123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- /*
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
- /**
- * @file
- * Perlin Noise generator, based on code from:
- * https://adrianb.io/2014/08/09/perlinnoise.html
- *
- * Original article from Ken Perlin:
- * http://mrl.nyu.edu/~perlin/paper445.pdf
- */
- #include <math.h>
- #include "libavutil/lfg.h"
- #include "libavutil/random_seed.h"
- #include "perlin.h"
- static inline int inc(int num, int period)
- {
- num++;
- if (period > 0)
- num %= period;
- return num;
- }
- static inline double grad(int hash, double x, double y, double z)
- {
- // Take the hashed value and take the first 4 bits of it (15 == 0b1111)
- int h = hash & 15;
- // If the most significant bit (MSB) of the hash is 0 then set u = x. Otherwise y.
- double u = h < 8 /* 0b1000 */ ? x : y;
- double v;
- // In Ken Perlin's original implementation this was another
- // conditional operator (?:), then expanded for readability.
- if (h < 4 /* 0b0100 */)
- // If the first and second significant bits are 0 set v = y
- v = y;
- // If the first and second significant bits are 1 set v = x
- else if (h == 12 /* 0b1100 */ || h == 14 /* 0b1110 */)
- v = x;
- else
- // If the first and second significant bits are not equal (0/1, 1/0) set v = z
- v = z;
- // Use the last 2 bits to decide if u and v are positive or negative. Then return their addition.
- return ((h&1) == 0 ? u : -u)+((h&2) == 0 ? v : -v);
- }
- static inline double fade(double t)
- {
- // Fade function as defined by Ken Perlin. This eases coordinate values
- // so that they will "ease" towards integral values. This ends up smoothing
- // the final output.
- // use Horner method to compute: 6t^5 - 15t^4 + 10t^3
- return t * t * t * (t * (t * 6 - 15) + 10);
- }
- static double lerp(double a, double b, double x)
- {
- return a + x * (b - a);
- }
- // Hash lookup table as defined by Ken Perlin. This is a randomly
- // arranged array of all numbers from 0-255 inclusive.
- static uint8_t ken_permutations[] = {
- 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
- 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
- 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
- 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
- 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
- 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
- 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
- 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
- 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
- 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
- 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
- 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
- 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
- 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
- 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
- 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
- };
- int ff_perlin_init(FFPerlin *perlin, double period, int octaves, double persistence,
- enum FFPerlinRandomMode random_mode, unsigned int random_seed)
- {
- int i;
- perlin->period = period;
- perlin->octaves = octaves;
- perlin->persistence = persistence;
- perlin->random_mode = random_mode;
- perlin->random_seed = random_seed;
- if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_KEN) {
- for (i = 0; i < 512; i++) {
- perlin->permutations[i] = ken_permutations[i % 256];
- }
- } else {
- AVLFG lfg;
- uint8_t random_permutations[256];
- if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_RANDOM)
- perlin->random_seed = av_get_random_seed();
- av_lfg_init(&lfg, perlin->random_seed);
- for (i = 0; i < 256; i++) {
- random_permutations[i] = i;
- }
- for (i = 0; i < 256; i++) {
- unsigned int random_idx = av_lfg_get(&lfg) % (256-i);
- uint8_t random_val = random_permutations[random_idx];
- random_permutations[random_idx] = random_permutations[256-i];
- perlin->permutations[i] = perlin->permutations[i+256] = random_val;
- }
- }
- return 0;
- }
- static double perlin_get(FFPerlin *perlin, double x, double y, double z)
- {
- int xi, yi, zi;
- double xf, yf, zf;
- double u, v, w;
- const uint8_t *p = perlin->permutations;
- double period = perlin->period;
- int aaa, aba, aab, abb, baa, bba, bab, bbb;
- double x1, x2, y1, y2;
- if (perlin->period > 0) {
- // If we have any period on, change the coordinates to their "local" repetitions
- x = fmod(x, perlin->period);
- y = fmod(y, perlin->period);
- z = fmod(z, perlin->period);
- }
- // Calculate the "unit cube" that the point asked will be located in
- // The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that
- // plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube.
- xi = (int)x & 255;
- yi = (int)y & 255;
- zi = (int)z & 255;
- xf = x - (int)x;
- yf = y - (int)y;
- zf = z - (int)z;
- // We also fade the location to smooth the result.
- u = fade(xf);
- v = fade(yf);
- w = fade(zf);
- aaa = p[p[p[ xi ] + yi ] + zi ];
- aba = p[p[p[ xi ] + inc(yi, period)] + zi ];
- aab = p[p[p[ xi ] + yi ] + inc(zi, period)];
- abb = p[p[p[ xi ] + inc(yi, period)] + inc(zi, period)];
- baa = p[p[p[inc(xi, period)] + yi ] + zi ];
- bba = p[p[p[inc(xi, period)] + inc(yi, period)] + zi ];
- bab = p[p[p[inc(xi, period)] + yi ] + inc(zi, period)];
- bbb = p[p[p[inc(xi, period)] + inc(yi, period)] + inc(zi, period)];
- // The gradient function calculates the dot product between a pseudorandom
- // gradient vector and the vector from the input coordinate to the 8
- // surrounding points in its unit cube.
- // This is all then lerped together as a sort of weighted average based on the faded (u,v,w)
- // values we made earlier.
- x1 = lerp(grad(aaa, xf , yf , zf),
- grad(baa, xf-1, yf , zf),
- u);
- x2 = lerp(grad(aba, xf , yf-1, zf),
- grad(bba, xf-1, yf-1, zf),
- u);
- y1 = lerp(x1, x2, v);
- x1 = lerp(grad(aab, xf , yf , zf-1),
- grad(bab, xf-1, yf , zf-1),
- u);
- x2 = lerp(grad(abb, xf , yf-1, zf-1),
- grad(bbb, xf-1, yf-1, zf-1),
- u);
- y2 = lerp(x1, x2, v);
- // For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1)
- return (lerp(y1, y2, w) + 1) / 2;
- }
- double ff_perlin_get(FFPerlin *perlin, double x, double y, double z)
- {
- double total = 0;
- double frequency = 1;
- double amplitude = 1;
- double max_value = 0; // Used for normalizing result to 0.0 - 1.0
- for (int i = 0; i < perlin->octaves; i++) {
- total += perlin_get(perlin, x * frequency, y * frequency, z * frequency) * amplitude;
- max_value += amplitude;
- amplitude *= perlin->persistence;
- frequency *= 2;
- }
- return total / max_value;
- }
|