123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086 |
- /*
- * AMR narrowband decoder
- * Copyright (c) 2006-2007 Robert Swain
- * Copyright (c) 2009 Colin McQuillan
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * AMR narrowband decoder
- *
- * This decoder uses floats for simplicity and so is not bit-exact. One
- * difference is that differences in phase can accumulate. The test sequences
- * in 3GPP TS 26.074 can still be useful.
- *
- * - Comparing this file's output to the output of the ref decoder gives a
- * PSNR of 30 to 80. Plotting the output samples shows a difference in
- * phase in some areas.
- *
- * - Comparing both decoders against their input, this decoder gives a similar
- * PSNR. If the test sequence homing frames are removed (this decoder does
- * not detect them), the PSNR is at least as good as the reference on 140
- * out of 169 tests.
- */
- #include <string.h>
- #include <math.h>
- #include "avcodec.h"
- #include "libavutil/common.h"
- #include "libavutil/avassert.h"
- #include "celp_math.h"
- #include "celp_filters.h"
- #include "acelp_filters.h"
- #include "acelp_vectors.h"
- #include "acelp_pitch_delay.h"
- #include "lsp.h"
- #include "amr.h"
- #include "amrnbdata.h"
- #define AMR_BLOCK_SIZE 160 ///< samples per frame
- #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
- /**
- * Scale from constructed speech to [-1,1]
- *
- * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
- * upscales by two (section 6.2.2).
- *
- * Fundamentally, this scale is determined by energy_mean through
- * the fixed vector contribution to the excitation vector.
- */
- #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
- /** Prediction factor for 12.2kbit/s mode */
- #define PRED_FAC_MODE_12k2 0.65
- #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
- #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
- #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
- /** Initial energy in dB. Also used for bad frames (unimplemented). */
- #define MIN_ENERGY -14.0
- /** Maximum sharpening factor
- *
- * The specification says 0.8, which should be 13107, but the reference C code
- * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
- */
- #define SHARP_MAX 0.79449462890625
- /** Number of impulse response coefficients used for tilt factor */
- #define AMR_TILT_RESPONSE 22
- /** Tilt factor = 1st reflection coefficient * gamma_t */
- #define AMR_TILT_GAMMA_T 0.8
- /** Adaptive gain control factor used in post-filter */
- #define AMR_AGC_ALPHA 0.9
- typedef struct AMRContext {
- AVFrame avframe; ///< AVFrame for decoded samples
- AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
- uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
- enum Mode cur_frame_mode;
- int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
- double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
- double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
- float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
- float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
- float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
- uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
- float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
- float *excitation; ///< pointer to the current excitation vector in excitation_buf
- float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
- float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
- float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
- float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
- float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
- float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
- uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
- uint8_t hang_count; ///< the number of subframes since a hangover period started
- float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
- uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
- uint8_t ir_filter_onset; ///< flag for impulse response filter strength
- float postfilter_mem[10]; ///< previous intermediate values in the formant filter
- float tilt_mem; ///< previous input to tilt compensation filter
- float postfilter_agc; ///< previous factor used for adaptive gain control
- float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
- float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
- ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
- ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
- CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
- CELPMContext celpm_ctx; ///< context for fixed point math operations
- } AMRContext;
- /** Double version of ff_weighted_vector_sumf() */
- static void weighted_vector_sumd(double *out, const double *in_a,
- const double *in_b, double weight_coeff_a,
- double weight_coeff_b, int length)
- {
- int i;
- for (i = 0; i < length; i++)
- out[i] = weight_coeff_a * in_a[i]
- + weight_coeff_b * in_b[i];
- }
- static av_cold int amrnb_decode_init(AVCodecContext *avctx)
- {
- AMRContext *p = avctx->priv_data;
- int i;
- avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
- // p->excitation always points to the same position in p->excitation_buf
- p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
- for (i = 0; i < LP_FILTER_ORDER; i++) {
- p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
- p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
- }
- for (i = 0; i < 4; i++)
- p->prediction_error[i] = MIN_ENERGY;
- avcodec_get_frame_defaults(&p->avframe);
- avctx->coded_frame = &p->avframe;
- ff_acelp_filter_init(&p->acelpf_ctx);
- ff_acelp_vectors_init(&p->acelpv_ctx);
- ff_celp_filter_init(&p->celpf_ctx);
- ff_celp_math_init(&p->celpm_ctx);
- return 0;
- }
- /**
- * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
- *
- * The order of speech bits is specified by 3GPP TS 26.101.
- *
- * @param p the context
- * @param buf pointer to the input buffer
- * @param buf_size size of the input buffer
- *
- * @return the frame mode
- */
- static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
- int buf_size)
- {
- enum Mode mode;
- // Decode the first octet.
- mode = buf[0] >> 3 & 0x0F; // frame type
- p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
- if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
- return NO_DATA;
- }
- if (mode < MODE_DTX)
- ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
- amr_unpacking_bitmaps_per_mode[mode]);
- return mode;
- }
- /// @name AMR pitch LPC coefficient decoding functions
- /// @{
- /**
- * Interpolate the LSF vector (used for fixed gain smoothing).
- * The interpolation is done over all four subframes even in MODE_12k2.
- *
- * @param[in] ctx The Context
- * @param[in,out] lsf_q LSFs in [0,1] for each subframe
- * @param[in] lsf_new New LSFs in [0,1] for subframe 4
- */
- static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
- {
- int i;
- for (i = 0; i < 4; i++)
- ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
- 0.25 * (3 - i), 0.25 * (i + 1),
- LP_FILTER_ORDER);
- }
- /**
- * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
- *
- * @param p the context
- * @param lsp output LSP vector
- * @param lsf_no_r LSF vector without the residual vector added
- * @param lsf_quantizer pointers to LSF dictionary tables
- * @param quantizer_offset offset in tables
- * @param sign for the 3 dictionary table
- * @param update store data for computing the next frame's LSFs
- */
- static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
- const float lsf_no_r[LP_FILTER_ORDER],
- const int16_t *lsf_quantizer[5],
- const int quantizer_offset,
- const int sign, const int update)
- {
- int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
- float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
- int i;
- for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
- memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
- 2 * sizeof(*lsf_r));
- if (sign) {
- lsf_r[4] *= -1;
- lsf_r[5] *= -1;
- }
- if (update)
- memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
- for (i = 0; i < LP_FILTER_ORDER; i++)
- lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
- ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
- if (update)
- interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
- ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
- }
- /**
- * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
- *
- * @param p pointer to the AMRContext
- */
- static void lsf2lsp_5(AMRContext *p)
- {
- const uint16_t *lsf_param = p->frame.lsf;
- float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
- const int16_t *lsf_quantizer[5];
- int i;
- lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
- lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
- lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
- lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
- lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
- for (i = 0; i < LP_FILTER_ORDER; i++)
- lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
- lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
- lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
- // interpolate LSP vectors at subframes 1 and 3
- weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
- weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
- }
- /**
- * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
- *
- * @param p pointer to the AMRContext
- */
- static void lsf2lsp_3(AMRContext *p)
- {
- const uint16_t *lsf_param = p->frame.lsf;
- int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
- float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
- const int16_t *lsf_quantizer;
- int i, j;
- lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
- memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
- lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
- memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
- lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
- memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
- // calculate mean-removed LSF vector and add mean
- for (i = 0; i < LP_FILTER_ORDER; i++)
- lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
- ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
- // store data for computing the next frame's LSFs
- interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
- memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
- ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
- // interpolate LSP vectors at subframes 1, 2 and 3
- for (i = 1; i <= 3; i++)
- for(j = 0; j < LP_FILTER_ORDER; j++)
- p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
- (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
- }
- /// @}
- /// @name AMR pitch vector decoding functions
- /// @{
- /**
- * Like ff_decode_pitch_lag(), but with 1/6 resolution
- */
- static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
- const int prev_lag_int, const int subframe)
- {
- if (subframe == 0 || subframe == 2) {
- if (pitch_index < 463) {
- *lag_int = (pitch_index + 107) * 10923 >> 16;
- *lag_frac = pitch_index - *lag_int * 6 + 105;
- } else {
- *lag_int = pitch_index - 368;
- *lag_frac = 0;
- }
- } else {
- *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
- *lag_frac = pitch_index - *lag_int * 6 - 3;
- *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
- PITCH_DELAY_MAX - 9);
- }
- }
- static void decode_pitch_vector(AMRContext *p,
- const AMRNBSubframe *amr_subframe,
- const int subframe)
- {
- int pitch_lag_int, pitch_lag_frac;
- enum Mode mode = p->cur_frame_mode;
- if (p->cur_frame_mode == MODE_12k2) {
- decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
- amr_subframe->p_lag, p->pitch_lag_int,
- subframe);
- } else
- ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
- amr_subframe->p_lag,
- p->pitch_lag_int, subframe,
- mode != MODE_4k75 && mode != MODE_5k15,
- mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
- p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
- pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
- pitch_lag_int += pitch_lag_frac > 0;
- /* Calculate the pitch vector by interpolating the past excitation at the
- pitch lag using a b60 hamming windowed sinc function. */
- p->acelpf_ctx.acelp_interpolatef(p->excitation,
- p->excitation + 1 - pitch_lag_int,
- ff_b60_sinc, 6,
- pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
- 10, AMR_SUBFRAME_SIZE);
- memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
- }
- /// @}
- /// @name AMR algebraic code book (fixed) vector decoding functions
- /// @{
- /**
- * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
- */
- static void decode_10bit_pulse(int code, int pulse_position[8],
- int i1, int i2, int i3)
- {
- // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
- // the 3 pulses and the upper 7 bits being coded in base 5
- const uint8_t *positions = base_five_table[code >> 3];
- pulse_position[i1] = (positions[2] << 1) + ( code & 1);
- pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
- pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
- }
- /**
- * Decode the algebraic codebook index to pulse positions and signs and
- * construct the algebraic codebook vector for MODE_10k2.
- *
- * @param fixed_index positions of the eight pulses
- * @param fixed_sparse pointer to the algebraic codebook vector
- */
- static void decode_8_pulses_31bits(const int16_t *fixed_index,
- AMRFixed *fixed_sparse)
- {
- int pulse_position[8];
- int i, temp;
- decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
- decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
- // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
- // the 2 pulses and the upper 5 bits being coded in base 5
- temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
- pulse_position[3] = temp % 5;
- pulse_position[7] = temp / 5;
- if (pulse_position[7] & 1)
- pulse_position[3] = 4 - pulse_position[3];
- pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
- pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
- fixed_sparse->n = 8;
- for (i = 0; i < 4; i++) {
- const int pos1 = (pulse_position[i] << 2) + i;
- const int pos2 = (pulse_position[i + 4] << 2) + i;
- const float sign = fixed_index[i] ? -1.0 : 1.0;
- fixed_sparse->x[i ] = pos1;
- fixed_sparse->x[i + 4] = pos2;
- fixed_sparse->y[i ] = sign;
- fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
- }
- }
- /**
- * Decode the algebraic codebook index to pulse positions and signs,
- * then construct the algebraic codebook vector.
- *
- * nb of pulses | bits encoding pulses
- * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
- * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
- * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
- * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
- *
- * @param fixed_sparse pointer to the algebraic codebook vector
- * @param pulses algebraic codebook indexes
- * @param mode mode of the current frame
- * @param subframe current subframe number
- */
- static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
- const enum Mode mode, const int subframe)
- {
- av_assert1(MODE_4k75 <= mode && mode <= MODE_12k2);
- if (mode == MODE_12k2) {
- ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
- } else if (mode == MODE_10k2) {
- decode_8_pulses_31bits(pulses, fixed_sparse);
- } else {
- int *pulse_position = fixed_sparse->x;
- int i, pulse_subset;
- const int fixed_index = pulses[0];
- if (mode <= MODE_5k15) {
- pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
- pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
- pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
- fixed_sparse->n = 2;
- } else if (mode == MODE_5k9) {
- pulse_subset = ((fixed_index & 1) << 1) + 1;
- pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
- pulse_subset = (fixed_index >> 4) & 3;
- pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
- fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
- } else if (mode == MODE_6k7) {
- pulse_position[0] = (fixed_index & 7) * 5;
- pulse_subset = (fixed_index >> 2) & 2;
- pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
- pulse_subset = (fixed_index >> 6) & 2;
- pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
- fixed_sparse->n = 3;
- } else { // mode <= MODE_7k95
- pulse_position[0] = gray_decode[ fixed_index & 7];
- pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
- pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
- pulse_subset = (fixed_index >> 9) & 1;
- pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
- fixed_sparse->n = 4;
- }
- for (i = 0; i < fixed_sparse->n; i++)
- fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
- }
- }
- /**
- * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
- *
- * @param p the context
- * @param subframe unpacked amr subframe
- * @param mode mode of the current frame
- * @param fixed_sparse sparse respresentation of the fixed vector
- */
- static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
- AMRFixed *fixed_sparse)
- {
- // The spec suggests the current pitch gain is always used, but in other
- // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
- // so the codebook gain cannot depend on the quantized pitch gain.
- if (mode == MODE_12k2)
- p->beta = FFMIN(p->pitch_gain[4], 1.0);
- fixed_sparse->pitch_lag = p->pitch_lag_int;
- fixed_sparse->pitch_fac = p->beta;
- // Save pitch sharpening factor for the next subframe
- // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
- // the fact that the gains for two subframes are jointly quantized.
- if (mode != MODE_4k75 || subframe & 1)
- p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
- }
- /// @}
- /// @name AMR gain decoding functions
- /// @{
- /**
- * fixed gain smoothing
- * Note that where the spec specifies the "spectrum in the q domain"
- * in section 6.1.4, in fact frequencies should be used.
- *
- * @param p the context
- * @param lsf LSFs for the current subframe, in the range [0,1]
- * @param lsf_avg averaged LSFs
- * @param mode mode of the current frame
- *
- * @return fixed gain smoothed
- */
- static float fixed_gain_smooth(AMRContext *p , const float *lsf,
- const float *lsf_avg, const enum Mode mode)
- {
- float diff = 0.0;
- int i;
- for (i = 0; i < LP_FILTER_ORDER; i++)
- diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
- // If diff is large for ten subframes, disable smoothing for a 40-subframe
- // hangover period.
- p->diff_count++;
- if (diff <= 0.65)
- p->diff_count = 0;
- if (p->diff_count > 10) {
- p->hang_count = 0;
- p->diff_count--; // don't let diff_count overflow
- }
- if (p->hang_count < 40) {
- p->hang_count++;
- } else if (mode < MODE_7k4 || mode == MODE_10k2) {
- const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
- const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
- p->fixed_gain[2] + p->fixed_gain[3] +
- p->fixed_gain[4]) * 0.2;
- return smoothing_factor * p->fixed_gain[4] +
- (1.0 - smoothing_factor) * fixed_gain_mean;
- }
- return p->fixed_gain[4];
- }
- /**
- * Decode pitch gain and fixed gain factor (part of section 6.1.3).
- *
- * @param p the context
- * @param amr_subframe unpacked amr subframe
- * @param mode mode of the current frame
- * @param subframe current subframe number
- * @param fixed_gain_factor decoded gain correction factor
- */
- static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
- const enum Mode mode, const int subframe,
- float *fixed_gain_factor)
- {
- if (mode == MODE_12k2 || mode == MODE_7k95) {
- p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
- * (1.0 / 16384.0);
- *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
- * (1.0 / 2048.0);
- } else {
- const uint16_t *gains;
- if (mode >= MODE_6k7) {
- gains = gains_high[amr_subframe->p_gain];
- } else if (mode >= MODE_5k15) {
- gains = gains_low [amr_subframe->p_gain];
- } else {
- // gain index is only coded in subframes 0,2 for MODE_4k75
- gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
- }
- p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
- *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
- }
- }
- /// @}
- /// @name AMR preprocessing functions
- /// @{
- /**
- * Circularly convolve a sparse fixed vector with a phase dispersion impulse
- * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
- *
- * @param out vector with filter applied
- * @param in source vector
- * @param filter phase filter coefficients
- *
- * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
- */
- static void apply_ir_filter(float *out, const AMRFixed *in,
- const float *filter)
- {
- float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
- filter2[AMR_SUBFRAME_SIZE];
- int lag = in->pitch_lag;
- float fac = in->pitch_fac;
- int i;
- if (lag < AMR_SUBFRAME_SIZE) {
- ff_celp_circ_addf(filter1, filter, filter, lag, fac,
- AMR_SUBFRAME_SIZE);
- if (lag < AMR_SUBFRAME_SIZE >> 1)
- ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
- AMR_SUBFRAME_SIZE);
- }
- memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
- for (i = 0; i < in->n; i++) {
- int x = in->x[i];
- float y = in->y[i];
- const float *filterp;
- if (x >= AMR_SUBFRAME_SIZE - lag) {
- filterp = filter;
- } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
- filterp = filter1;
- } else
- filterp = filter2;
- ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
- }
- }
- /**
- * Reduce fixed vector sparseness by smoothing with one of three IR filters.
- * Also know as "adaptive phase dispersion".
- *
- * This implements 3GPP TS 26.090 section 6.1(5).
- *
- * @param p the context
- * @param fixed_sparse algebraic codebook vector
- * @param fixed_vector unfiltered fixed vector
- * @param fixed_gain smoothed gain
- * @param out space for modified vector if necessary
- */
- static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
- const float *fixed_vector,
- float fixed_gain, float *out)
- {
- int ir_filter_nr;
- if (p->pitch_gain[4] < 0.6) {
- ir_filter_nr = 0; // strong filtering
- } else if (p->pitch_gain[4] < 0.9) {
- ir_filter_nr = 1; // medium filtering
- } else
- ir_filter_nr = 2; // no filtering
- // detect 'onset'
- if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
- p->ir_filter_onset = 2;
- } else if (p->ir_filter_onset)
- p->ir_filter_onset--;
- if (!p->ir_filter_onset) {
- int i, count = 0;
- for (i = 0; i < 5; i++)
- if (p->pitch_gain[i] < 0.6)
- count++;
- if (count > 2)
- ir_filter_nr = 0;
- if (ir_filter_nr > p->prev_ir_filter_nr + 1)
- ir_filter_nr--;
- } else if (ir_filter_nr < 2)
- ir_filter_nr++;
- // Disable filtering for very low level of fixed_gain.
- // Note this step is not specified in the technical description but is in
- // the reference source in the function Ph_disp.
- if (fixed_gain < 5.0)
- ir_filter_nr = 2;
- if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
- && ir_filter_nr < 2) {
- apply_ir_filter(out, fixed_sparse,
- (p->cur_frame_mode == MODE_7k95 ?
- ir_filters_lookup_MODE_7k95 :
- ir_filters_lookup)[ir_filter_nr]);
- fixed_vector = out;
- }
- // update ir filter strength history
- p->prev_ir_filter_nr = ir_filter_nr;
- p->prev_sparse_fixed_gain = fixed_gain;
- return fixed_vector;
- }
- /// @}
- /// @name AMR synthesis functions
- /// @{
- /**
- * Conduct 10th order linear predictive coding synthesis.
- *
- * @param p pointer to the AMRContext
- * @param lpc pointer to the LPC coefficients
- * @param fixed_gain fixed codebook gain for synthesis
- * @param fixed_vector algebraic codebook vector
- * @param samples pointer to the output speech samples
- * @param overflow 16-bit overflow flag
- */
- static int synthesis(AMRContext *p, float *lpc,
- float fixed_gain, const float *fixed_vector,
- float *samples, uint8_t overflow)
- {
- int i;
- float excitation[AMR_SUBFRAME_SIZE];
- // if an overflow has been detected, the pitch vector is scaled down by a
- // factor of 4
- if (overflow)
- for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
- p->pitch_vector[i] *= 0.25;
- p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
- p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
- // emphasize pitch vector contribution
- if (p->pitch_gain[4] > 0.5 && !overflow) {
- float energy = p->celpm_ctx.dot_productf(excitation, excitation,
- AMR_SUBFRAME_SIZE);
- float pitch_factor =
- p->pitch_gain[4] *
- (p->cur_frame_mode == MODE_12k2 ?
- 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
- 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
- for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
- excitation[i] += pitch_factor * p->pitch_vector[i];
- ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
- AMR_SUBFRAME_SIZE);
- }
- p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
- AMR_SUBFRAME_SIZE,
- LP_FILTER_ORDER);
- // detect overflow
- for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
- if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
- return 1;
- }
- return 0;
- }
- /// @}
- /// @name AMR update functions
- /// @{
- /**
- * Update buffers and history at the end of decoding a subframe.
- *
- * @param p pointer to the AMRContext
- */
- static void update_state(AMRContext *p)
- {
- memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
- memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
- (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
- memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
- memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
- memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
- LP_FILTER_ORDER * sizeof(float));
- }
- /// @}
- /// @name AMR Postprocessing functions
- /// @{
- /**
- * Get the tilt factor of a formant filter from its transfer function
- *
- * @param p The Context
- * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
- * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
- */
- static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
- {
- float rh0, rh1; // autocorrelation at lag 0 and 1
- // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
- float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
- float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
- hf[0] = 1.0;
- memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
- p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
- AMR_TILT_RESPONSE,
- LP_FILTER_ORDER);
- rh0 = p->celpm_ctx.dot_productf(hf, hf, AMR_TILT_RESPONSE);
- rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
- // The spec only specifies this check for 12.2 and 10.2 kbit/s
- // modes. But in the ref source the tilt is always non-negative.
- return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
- }
- /**
- * Perform adaptive post-filtering to enhance the quality of the speech.
- * See section 6.2.1.
- *
- * @param p pointer to the AMRContext
- * @param lpc interpolated LP coefficients for this subframe
- * @param buf_out output of the filter
- */
- static void postfilter(AMRContext *p, float *lpc, float *buf_out)
- {
- int i;
- float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
- float speech_gain = p->celpm_ctx.dot_productf(samples, samples,
- AMR_SUBFRAME_SIZE);
- float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
- const float *gamma_n, *gamma_d; // Formant filter factor table
- float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
- if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
- gamma_n = ff_pow_0_7;
- gamma_d = ff_pow_0_75;
- } else {
- gamma_n = ff_pow_0_55;
- gamma_d = ff_pow_0_7;
- }
- for (i = 0; i < LP_FILTER_ORDER; i++) {
- lpc_n[i] = lpc[i] * gamma_n[i];
- lpc_d[i] = lpc[i] * gamma_d[i];
- }
- memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
- p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
- AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
- memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
- sizeof(float) * LP_FILTER_ORDER);
- p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
- pole_out + LP_FILTER_ORDER,
- AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
- ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
- AMR_SUBFRAME_SIZE);
- ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
- AMR_AGC_ALPHA, &p->postfilter_agc);
- }
- /// @}
- static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
- int *got_frame_ptr, AVPacket *avpkt)
- {
- AMRContext *p = avctx->priv_data; // pointer to private data
- const uint8_t *buf = avpkt->data;
- int buf_size = avpkt->size;
- float *buf_out; // pointer to the output data buffer
- int i, subframe, ret;
- float fixed_gain_factor;
- AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
- float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
- float synth_fixed_gain; // the fixed gain that synthesis should use
- const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
- /* get output buffer */
- p->avframe.nb_samples = AMR_BLOCK_SIZE;
- if ((ret = avctx->get_buffer(avctx, &p->avframe)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return ret;
- }
- buf_out = (float *)p->avframe.data[0];
- p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
- if (p->cur_frame_mode == NO_DATA) {
- av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
- return AVERROR_INVALIDDATA;
- }
- if (p->cur_frame_mode == MODE_DTX) {
- av_log_missing_feature(avctx, "dtx mode", 0);
- av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
- return -1;
- }
- if (p->cur_frame_mode == MODE_12k2) {
- lsf2lsp_5(p);
- } else
- lsf2lsp_3(p);
- for (i = 0; i < 4; i++)
- ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
- for (subframe = 0; subframe < 4; subframe++) {
- const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
- decode_pitch_vector(p, amr_subframe, subframe);
- decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
- p->cur_frame_mode, subframe);
- // The fixed gain (section 6.1.3) depends on the fixed vector
- // (section 6.1.2), but the fixed vector calculation uses
- // pitch sharpening based on the on the pitch gain (section 6.1.3).
- // So the correct order is: pitch gain, pitch sharpening, fixed gain.
- decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
- &fixed_gain_factor);
- pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
- if (fixed_sparse.pitch_lag == 0) {
- av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
- return AVERROR_INVALIDDATA;
- }
- ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
- AMR_SUBFRAME_SIZE);
- p->fixed_gain[4] =
- ff_amr_set_fixed_gain(fixed_gain_factor,
- p->celpm_ctx.dot_productf(p->fixed_vector, p->fixed_vector,
- AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
- p->prediction_error,
- energy_mean[p->cur_frame_mode], energy_pred_fac);
- // The excitation feedback is calculated without any processing such
- // as fixed gain smoothing. This isn't mentioned in the specification.
- for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
- p->excitation[i] *= p->pitch_gain[4];
- ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
- AMR_SUBFRAME_SIZE);
- // In the ref decoder, excitation is stored with no fractional bits.
- // This step prevents buzz in silent periods. The ref encoder can
- // emit long sequences with pitch factor greater than one. This
- // creates unwanted feedback if the excitation vector is nonzero.
- // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
- for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
- p->excitation[i] = truncf(p->excitation[i]);
- // Smooth fixed gain.
- // The specification is ambiguous, but in the reference source, the
- // smoothed value is NOT fed back into later fixed gain smoothing.
- synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
- p->lsf_avg, p->cur_frame_mode);
- synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
- synth_fixed_gain, spare_vector);
- if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
- synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
- // overflow detected -> rerun synthesis scaling pitch vector down
- // by a factor of 4, skipping pitch vector contribution emphasis
- // and adaptive gain control
- synthesis(p, p->lpc[subframe], synth_fixed_gain,
- synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
- postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
- // update buffers and history
- ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
- update_state(p);
- }
- p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
- buf_out, highpass_zeros,
- highpass_poles,
- highpass_gain * AMR_SAMPLE_SCALE,
- p->high_pass_mem, AMR_BLOCK_SIZE);
- /* Update averaged lsf vector (used for fixed gain smoothing).
- *
- * Note that lsf_avg should not incorporate the current frame's LSFs
- * for fixed_gain_smooth.
- * The specification has an incorrect formula: the reference decoder uses
- * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
- p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
- 0.84, 0.16, LP_FILTER_ORDER);
- *got_frame_ptr = 1;
- *(AVFrame *)data = p->avframe;
- /* return the amount of bytes consumed if everything was OK */
- return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
- }
- AVCodec ff_amrnb_decoder = {
- .name = "amrnb",
- .type = AVMEDIA_TYPE_AUDIO,
- .id = CODEC_ID_AMR_NB,
- .priv_data_size = sizeof(AMRContext),
- .init = amrnb_decode_init,
- .decode = amrnb_decode_frame,
- .capabilities = CODEC_CAP_DR1,
- .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
- .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
- AV_SAMPLE_FMT_NONE },
- };
|