amrnbdec.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "avcodec.h"
  42. #include "libavutil/common.h"
  43. #include "libavutil/avassert.h"
  44. #include "celp_math.h"
  45. #include "celp_filters.h"
  46. #include "acelp_filters.h"
  47. #include "acelp_vectors.h"
  48. #include "acelp_pitch_delay.h"
  49. #include "lsp.h"
  50. #include "amr.h"
  51. #include "amrnbdata.h"
  52. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  53. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  54. /**
  55. * Scale from constructed speech to [-1,1]
  56. *
  57. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  58. * upscales by two (section 6.2.2).
  59. *
  60. * Fundamentally, this scale is determined by energy_mean through
  61. * the fixed vector contribution to the excitation vector.
  62. */
  63. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  64. /** Prediction factor for 12.2kbit/s mode */
  65. #define PRED_FAC_MODE_12k2 0.65
  66. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  67. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  68. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  69. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  70. #define MIN_ENERGY -14.0
  71. /** Maximum sharpening factor
  72. *
  73. * The specification says 0.8, which should be 13107, but the reference C code
  74. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
  75. */
  76. #define SHARP_MAX 0.79449462890625
  77. /** Number of impulse response coefficients used for tilt factor */
  78. #define AMR_TILT_RESPONSE 22
  79. /** Tilt factor = 1st reflection coefficient * gamma_t */
  80. #define AMR_TILT_GAMMA_T 0.8
  81. /** Adaptive gain control factor used in post-filter */
  82. #define AMR_AGC_ALPHA 0.9
  83. typedef struct AMRContext {
  84. AVFrame avframe; ///< AVFrame for decoded samples
  85. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  86. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  87. enum Mode cur_frame_mode;
  88. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  89. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  90. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  91. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  92. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  93. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  94. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  95. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  96. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  97. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  98. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  99. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  100. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  101. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  102. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  103. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  104. uint8_t hang_count; ///< the number of subframes since a hangover period started
  105. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  106. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  107. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  108. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  109. float tilt_mem; ///< previous input to tilt compensation filter
  110. float postfilter_agc; ///< previous factor used for adaptive gain control
  111. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  112. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  113. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  114. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  115. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  116. CELPMContext celpm_ctx; ///< context for fixed point math operations
  117. } AMRContext;
  118. /** Double version of ff_weighted_vector_sumf() */
  119. static void weighted_vector_sumd(double *out, const double *in_a,
  120. const double *in_b, double weight_coeff_a,
  121. double weight_coeff_b, int length)
  122. {
  123. int i;
  124. for (i = 0; i < length; i++)
  125. out[i] = weight_coeff_a * in_a[i]
  126. + weight_coeff_b * in_b[i];
  127. }
  128. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  129. {
  130. AMRContext *p = avctx->priv_data;
  131. int i;
  132. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  133. // p->excitation always points to the same position in p->excitation_buf
  134. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  135. for (i = 0; i < LP_FILTER_ORDER; i++) {
  136. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  137. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  138. }
  139. for (i = 0; i < 4; i++)
  140. p->prediction_error[i] = MIN_ENERGY;
  141. avcodec_get_frame_defaults(&p->avframe);
  142. avctx->coded_frame = &p->avframe;
  143. ff_acelp_filter_init(&p->acelpf_ctx);
  144. ff_acelp_vectors_init(&p->acelpv_ctx);
  145. ff_celp_filter_init(&p->celpf_ctx);
  146. ff_celp_math_init(&p->celpm_ctx);
  147. return 0;
  148. }
  149. /**
  150. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  151. *
  152. * The order of speech bits is specified by 3GPP TS 26.101.
  153. *
  154. * @param p the context
  155. * @param buf pointer to the input buffer
  156. * @param buf_size size of the input buffer
  157. *
  158. * @return the frame mode
  159. */
  160. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  161. int buf_size)
  162. {
  163. enum Mode mode;
  164. // Decode the first octet.
  165. mode = buf[0] >> 3 & 0x0F; // frame type
  166. p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  167. if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  168. return NO_DATA;
  169. }
  170. if (mode < MODE_DTX)
  171. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  172. amr_unpacking_bitmaps_per_mode[mode]);
  173. return mode;
  174. }
  175. /// @name AMR pitch LPC coefficient decoding functions
  176. /// @{
  177. /**
  178. * Interpolate the LSF vector (used for fixed gain smoothing).
  179. * The interpolation is done over all four subframes even in MODE_12k2.
  180. *
  181. * @param[in] ctx The Context
  182. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  183. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  184. */
  185. static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  186. {
  187. int i;
  188. for (i = 0; i < 4; i++)
  189. ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  190. 0.25 * (3 - i), 0.25 * (i + 1),
  191. LP_FILTER_ORDER);
  192. }
  193. /**
  194. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  195. *
  196. * @param p the context
  197. * @param lsp output LSP vector
  198. * @param lsf_no_r LSF vector without the residual vector added
  199. * @param lsf_quantizer pointers to LSF dictionary tables
  200. * @param quantizer_offset offset in tables
  201. * @param sign for the 3 dictionary table
  202. * @param update store data for computing the next frame's LSFs
  203. */
  204. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  205. const float lsf_no_r[LP_FILTER_ORDER],
  206. const int16_t *lsf_quantizer[5],
  207. const int quantizer_offset,
  208. const int sign, const int update)
  209. {
  210. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  211. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  212. int i;
  213. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  214. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  215. 2 * sizeof(*lsf_r));
  216. if (sign) {
  217. lsf_r[4] *= -1;
  218. lsf_r[5] *= -1;
  219. }
  220. if (update)
  221. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  222. for (i = 0; i < LP_FILTER_ORDER; i++)
  223. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  224. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  225. if (update)
  226. interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  227. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  228. }
  229. /**
  230. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  231. *
  232. * @param p pointer to the AMRContext
  233. */
  234. static void lsf2lsp_5(AMRContext *p)
  235. {
  236. const uint16_t *lsf_param = p->frame.lsf;
  237. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  238. const int16_t *lsf_quantizer[5];
  239. int i;
  240. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  241. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  242. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  243. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  244. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  245. for (i = 0; i < LP_FILTER_ORDER; i++)
  246. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  247. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  248. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  249. // interpolate LSP vectors at subframes 1 and 3
  250. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  251. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  252. }
  253. /**
  254. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  255. *
  256. * @param p pointer to the AMRContext
  257. */
  258. static void lsf2lsp_3(AMRContext *p)
  259. {
  260. const uint16_t *lsf_param = p->frame.lsf;
  261. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  262. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  263. const int16_t *lsf_quantizer;
  264. int i, j;
  265. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  266. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  267. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  268. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  269. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  270. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  271. // calculate mean-removed LSF vector and add mean
  272. for (i = 0; i < LP_FILTER_ORDER; i++)
  273. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  274. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  275. // store data for computing the next frame's LSFs
  276. interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  277. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  278. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  279. // interpolate LSP vectors at subframes 1, 2 and 3
  280. for (i = 1; i <= 3; i++)
  281. for(j = 0; j < LP_FILTER_ORDER; j++)
  282. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  283. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  284. }
  285. /// @}
  286. /// @name AMR pitch vector decoding functions
  287. /// @{
  288. /**
  289. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  290. */
  291. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  292. const int prev_lag_int, const int subframe)
  293. {
  294. if (subframe == 0 || subframe == 2) {
  295. if (pitch_index < 463) {
  296. *lag_int = (pitch_index + 107) * 10923 >> 16;
  297. *lag_frac = pitch_index - *lag_int * 6 + 105;
  298. } else {
  299. *lag_int = pitch_index - 368;
  300. *lag_frac = 0;
  301. }
  302. } else {
  303. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  304. *lag_frac = pitch_index - *lag_int * 6 - 3;
  305. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  306. PITCH_DELAY_MAX - 9);
  307. }
  308. }
  309. static void decode_pitch_vector(AMRContext *p,
  310. const AMRNBSubframe *amr_subframe,
  311. const int subframe)
  312. {
  313. int pitch_lag_int, pitch_lag_frac;
  314. enum Mode mode = p->cur_frame_mode;
  315. if (p->cur_frame_mode == MODE_12k2) {
  316. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  317. amr_subframe->p_lag, p->pitch_lag_int,
  318. subframe);
  319. } else
  320. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  321. amr_subframe->p_lag,
  322. p->pitch_lag_int, subframe,
  323. mode != MODE_4k75 && mode != MODE_5k15,
  324. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  325. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  326. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  327. pitch_lag_int += pitch_lag_frac > 0;
  328. /* Calculate the pitch vector by interpolating the past excitation at the
  329. pitch lag using a b60 hamming windowed sinc function. */
  330. p->acelpf_ctx.acelp_interpolatef(p->excitation,
  331. p->excitation + 1 - pitch_lag_int,
  332. ff_b60_sinc, 6,
  333. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  334. 10, AMR_SUBFRAME_SIZE);
  335. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  336. }
  337. /// @}
  338. /// @name AMR algebraic code book (fixed) vector decoding functions
  339. /// @{
  340. /**
  341. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  342. */
  343. static void decode_10bit_pulse(int code, int pulse_position[8],
  344. int i1, int i2, int i3)
  345. {
  346. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  347. // the 3 pulses and the upper 7 bits being coded in base 5
  348. const uint8_t *positions = base_five_table[code >> 3];
  349. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  350. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  351. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  352. }
  353. /**
  354. * Decode the algebraic codebook index to pulse positions and signs and
  355. * construct the algebraic codebook vector for MODE_10k2.
  356. *
  357. * @param fixed_index positions of the eight pulses
  358. * @param fixed_sparse pointer to the algebraic codebook vector
  359. */
  360. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  361. AMRFixed *fixed_sparse)
  362. {
  363. int pulse_position[8];
  364. int i, temp;
  365. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  366. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  367. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  368. // the 2 pulses and the upper 5 bits being coded in base 5
  369. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  370. pulse_position[3] = temp % 5;
  371. pulse_position[7] = temp / 5;
  372. if (pulse_position[7] & 1)
  373. pulse_position[3] = 4 - pulse_position[3];
  374. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  375. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  376. fixed_sparse->n = 8;
  377. for (i = 0; i < 4; i++) {
  378. const int pos1 = (pulse_position[i] << 2) + i;
  379. const int pos2 = (pulse_position[i + 4] << 2) + i;
  380. const float sign = fixed_index[i] ? -1.0 : 1.0;
  381. fixed_sparse->x[i ] = pos1;
  382. fixed_sparse->x[i + 4] = pos2;
  383. fixed_sparse->y[i ] = sign;
  384. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  385. }
  386. }
  387. /**
  388. * Decode the algebraic codebook index to pulse positions and signs,
  389. * then construct the algebraic codebook vector.
  390. *
  391. * nb of pulses | bits encoding pulses
  392. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  393. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  394. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  395. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  396. *
  397. * @param fixed_sparse pointer to the algebraic codebook vector
  398. * @param pulses algebraic codebook indexes
  399. * @param mode mode of the current frame
  400. * @param subframe current subframe number
  401. */
  402. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  403. const enum Mode mode, const int subframe)
  404. {
  405. av_assert1(MODE_4k75 <= mode && mode <= MODE_12k2);
  406. if (mode == MODE_12k2) {
  407. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  408. } else if (mode == MODE_10k2) {
  409. decode_8_pulses_31bits(pulses, fixed_sparse);
  410. } else {
  411. int *pulse_position = fixed_sparse->x;
  412. int i, pulse_subset;
  413. const int fixed_index = pulses[0];
  414. if (mode <= MODE_5k15) {
  415. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  416. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  417. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  418. fixed_sparse->n = 2;
  419. } else if (mode == MODE_5k9) {
  420. pulse_subset = ((fixed_index & 1) << 1) + 1;
  421. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  422. pulse_subset = (fixed_index >> 4) & 3;
  423. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  424. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  425. } else if (mode == MODE_6k7) {
  426. pulse_position[0] = (fixed_index & 7) * 5;
  427. pulse_subset = (fixed_index >> 2) & 2;
  428. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  429. pulse_subset = (fixed_index >> 6) & 2;
  430. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  431. fixed_sparse->n = 3;
  432. } else { // mode <= MODE_7k95
  433. pulse_position[0] = gray_decode[ fixed_index & 7];
  434. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  435. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  436. pulse_subset = (fixed_index >> 9) & 1;
  437. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  438. fixed_sparse->n = 4;
  439. }
  440. for (i = 0; i < fixed_sparse->n; i++)
  441. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  442. }
  443. }
  444. /**
  445. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  446. *
  447. * @param p the context
  448. * @param subframe unpacked amr subframe
  449. * @param mode mode of the current frame
  450. * @param fixed_sparse sparse respresentation of the fixed vector
  451. */
  452. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  453. AMRFixed *fixed_sparse)
  454. {
  455. // The spec suggests the current pitch gain is always used, but in other
  456. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  457. // so the codebook gain cannot depend on the quantized pitch gain.
  458. if (mode == MODE_12k2)
  459. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  460. fixed_sparse->pitch_lag = p->pitch_lag_int;
  461. fixed_sparse->pitch_fac = p->beta;
  462. // Save pitch sharpening factor for the next subframe
  463. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  464. // the fact that the gains for two subframes are jointly quantized.
  465. if (mode != MODE_4k75 || subframe & 1)
  466. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  467. }
  468. /// @}
  469. /// @name AMR gain decoding functions
  470. /// @{
  471. /**
  472. * fixed gain smoothing
  473. * Note that where the spec specifies the "spectrum in the q domain"
  474. * in section 6.1.4, in fact frequencies should be used.
  475. *
  476. * @param p the context
  477. * @param lsf LSFs for the current subframe, in the range [0,1]
  478. * @param lsf_avg averaged LSFs
  479. * @param mode mode of the current frame
  480. *
  481. * @return fixed gain smoothed
  482. */
  483. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  484. const float *lsf_avg, const enum Mode mode)
  485. {
  486. float diff = 0.0;
  487. int i;
  488. for (i = 0; i < LP_FILTER_ORDER; i++)
  489. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  490. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  491. // hangover period.
  492. p->diff_count++;
  493. if (diff <= 0.65)
  494. p->diff_count = 0;
  495. if (p->diff_count > 10) {
  496. p->hang_count = 0;
  497. p->diff_count--; // don't let diff_count overflow
  498. }
  499. if (p->hang_count < 40) {
  500. p->hang_count++;
  501. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  502. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  503. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  504. p->fixed_gain[2] + p->fixed_gain[3] +
  505. p->fixed_gain[4]) * 0.2;
  506. return smoothing_factor * p->fixed_gain[4] +
  507. (1.0 - smoothing_factor) * fixed_gain_mean;
  508. }
  509. return p->fixed_gain[4];
  510. }
  511. /**
  512. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  513. *
  514. * @param p the context
  515. * @param amr_subframe unpacked amr subframe
  516. * @param mode mode of the current frame
  517. * @param subframe current subframe number
  518. * @param fixed_gain_factor decoded gain correction factor
  519. */
  520. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  521. const enum Mode mode, const int subframe,
  522. float *fixed_gain_factor)
  523. {
  524. if (mode == MODE_12k2 || mode == MODE_7k95) {
  525. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  526. * (1.0 / 16384.0);
  527. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  528. * (1.0 / 2048.0);
  529. } else {
  530. const uint16_t *gains;
  531. if (mode >= MODE_6k7) {
  532. gains = gains_high[amr_subframe->p_gain];
  533. } else if (mode >= MODE_5k15) {
  534. gains = gains_low [amr_subframe->p_gain];
  535. } else {
  536. // gain index is only coded in subframes 0,2 for MODE_4k75
  537. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  538. }
  539. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  540. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  541. }
  542. }
  543. /// @}
  544. /// @name AMR preprocessing functions
  545. /// @{
  546. /**
  547. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  548. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  549. *
  550. * @param out vector with filter applied
  551. * @param in source vector
  552. * @param filter phase filter coefficients
  553. *
  554. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  555. */
  556. static void apply_ir_filter(float *out, const AMRFixed *in,
  557. const float *filter)
  558. {
  559. float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
  560. filter2[AMR_SUBFRAME_SIZE];
  561. int lag = in->pitch_lag;
  562. float fac = in->pitch_fac;
  563. int i;
  564. if (lag < AMR_SUBFRAME_SIZE) {
  565. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  566. AMR_SUBFRAME_SIZE);
  567. if (lag < AMR_SUBFRAME_SIZE >> 1)
  568. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  569. AMR_SUBFRAME_SIZE);
  570. }
  571. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  572. for (i = 0; i < in->n; i++) {
  573. int x = in->x[i];
  574. float y = in->y[i];
  575. const float *filterp;
  576. if (x >= AMR_SUBFRAME_SIZE - lag) {
  577. filterp = filter;
  578. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  579. filterp = filter1;
  580. } else
  581. filterp = filter2;
  582. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  583. }
  584. }
  585. /**
  586. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  587. * Also know as "adaptive phase dispersion".
  588. *
  589. * This implements 3GPP TS 26.090 section 6.1(5).
  590. *
  591. * @param p the context
  592. * @param fixed_sparse algebraic codebook vector
  593. * @param fixed_vector unfiltered fixed vector
  594. * @param fixed_gain smoothed gain
  595. * @param out space for modified vector if necessary
  596. */
  597. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  598. const float *fixed_vector,
  599. float fixed_gain, float *out)
  600. {
  601. int ir_filter_nr;
  602. if (p->pitch_gain[4] < 0.6) {
  603. ir_filter_nr = 0; // strong filtering
  604. } else if (p->pitch_gain[4] < 0.9) {
  605. ir_filter_nr = 1; // medium filtering
  606. } else
  607. ir_filter_nr = 2; // no filtering
  608. // detect 'onset'
  609. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  610. p->ir_filter_onset = 2;
  611. } else if (p->ir_filter_onset)
  612. p->ir_filter_onset--;
  613. if (!p->ir_filter_onset) {
  614. int i, count = 0;
  615. for (i = 0; i < 5; i++)
  616. if (p->pitch_gain[i] < 0.6)
  617. count++;
  618. if (count > 2)
  619. ir_filter_nr = 0;
  620. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  621. ir_filter_nr--;
  622. } else if (ir_filter_nr < 2)
  623. ir_filter_nr++;
  624. // Disable filtering for very low level of fixed_gain.
  625. // Note this step is not specified in the technical description but is in
  626. // the reference source in the function Ph_disp.
  627. if (fixed_gain < 5.0)
  628. ir_filter_nr = 2;
  629. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  630. && ir_filter_nr < 2) {
  631. apply_ir_filter(out, fixed_sparse,
  632. (p->cur_frame_mode == MODE_7k95 ?
  633. ir_filters_lookup_MODE_7k95 :
  634. ir_filters_lookup)[ir_filter_nr]);
  635. fixed_vector = out;
  636. }
  637. // update ir filter strength history
  638. p->prev_ir_filter_nr = ir_filter_nr;
  639. p->prev_sparse_fixed_gain = fixed_gain;
  640. return fixed_vector;
  641. }
  642. /// @}
  643. /// @name AMR synthesis functions
  644. /// @{
  645. /**
  646. * Conduct 10th order linear predictive coding synthesis.
  647. *
  648. * @param p pointer to the AMRContext
  649. * @param lpc pointer to the LPC coefficients
  650. * @param fixed_gain fixed codebook gain for synthesis
  651. * @param fixed_vector algebraic codebook vector
  652. * @param samples pointer to the output speech samples
  653. * @param overflow 16-bit overflow flag
  654. */
  655. static int synthesis(AMRContext *p, float *lpc,
  656. float fixed_gain, const float *fixed_vector,
  657. float *samples, uint8_t overflow)
  658. {
  659. int i;
  660. float excitation[AMR_SUBFRAME_SIZE];
  661. // if an overflow has been detected, the pitch vector is scaled down by a
  662. // factor of 4
  663. if (overflow)
  664. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  665. p->pitch_vector[i] *= 0.25;
  666. p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  667. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  668. // emphasize pitch vector contribution
  669. if (p->pitch_gain[4] > 0.5 && !overflow) {
  670. float energy = p->celpm_ctx.dot_productf(excitation, excitation,
  671. AMR_SUBFRAME_SIZE);
  672. float pitch_factor =
  673. p->pitch_gain[4] *
  674. (p->cur_frame_mode == MODE_12k2 ?
  675. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  676. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  677. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  678. excitation[i] += pitch_factor * p->pitch_vector[i];
  679. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  680. AMR_SUBFRAME_SIZE);
  681. }
  682. p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  683. AMR_SUBFRAME_SIZE,
  684. LP_FILTER_ORDER);
  685. // detect overflow
  686. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  687. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  688. return 1;
  689. }
  690. return 0;
  691. }
  692. /// @}
  693. /// @name AMR update functions
  694. /// @{
  695. /**
  696. * Update buffers and history at the end of decoding a subframe.
  697. *
  698. * @param p pointer to the AMRContext
  699. */
  700. static void update_state(AMRContext *p)
  701. {
  702. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  703. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  704. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  705. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  706. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  707. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  708. LP_FILTER_ORDER * sizeof(float));
  709. }
  710. /// @}
  711. /// @name AMR Postprocessing functions
  712. /// @{
  713. /**
  714. * Get the tilt factor of a formant filter from its transfer function
  715. *
  716. * @param p The Context
  717. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  718. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  719. */
  720. static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
  721. {
  722. float rh0, rh1; // autocorrelation at lag 0 and 1
  723. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  724. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  725. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  726. hf[0] = 1.0;
  727. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  728. p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
  729. AMR_TILT_RESPONSE,
  730. LP_FILTER_ORDER);
  731. rh0 = p->celpm_ctx.dot_productf(hf, hf, AMR_TILT_RESPONSE);
  732. rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  733. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  734. // modes. But in the ref source the tilt is always non-negative.
  735. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  736. }
  737. /**
  738. * Perform adaptive post-filtering to enhance the quality of the speech.
  739. * See section 6.2.1.
  740. *
  741. * @param p pointer to the AMRContext
  742. * @param lpc interpolated LP coefficients for this subframe
  743. * @param buf_out output of the filter
  744. */
  745. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  746. {
  747. int i;
  748. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  749. float speech_gain = p->celpm_ctx.dot_productf(samples, samples,
  750. AMR_SUBFRAME_SIZE);
  751. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  752. const float *gamma_n, *gamma_d; // Formant filter factor table
  753. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  754. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  755. gamma_n = ff_pow_0_7;
  756. gamma_d = ff_pow_0_75;
  757. } else {
  758. gamma_n = ff_pow_0_55;
  759. gamma_d = ff_pow_0_7;
  760. }
  761. for (i = 0; i < LP_FILTER_ORDER; i++) {
  762. lpc_n[i] = lpc[i] * gamma_n[i];
  763. lpc_d[i] = lpc[i] * gamma_d[i];
  764. }
  765. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  766. p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  767. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  768. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  769. sizeof(float) * LP_FILTER_ORDER);
  770. p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  771. pole_out + LP_FILTER_ORDER,
  772. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  773. ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
  774. AMR_SUBFRAME_SIZE);
  775. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  776. AMR_AGC_ALPHA, &p->postfilter_agc);
  777. }
  778. /// @}
  779. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  780. int *got_frame_ptr, AVPacket *avpkt)
  781. {
  782. AMRContext *p = avctx->priv_data; // pointer to private data
  783. const uint8_t *buf = avpkt->data;
  784. int buf_size = avpkt->size;
  785. float *buf_out; // pointer to the output data buffer
  786. int i, subframe, ret;
  787. float fixed_gain_factor;
  788. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  789. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  790. float synth_fixed_gain; // the fixed gain that synthesis should use
  791. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  792. /* get output buffer */
  793. p->avframe.nb_samples = AMR_BLOCK_SIZE;
  794. if ((ret = avctx->get_buffer(avctx, &p->avframe)) < 0) {
  795. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  796. return ret;
  797. }
  798. buf_out = (float *)p->avframe.data[0];
  799. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  800. if (p->cur_frame_mode == NO_DATA) {
  801. av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  802. return AVERROR_INVALIDDATA;
  803. }
  804. if (p->cur_frame_mode == MODE_DTX) {
  805. av_log_missing_feature(avctx, "dtx mode", 0);
  806. av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
  807. return -1;
  808. }
  809. if (p->cur_frame_mode == MODE_12k2) {
  810. lsf2lsp_5(p);
  811. } else
  812. lsf2lsp_3(p);
  813. for (i = 0; i < 4; i++)
  814. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  815. for (subframe = 0; subframe < 4; subframe++) {
  816. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  817. decode_pitch_vector(p, amr_subframe, subframe);
  818. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  819. p->cur_frame_mode, subframe);
  820. // The fixed gain (section 6.1.3) depends on the fixed vector
  821. // (section 6.1.2), but the fixed vector calculation uses
  822. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  823. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  824. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  825. &fixed_gain_factor);
  826. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  827. if (fixed_sparse.pitch_lag == 0) {
  828. av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  829. return AVERROR_INVALIDDATA;
  830. }
  831. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  832. AMR_SUBFRAME_SIZE);
  833. p->fixed_gain[4] =
  834. ff_amr_set_fixed_gain(fixed_gain_factor,
  835. p->celpm_ctx.dot_productf(p->fixed_vector, p->fixed_vector,
  836. AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
  837. p->prediction_error,
  838. energy_mean[p->cur_frame_mode], energy_pred_fac);
  839. // The excitation feedback is calculated without any processing such
  840. // as fixed gain smoothing. This isn't mentioned in the specification.
  841. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  842. p->excitation[i] *= p->pitch_gain[4];
  843. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  844. AMR_SUBFRAME_SIZE);
  845. // In the ref decoder, excitation is stored with no fractional bits.
  846. // This step prevents buzz in silent periods. The ref encoder can
  847. // emit long sequences with pitch factor greater than one. This
  848. // creates unwanted feedback if the excitation vector is nonzero.
  849. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  850. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  851. p->excitation[i] = truncf(p->excitation[i]);
  852. // Smooth fixed gain.
  853. // The specification is ambiguous, but in the reference source, the
  854. // smoothed value is NOT fed back into later fixed gain smoothing.
  855. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  856. p->lsf_avg, p->cur_frame_mode);
  857. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  858. synth_fixed_gain, spare_vector);
  859. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  860. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  861. // overflow detected -> rerun synthesis scaling pitch vector down
  862. // by a factor of 4, skipping pitch vector contribution emphasis
  863. // and adaptive gain control
  864. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  865. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  866. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  867. // update buffers and history
  868. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  869. update_state(p);
  870. }
  871. p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
  872. buf_out, highpass_zeros,
  873. highpass_poles,
  874. highpass_gain * AMR_SAMPLE_SCALE,
  875. p->high_pass_mem, AMR_BLOCK_SIZE);
  876. /* Update averaged lsf vector (used for fixed gain smoothing).
  877. *
  878. * Note that lsf_avg should not incorporate the current frame's LSFs
  879. * for fixed_gain_smooth.
  880. * The specification has an incorrect formula: the reference decoder uses
  881. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  882. p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  883. 0.84, 0.16, LP_FILTER_ORDER);
  884. *got_frame_ptr = 1;
  885. *(AVFrame *)data = p->avframe;
  886. /* return the amount of bytes consumed if everything was OK */
  887. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  888. }
  889. AVCodec ff_amrnb_decoder = {
  890. .name = "amrnb",
  891. .type = AVMEDIA_TYPE_AUDIO,
  892. .id = CODEC_ID_AMR_NB,
  893. .priv_data_size = sizeof(AMRContext),
  894. .init = amrnb_decode_init,
  895. .decode = amrnb_decode_frame,
  896. .capabilities = CODEC_CAP_DR1,
  897. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
  898. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  899. AV_SAMPLE_FMT_NONE },
  900. };