
  838. */
  839. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  840. {
  841. int i;
  842. float fac = gamma;
  843. for (i = 0; i < size; i++) {
  844. out[i] = lpc[i] * fac;
  845. fac *= gamma;
  846. }
  847. }
  848. /**
  849. * Conduct 20th order linear predictive coding synthesis for the high
  850. * frequency band excitation at 16kHz.
  851. *
  852. * @param[in] ctx The context
  853. * @param[in] subframe Current subframe index (0 to 3)
  854. * @param[in,out] samples Pointer to the output speech samples
  855. * @param[in] exc Generated white-noise scaled excitation
  856. * @param[in] isf Current frame isf vector
  857. * @param[in] isf_past Past frame final isf vector
  858. */
  859. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  860. const float *exc, const float *isf, const float *isf_past)
  861. {
  862. float hb_lpc[LP_ORDER_16k];
  863. enum Mode mode = ctx->fr_cur_mode;
  864. if (mode == MODE_6k60) {
  865. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  866. double e_isp[LP_ORDER_16k];
  867. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  868. 1.0 - isfp_inter[subframe], LP_ORDER);
  869. extrapolate_isf(e_isf);
  870. e_isf[LP_ORDER_16k - 1] *= 2.0;
  871. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  872. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  873. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  874. } else {
  875. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  876. }
  877. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  878. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  879. }
  880. /**
  881. * Apply a 15th order filter to high-band samples.
  882. * The filter characteristic depends on the given coefficients.
  883. *
  884. * @param[out] out Buffer for filtered output
  885. * @param[in] fir_coef Filter coefficients
  886. * @param[in,out] mem State from last filtering (updated)
  887. * @param[in] in Input speech data (high-band)
  888. *
  889. * @remark It is safe to pass the same array in in and out parameters
  890. */
  891. #ifndef hb_fir_filter
  892. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  893. float mem[HB_FIR_SIZE], const float *in)
  894. {
  895. int i, j;
  896. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  897. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  898. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  899. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  900. out[i] = 0.0;
  901. for (j = 0; j <= HB_FIR_SIZE; j++)
  902. out[i] += data[i + j] * fir_coef[j];
  903. }
  904. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  905. }
  906. #endif /* hb_fir_filter */
  907. /**
  908. * Update context state before the next subframe.
  909. */
  910. static void update_sub_state(AMRWBContext *ctx)
  911. {
  912. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  913. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  914. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  915. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  916. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  917. LP_ORDER * sizeof(float));
  918. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  919. UPS_MEM_SIZE * sizeof(float));
  920. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  921. LP_ORDER_16k * sizeof(float));
  922. }
  923. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  924. int *got_frame_ptr, AVPacket *avpkt)
  925. {
  926. AMRWBContext *ctx = avctx->priv_data;
  927. AMRWBFrame *cf = &ctx->frame;
  928. const uint8_t *buf = avpkt->data;
  929. int buf_size = avpkt->size;
  930. int expected_fr_size, header_size;
  931. float *buf_out;
  932. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  933. float fixed_gain_factor; // fixed gain correction factor (gamma)
  934. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  935. float synth_fixed_gain; // the fixed gain that synthesis should use
  936. float voice_fac, stab_fac; // parameters used for gain smoothing
  937. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  938. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  939. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  940. float hb_gain;
  941. int sub, i, ret;
  942. /* get output buffer */
  943. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  944. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  945. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  946. return ret;
  947. }
  948. buf_out = (float *)ctx->avframe.data[0];
  949. header_size = decode_mime_header(ctx, buf);
  950. if (ctx->fr_cur_mode > MODE_SID) {
  951. av_log(avctx, AV_LOG_ERROR,
  952. "Invalid mode %d\n", ctx->fr_cur_mode);
  953. return AVERROR_INVALIDDATA;
  954. }
  955. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  956. if (buf_size < expected_fr_size) {
  957. av_log(avctx, AV_LOG_ERROR,
  958. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  959. *got_frame_ptr = 0;
  960. return AVERROR_INVALIDDATA;
  961. }
  962. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  963. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  964. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  965. av_log_missing_feature(avctx, "SID mode", 1);
  966. return -1;
  967. }
  968. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  969. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  970. /* Decode the quantized ISF vector */
  971. if (ctx->fr_cur_mode == MODE_6k60) {
  972. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  973. } else {
  974. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  975. }
  976. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  977. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  978. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  979. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  980. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  981. /* Generate a ISP vector for each subframe */
  982. if (ctx->first_frame) {
  983. ctx->first_frame = 0;
  984. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  985. }
  986. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  987. for (sub = 0; sub < 4; sub++)
  988. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  989. for (sub = 0; sub < 4; sub++) {
  990. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  991. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  992. /* Decode adaptive codebook (pitch vector) */
  993. decode_pitch_vector(ctx, cur_subframe, sub);
  994. /* Decode innovative codebook (fixed vector) */
  995. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  996. cur_subframe->pul_il, ctx->fr_cur_mode);
  997. pitch_sharpening(ctx, ctx->fixed_vector);
  998. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  999. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1000. ctx->fixed_gain[0] =
  1001. ff_amr_set_fixed_gain(fixed_gain_factor,
  1002. ctx->celpm_ctx.dot_productf(ctx->fixed_vector, ctx->fixed_vector,
  1003. AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
  1004. ctx->prediction_error,
  1005. ENERGY_MEAN, energy_pred_fac);
  1006. /* Calculate voice factor and store tilt for next subframe */
  1007. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1008. ctx->fixed_vector, ctx->fixed_gain[0],
  1009. &ctx->celpm_ctx);
  1010. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1011. /* Construct current excitation */
  1012. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1013. ctx->excitation[i] *= ctx->pitch_gain[0];
  1014. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1015. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1016. }
  1017. /* Post-processing of excitation elements */
  1018. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1019. voice_fac, stab_fac);
  1020. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1021. spare_vector);
  1022. pitch_enhancer(synth_fixed_vector, voice_fac);
  1023. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1024. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1025. /* Synthesis speech post-processing */
  1026. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1027. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1028. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1029. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1030. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1031. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1032. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1033. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1034. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1035. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1036. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1037. hb_gain = find_hb_gain(ctx, hb_samples,
  1038. cur_subframe->hb_gain, cf->vad);
  1039. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1040. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1041. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1042. /* High-band post-processing filters */
  1043. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1044. &ctx->samples_hb[LP_ORDER_16k]);
  1045. if (ctx->fr_cur_mode == MODE_23k85)
  1046. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1047. hb_samples);
  1048. /* Add the low and high frequency bands */
  1049. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1050. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1051. /* Update buffers and history */
  1052. update_sub_state(ctx);
  1053. }
  1054. /* update state for next frame */
  1055. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1056. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1057. *got_frame_ptr = 1;
  1058. *(AVFrame *)data = ctx->avframe;
  1059. return expected_fr_size;
  1060. }
  1061. AVCodec ff_amrwb_decoder = {
  1062. .name = "amrwb",
  1063. .type = AVMEDIA_TYPE_AUDIO,
  1064. .id = CODEC_ID_AMR_WB,
  1065. .priv_data_size = sizeof(AMRWBContext),
  1066. .init = amrwb_decode_init,
  1067. .decode = amrwb_decode_frame,
  1068. .capabilities = CODEC_CAP_DR1,
  1069. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
  1070. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1071. AV_SAMPLE_FMT_NONE },
  1072. };