utils.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570
  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  21. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  22. #include <inttypes.h>
  23. #include <string.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include "config.h"
  27. #include <assert.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "swscale.h"
  39. #include "swscale_internal.h"
  40. #include "rgb2rgb.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/x86_cpu.h"
  43. #include "libavutil/cpu.h"
  44. #include "libavutil/avutil.h"
  45. #include "libavutil/bswap.h"
  46. #include "libavutil/opt.h"
  47. #include "libavutil/pixdesc.h"
  48. unsigned swscale_version(void)
  49. {
  50. return LIBSWSCALE_VERSION_INT;
  51. }
  52. const char *swscale_configuration(void)
  53. {
  54. return FFMPEG_CONFIGURATION;
  55. }
  56. const char *swscale_license(void)
  57. {
  58. #define LICENSE_PREFIX "libswscale license: "
  59. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  60. }
  61. #define RET 0xC3 //near return opcode for x86
  62. #define isSupportedIn(x) ( \
  63. (x)==PIX_FMT_YUV420P \
  64. || (x)==PIX_FMT_YUVA420P \
  65. || (x)==PIX_FMT_YUYV422 \
  66. || (x)==PIX_FMT_UYVY422 \
  67. || (x)==PIX_FMT_RGB48BE \
  68. || (x)==PIX_FMT_RGB48LE \
  69. || (x)==PIX_FMT_RGB32 \
  70. || (x)==PIX_FMT_RGB32_1 \
  71. || (x)==PIX_FMT_BGR48BE \
  72. || (x)==PIX_FMT_BGR48LE \
  73. || (x)==PIX_FMT_BGR24 \
  74. || (x)==PIX_FMT_BGR565 \
  75. || (x)==PIX_FMT_BGR555 \
  76. || (x)==PIX_FMT_BGR32 \
  77. || (x)==PIX_FMT_BGR32_1 \
  78. || (x)==PIX_FMT_RGB24 \
  79. || (x)==PIX_FMT_RGB565 \
  80. || (x)==PIX_FMT_RGB555 \
  81. || (x)==PIX_FMT_GRAY8 \
  82. || (x)==PIX_FMT_GRAY8A \
  83. || (x)==PIX_FMT_YUV410P \
  84. || (x)==PIX_FMT_YUV440P \
  85. || (x)==PIX_FMT_NV12 \
  86. || (x)==PIX_FMT_NV21 \
  87. || (x)==PIX_FMT_GRAY16BE \
  88. || (x)==PIX_FMT_GRAY16LE \
  89. || (x)==PIX_FMT_YUV444P \
  90. || (x)==PIX_FMT_YUV422P \
  91. || (x)==PIX_FMT_YUV411P \
  92. || (x)==PIX_FMT_YUVJ420P \
  93. || (x)==PIX_FMT_YUVJ422P \
  94. || (x)==PIX_FMT_YUVJ440P \
  95. || (x)==PIX_FMT_YUVJ444P \
  96. || (x)==PIX_FMT_PAL8 \
  97. || (x)==PIX_FMT_BGR8 \
  98. || (x)==PIX_FMT_RGB8 \
  99. || (x)==PIX_FMT_BGR4_BYTE \
  100. || (x)==PIX_FMT_RGB4_BYTE \
  101. || (x)==PIX_FMT_YUV440P \
  102. || (x)==PIX_FMT_MONOWHITE \
  103. || (x)==PIX_FMT_MONOBLACK \
  104. || (x)==PIX_FMT_YUV420P9LE \
  105. || (x)==PIX_FMT_YUV420P10LE \
  106. || (x)==PIX_FMT_YUV420P16LE \
  107. || (x)==PIX_FMT_YUV422P16LE \
  108. || (x)==PIX_FMT_YUV444P16LE \
  109. || (x)==PIX_FMT_YUV420P9BE \
  110. || (x)==PIX_FMT_YUV420P10BE \
  111. || (x)==PIX_FMT_YUV420P16BE \
  112. || (x)==PIX_FMT_YUV422P16BE \
  113. || (x)==PIX_FMT_YUV444P16BE \
  114. || (x)==PIX_FMT_YUV422P10 \
  115. )
  116. int sws_isSupportedInput(enum PixelFormat pix_fmt)
  117. {
  118. return isSupportedIn(pix_fmt);
  119. }
  120. #define isSupportedOut(x) ( \
  121. (x)==PIX_FMT_YUV420P \
  122. || (x)==PIX_FMT_YUVA420P \
  123. || (x)==PIX_FMT_YUYV422 \
  124. || (x)==PIX_FMT_UYVY422 \
  125. || (x)==PIX_FMT_YUV444P \
  126. || (x)==PIX_FMT_YUV422P \
  127. || (x)==PIX_FMT_YUV411P \
  128. || (x)==PIX_FMT_YUVJ420P \
  129. || (x)==PIX_FMT_YUVJ422P \
  130. || (x)==PIX_FMT_YUVJ440P \
  131. || (x)==PIX_FMT_YUVJ444P \
  132. || isAnyRGB(x) \
  133. || (x)==PIX_FMT_NV12 \
  134. || (x)==PIX_FMT_NV21 \
  135. || (x)==PIX_FMT_GRAY16BE \
  136. || (x)==PIX_FMT_GRAY16LE \
  137. || (x)==PIX_FMT_GRAY8 \
  138. || (x)==PIX_FMT_YUV410P \
  139. || (x)==PIX_FMT_YUV440P \
  140. || (x)==PIX_FMT_YUV422P10 \
  141. || (x)==PIX_FMT_YUV420P9LE \
  142. || (x)==PIX_FMT_YUV420P10LE \
  143. || (x)==PIX_FMT_YUV420P16LE \
  144. || (x)==PIX_FMT_YUV422P16LE \
  145. || (x)==PIX_FMT_YUV444P16LE \
  146. || (x)==PIX_FMT_YUV420P9BE \
  147. || (x)==PIX_FMT_YUV420P10BE \
  148. || (x)==PIX_FMT_YUV420P16BE \
  149. || (x)==PIX_FMT_YUV422P16BE \
  150. || (x)==PIX_FMT_YUV444P16BE \
  151. )
  152. int sws_isSupportedOutput(enum PixelFormat pix_fmt)
  153. {
  154. return isSupportedOut(pix_fmt);
  155. }
  156. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  157. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  158. {
  159. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  160. else return getSplineCoeff( 0.0,
  161. b+ 2.0*c + 3.0*d,
  162. c + 3.0*d,
  163. -b- 3.0*c - 6.0*d,
  164. dist-1.0);
  165. }
  166. static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  167. int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags,
  168. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  169. {
  170. int i;
  171. int filterSize;
  172. int filter2Size;
  173. int minFilterSize;
  174. int64_t *filter=NULL;
  175. int64_t *filter2=NULL;
  176. const int64_t fone= 1LL<<54;
  177. int ret= -1;
  178. emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions)
  179. // NOTE: the +1 is for the MMX scaler which reads over the end
  180. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
  181. if (FFABS(xInc - 0x10000) <10) { // unscaled
  182. int i;
  183. filterSize= 1;
  184. FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  185. for (i=0; i<dstW; i++) {
  186. filter[i*filterSize]= fone;
  187. (*filterPos)[i]=i;
  188. }
  189. } else if (flags&SWS_POINT) { // lame looking point sampling mode
  190. int i;
  191. int xDstInSrc;
  192. filterSize= 1;
  193. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  194. xDstInSrc= xInc/2 - 0x8000;
  195. for (i=0; i<dstW; i++) {
  196. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  197. (*filterPos)[i]= xx;
  198. filter[i]= fone;
  199. xDstInSrc+= xInc;
  200. }
  201. } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
  202. int i;
  203. int xDstInSrc;
  204. filterSize= 2;
  205. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  206. xDstInSrc= xInc/2 - 0x8000;
  207. for (i=0; i<dstW; i++) {
  208. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  209. int j;
  210. (*filterPos)[i]= xx;
  211. //bilinear upscale / linear interpolate / area averaging
  212. for (j=0; j<filterSize; j++) {
  213. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  214. if (coeff<0) coeff=0;
  215. filter[i*filterSize + j]= coeff;
  216. xx++;
  217. }
  218. xDstInSrc+= xInc;
  219. }
  220. } else {
  221. int xDstInSrc;
  222. int sizeFactor;
  223. if (flags&SWS_BICUBIC) sizeFactor= 4;
  224. else if (flags&SWS_X) sizeFactor= 8;
  225. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  226. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  227. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  228. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  229. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  230. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  231. else {
  232. sizeFactor= 0; //GCC warning killer
  233. assert(0);
  234. }
  235. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  236. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  237. if (filterSize > srcW-2) filterSize=srcW-2;
  238. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  239. xDstInSrc= xInc - 0x10000;
  240. for (i=0; i<dstW; i++) {
  241. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  242. int j;
  243. (*filterPos)[i]= xx;
  244. for (j=0; j<filterSize; j++) {
  245. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  246. double floatd;
  247. int64_t coeff;
  248. if (xInc > 1<<16)
  249. d= d*dstW/srcW;
  250. floatd= d * (1.0/(1<<30));
  251. if (flags & SWS_BICUBIC) {
  252. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  253. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  254. int64_t dd = ( d*d)>>30;
  255. int64_t ddd= (dd*d)>>30;
  256. if (d < 1LL<<30)
  257. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  258. else if (d < 1LL<<31)
  259. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  260. else
  261. coeff=0.0;
  262. coeff *= fone>>(30+24);
  263. }
  264. /* else if (flags & SWS_X) {
  265. double p= param ? param*0.01 : 0.3;
  266. coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
  267. coeff*= pow(2.0, - p*d*d);
  268. }*/
  269. else if (flags & SWS_X) {
  270. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  271. double c;
  272. if (floatd<1.0)
  273. c = cos(floatd*M_PI);
  274. else
  275. c=-1.0;
  276. if (c<0.0) c= -pow(-c, A);
  277. else c= pow( c, A);
  278. coeff= (c*0.5 + 0.5)*fone;
  279. } else if (flags & SWS_AREA) {
  280. int64_t d2= d - (1<<29);
  281. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  282. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  283. else coeff=0.0;
  284. coeff *= fone>>(30+16);
  285. } else if (flags & SWS_GAUSS) {
  286. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  287. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  288. } else if (flags & SWS_SINC) {
  289. coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
  290. } else if (flags & SWS_LANCZOS) {
  291. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  292. coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
  293. if (floatd>p) coeff=0;
  294. } else if (flags & SWS_BILINEAR) {
  295. coeff= (1<<30) - d;
  296. if (coeff<0) coeff=0;
  297. coeff *= fone >> 30;
  298. } else if (flags & SWS_SPLINE) {
  299. double p=-2.196152422706632;
  300. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  301. } else {
  302. coeff= 0.0; //GCC warning killer
  303. assert(0);
  304. }
  305. filter[i*filterSize + j]= coeff;
  306. xx++;
  307. }
  308. xDstInSrc+= 2*xInc;
  309. }
  310. }
  311. /* apply src & dst Filter to filter -> filter2
  312. av_free(filter);
  313. */
  314. assert(filterSize>0);
  315. filter2Size= filterSize;
  316. if (srcFilter) filter2Size+= srcFilter->length - 1;
  317. if (dstFilter) filter2Size+= dstFilter->length - 1;
  318. assert(filter2Size>0);
  319. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
  320. for (i=0; i<dstW; i++) {
  321. int j, k;
  322. if(srcFilter) {
  323. for (k=0; k<srcFilter->length; k++) {
  324. for (j=0; j<filterSize; j++)
  325. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  326. }
  327. } else {
  328. for (j=0; j<filterSize; j++)
  329. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  330. }
  331. //FIXME dstFilter
  332. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  333. }
  334. av_freep(&filter);
  335. /* try to reduce the filter-size (step1 find size and shift left) */
  336. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  337. minFilterSize= 0;
  338. for (i=dstW-1; i>=0; i--) {
  339. int min= filter2Size;
  340. int j;
  341. int64_t cutOff=0.0;
  342. /* get rid of near zero elements on the left by shifting left */
  343. for (j=0; j<filter2Size; j++) {
  344. int k;
  345. cutOff += FFABS(filter2[i*filter2Size]);
  346. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  347. /* preserve monotonicity because the core can't handle the filter otherwise */
  348. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  349. // move filter coefficients left
  350. for (k=1; k<filter2Size; k++)
  351. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  352. filter2[i*filter2Size + k - 1]= 0;
  353. (*filterPos)[i]++;
  354. }
  355. cutOff=0;
  356. /* count near zeros on the right */
  357. for (j=filter2Size-1; j>0; j--) {
  358. cutOff += FFABS(filter2[i*filter2Size + j]);
  359. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  360. min--;
  361. }
  362. if (min>minFilterSize) minFilterSize= min;
  363. }
  364. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  365. // we can handle the special case 4,
  366. // so we don't want to go to the full 8
  367. if (minFilterSize < 5)
  368. filterAlign = 4;
  369. // We really don't want to waste our time
  370. // doing useless computation, so fall back on
  371. // the scalar C code for very small filters.
  372. // Vectorizing is worth it only if you have a
  373. // decent-sized vector.
  374. if (minFilterSize < 3)
  375. filterAlign = 1;
  376. }
  377. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  378. // special case for unscaled vertical filtering
  379. if (minFilterSize == 1 && filterAlign == 2)
  380. filterAlign= 1;
  381. }
  382. assert(minFilterSize > 0);
  383. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  384. assert(filterSize > 0);
  385. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  386. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  387. goto fail;
  388. *outFilterSize= filterSize;
  389. if (flags&SWS_PRINT_INFO)
  390. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  391. /* try to reduce the filter-size (step2 reduce it) */
  392. for (i=0; i<dstW; i++) {
  393. int j;
  394. for (j=0; j<filterSize; j++) {
  395. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  396. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  397. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  398. filter[i*filterSize + j]= 0;
  399. }
  400. }
  401. //FIXME try to align filterPos if possible
  402. //fix borders
  403. for (i=0; i<dstW; i++) {
  404. int j;
  405. if ((*filterPos)[i] < 0) {
  406. // move filter coefficients left to compensate for filterPos
  407. for (j=1; j<filterSize; j++) {
  408. int left= FFMAX(j + (*filterPos)[i], 0);
  409. filter[i*filterSize + left] += filter[i*filterSize + j];
  410. filter[i*filterSize + j]=0;
  411. }
  412. (*filterPos)[i]= 0;
  413. }
  414. if ((*filterPos)[i] + filterSize > srcW) {
  415. int shift= (*filterPos)[i] + filterSize - srcW;
  416. // move filter coefficients right to compensate for filterPos
  417. for (j=filterSize-2; j>=0; j--) {
  418. int right= FFMIN(j + shift, filterSize-1);
  419. filter[i*filterSize +right] += filter[i*filterSize +j];
  420. filter[i*filterSize +j]=0;
  421. }
  422. (*filterPos)[i]= srcW - filterSize;
  423. }
  424. }
  425. // Note the +1 is for the MMX scaler which reads over the end
  426. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  427. FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
  428. /* normalize & store in outFilter */
  429. for (i=0; i<dstW; i++) {
  430. int j;
  431. int64_t error=0;
  432. int64_t sum=0;
  433. for (j=0; j<filterSize; j++) {
  434. sum+= filter[i*filterSize + j];
  435. }
  436. sum= (sum + one/2)/ one;
  437. for (j=0; j<*outFilterSize; j++) {
  438. int64_t v= filter[i*filterSize + j] + error;
  439. int intV= ROUNDED_DIV(v, sum);
  440. (*outFilter)[i*(*outFilterSize) + j]= intV;
  441. error= v - intV*sum;
  442. }
  443. }
  444. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  445. for (i=0; i<*outFilterSize; i++) {
  446. int j= dstW*(*outFilterSize);
  447. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  448. }
  449. ret=0;
  450. fail:
  451. av_free(filter);
  452. av_free(filter2);
  453. return ret;
  454. }
  455. #if HAVE_MMX2
  456. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
  457. {
  458. uint8_t *fragmentA;
  459. x86_reg imm8OfPShufW1A;
  460. x86_reg imm8OfPShufW2A;
  461. x86_reg fragmentLengthA;
  462. uint8_t *fragmentB;
  463. x86_reg imm8OfPShufW1B;
  464. x86_reg imm8OfPShufW2B;
  465. x86_reg fragmentLengthB;
  466. int fragmentPos;
  467. int xpos, i;
  468. // create an optimized horizontal scaling routine
  469. /* This scaler is made of runtime-generated MMX2 code using specially
  470. * tuned pshufw instructions. For every four output pixels, if four
  471. * input pixels are enough for the fast bilinear scaling, then a chunk
  472. * of fragmentB is used. If five input pixels are needed, then a chunk
  473. * of fragmentA is used.
  474. */
  475. //code fragment
  476. __asm__ volatile(
  477. "jmp 9f \n\t"
  478. // Begin
  479. "0: \n\t"
  480. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  481. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  482. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  483. "punpcklbw %%mm7, %%mm1 \n\t"
  484. "punpcklbw %%mm7, %%mm0 \n\t"
  485. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  486. "1: \n\t"
  487. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  488. "2: \n\t"
  489. "psubw %%mm1, %%mm0 \n\t"
  490. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  491. "pmullw %%mm3, %%mm0 \n\t"
  492. "psllw $7, %%mm1 \n\t"
  493. "paddw %%mm1, %%mm0 \n\t"
  494. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  495. "add $8, %%"REG_a" \n\t"
  496. // End
  497. "9: \n\t"
  498. // "int $3 \n\t"
  499. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  500. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  501. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  502. "dec %1 \n\t"
  503. "dec %2 \n\t"
  504. "sub %0, %1 \n\t"
  505. "sub %0, %2 \n\t"
  506. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  507. "sub %0, %3 \n\t"
  508. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  509. "=r" (fragmentLengthA)
  510. );
  511. __asm__ volatile(
  512. "jmp 9f \n\t"
  513. // Begin
  514. "0: \n\t"
  515. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  516. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  517. "punpcklbw %%mm7, %%mm0 \n\t"
  518. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  519. "1: \n\t"
  520. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  521. "2: \n\t"
  522. "psubw %%mm1, %%mm0 \n\t"
  523. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  524. "pmullw %%mm3, %%mm0 \n\t"
  525. "psllw $7, %%mm1 \n\t"
  526. "paddw %%mm1, %%mm0 \n\t"
  527. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  528. "add $8, %%"REG_a" \n\t"
  529. // End
  530. "9: \n\t"
  531. // "int $3 \n\t"
  532. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  533. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  534. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  535. "dec %1 \n\t"
  536. "dec %2 \n\t"
  537. "sub %0, %1 \n\t"
  538. "sub %0, %2 \n\t"
  539. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  540. "sub %0, %3 \n\t"
  541. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  542. "=r" (fragmentLengthB)
  543. );
  544. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  545. fragmentPos=0;
  546. for (i=0; i<dstW/numSplits; i++) {
  547. int xx=xpos>>16;
  548. if ((i&3) == 0) {
  549. int a=0;
  550. int b=((xpos+xInc)>>16) - xx;
  551. int c=((xpos+xInc*2)>>16) - xx;
  552. int d=((xpos+xInc*3)>>16) - xx;
  553. int inc = (d+1<4);
  554. uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
  555. x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  556. x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  557. x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
  558. int maxShift= 3-(d+inc);
  559. int shift=0;
  560. if (filterCode) {
  561. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  562. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  563. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  564. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  565. filterPos[i/2]= xx;
  566. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  567. filterCode[fragmentPos + imm8OfPShufW1]=
  568. (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
  569. filterCode[fragmentPos + imm8OfPShufW2]=
  570. a | (b<<2) | (c<<4) | (d<<6);
  571. if (i+4-inc>=dstW) shift=maxShift; //avoid overread
  572. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  573. if (shift && i>=shift) {
  574. filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
  575. filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
  576. filterPos[i/2]-=shift;
  577. }
  578. }
  579. fragmentPos+= fragmentLength;
  580. if (filterCode)
  581. filterCode[fragmentPos]= RET;
  582. }
  583. xpos+=xInc;
  584. }
  585. if (filterCode)
  586. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  587. return fragmentPos + 1;
  588. }
  589. #endif /* HAVE_MMX2 */
  590. static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
  591. {
  592. *h = av_pix_fmt_descriptors[format].log2_chroma_w;
  593. *v = av_pix_fmt_descriptors[format].log2_chroma_h;
  594. }
  595. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
  596. {
  597. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  598. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  599. c->brightness= brightness;
  600. c->contrast = contrast;
  601. c->saturation= saturation;
  602. c->srcRange = srcRange;
  603. c->dstRange = dstRange;
  604. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  605. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
  606. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
  607. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  608. //FIXME factorize
  609. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  610. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  611. return 0;
  612. }
  613. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
  614. {
  615. if (!c || isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  616. *inv_table = c->srcColorspaceTable;
  617. *table = c->dstColorspaceTable;
  618. *srcRange = c->srcRange;
  619. *dstRange = c->dstRange;
  620. *brightness= c->brightness;
  621. *contrast = c->contrast;
  622. *saturation= c->saturation;
  623. return 0;
  624. }
  625. static int handle_jpeg(enum PixelFormat *format)
  626. {
  627. switch (*format) {
  628. case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
  629. case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
  630. case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
  631. case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
  632. default: return 0;
  633. }
  634. }
  635. SwsContext *sws_alloc_context(void)
  636. {
  637. SwsContext *c= av_mallocz(sizeof(SwsContext));
  638. c->av_class = &sws_context_class;
  639. av_opt_set_defaults(c);
  640. return c;
  641. }
  642. int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
  643. {
  644. int i;
  645. int usesVFilter, usesHFilter;
  646. int unscaled;
  647. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  648. int srcW= c->srcW;
  649. int srcH= c->srcH;
  650. int dstW= c->dstW;
  651. int dstH= c->dstH;
  652. int dst_stride = FFALIGN(dstW * sizeof(int16_t)+66, 16), dst_stride_px = dst_stride >> 1;
  653. int flags, cpu_flags;
  654. enum PixelFormat srcFormat= c->srcFormat;
  655. enum PixelFormat dstFormat= c->dstFormat;
  656. cpu_flags = av_get_cpu_flags();
  657. flags = c->flags;
  658. emms_c();
  659. if (!rgb15to16) sws_rgb2rgb_init();
  660. unscaled = (srcW == dstW && srcH == dstH);
  661. if (!isSupportedIn(srcFormat)) {
  662. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", av_get_pix_fmt_name(srcFormat));
  663. return AVERROR(EINVAL);
  664. }
  665. if (!isSupportedOut(dstFormat)) {
  666. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", av_get_pix_fmt_name(dstFormat));
  667. return AVERROR(EINVAL);
  668. }
  669. i= flags & ( SWS_POINT
  670. |SWS_AREA
  671. |SWS_BILINEAR
  672. |SWS_FAST_BILINEAR
  673. |SWS_BICUBIC
  674. |SWS_X
  675. |SWS_GAUSS
  676. |SWS_LANCZOS
  677. |SWS_SINC
  678. |SWS_SPLINE
  679. |SWS_BICUBLIN);
  680. if(!i || (i & (i-1))) {
  681. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  682. return AVERROR(EINVAL);
  683. }
  684. /* sanity check */
  685. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  686. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  687. srcW, srcH, dstW, dstH);
  688. return AVERROR(EINVAL);
  689. }
  690. if (!dstFilter) dstFilter= &dummyFilter;
  691. if (!srcFilter) srcFilter= &dummyFilter;
  692. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  693. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  694. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
  695. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
  696. c->vRounder= 4* 0x0001000100010001ULL;
  697. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
  698. (srcFilter->chrV && srcFilter->chrV->length>1) ||
  699. (dstFilter->lumV && dstFilter->lumV->length>1) ||
  700. (dstFilter->chrV && dstFilter->chrV->length>1);
  701. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
  702. (srcFilter->chrH && srcFilter->chrH->length>1) ||
  703. (dstFilter->lumH && dstFilter->lumH->length>1) ||
  704. (dstFilter->chrH && dstFilter->chrH->length>1);
  705. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  706. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  707. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  708. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  709. // drop some chroma lines if the user wants it
  710. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  711. c->chrSrcVSubSample+= c->vChrDrop;
  712. // drop every other pixel for chroma calculation unless user wants full chroma
  713. if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
  714. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  715. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  716. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  717. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
  718. c->chrSrcHSubSample=1;
  719. // Note the -((-x)>>y) is so that we always round toward +inf.
  720. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  721. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  722. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  723. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  724. /* unscaled special cases */
  725. if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  726. ff_get_unscaled_swscale(c);
  727. if (c->swScale) {
  728. if (flags&SWS_PRINT_INFO)
  729. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  730. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  731. return 0;
  732. }
  733. }
  734. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  735. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) {
  736. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  737. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
  738. if (flags&SWS_PRINT_INFO)
  739. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  740. }
  741. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat)) c->canMMX2BeUsed=0;
  742. }
  743. else
  744. c->canMMX2BeUsed=0;
  745. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  746. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  747. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  748. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  749. // n-2 is the last chrominance sample available
  750. // this is not perfect, but no one should notice the difference, the more correct variant
  751. // would be like the vertical one, but that would require some special code for the
  752. // first and last pixel
  753. if (flags&SWS_FAST_BILINEAR) {
  754. if (c->canMMX2BeUsed) {
  755. c->lumXInc+= 20;
  756. c->chrXInc+= 20;
  757. }
  758. //we don't use the x86 asm scaler if MMX is available
  759. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  760. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  761. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  762. }
  763. }
  764. /* precalculate horizontal scaler filter coefficients */
  765. {
  766. #if HAVE_MMX2
  767. // can't downscale !!!
  768. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  769. c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
  770. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
  771. #ifdef MAP_ANONYMOUS
  772. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  773. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  774. #elif HAVE_VIRTUALALLOC
  775. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  776. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  777. #else
  778. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  779. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  780. #endif
  781. #ifdef MAP_ANONYMOUS
  782. if (c->lumMmx2FilterCode == MAP_FAILED || c->chrMmx2FilterCode == MAP_FAILED)
  783. #else
  784. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  785. #endif
  786. return AVERROR(ENOMEM);
  787. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
  788. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
  789. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
  790. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
  791. initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
  792. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
  793. #ifdef MAP_ANONYMOUS
  794. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  795. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  796. #endif
  797. } else
  798. #endif /* HAVE_MMX2 */
  799. {
  800. const int filterAlign=
  801. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  802. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  803. 1;
  804. if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  805. srcW , dstW, filterAlign, 1<<14,
  806. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  807. srcFilter->lumH, dstFilter->lumH, c->param) < 0)
  808. goto fail;
  809. if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  810. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  811. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  812. srcFilter->chrH, dstFilter->chrH, c->param) < 0)
  813. goto fail;
  814. }
  815. } // initialize horizontal stuff
  816. /* precalculate vertical scaler filter coefficients */
  817. {
  818. const int filterAlign=
  819. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  820. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  821. 1;
  822. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  823. srcH , dstH, filterAlign, (1<<12),
  824. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  825. srcFilter->lumV, dstFilter->lumV, c->param) < 0)
  826. goto fail;
  827. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  828. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  829. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  830. srcFilter->chrV, dstFilter->chrV, c->param) < 0)
  831. goto fail;
  832. #if HAVE_ALTIVEC
  833. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
  834. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
  835. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  836. int j;
  837. short *p = (short *)&c->vYCoeffsBank[i];
  838. for (j=0;j<8;j++)
  839. p[j] = c->vLumFilter[i];
  840. }
  841. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  842. int j;
  843. short *p = (short *)&c->vCCoeffsBank[i];
  844. for (j=0;j<8;j++)
  845. p[j] = c->vChrFilter[i];
  846. }
  847. #endif
  848. }
  849. // calculate buffer sizes so that they won't run out while handling these damn slices
  850. c->vLumBufSize= c->vLumFilterSize;
  851. c->vChrBufSize= c->vChrFilterSize;
  852. for (i=0; i<dstH; i++) {
  853. int chrI= (int64_t)i*c->chrDstH / dstH;
  854. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  855. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  856. nextSlice>>= c->chrSrcVSubSample;
  857. nextSlice<<= c->chrSrcVSubSample;
  858. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  859. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  860. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  861. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  862. }
  863. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  864. // allocate several megabytes to handle all possible cases)
  865. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  866. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  867. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  868. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  869. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  870. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  871. /* align at 16 bytes for AltiVec */
  872. for (i=0; i<c->vLumBufSize; i++) {
  873. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+1, fail);
  874. c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
  875. }
  876. c->uv_off = dst_stride_px;
  877. c->uv_offx2 = dst_stride;
  878. for (i=0; i<c->vChrBufSize; i++) {
  879. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+1, fail);
  880. c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize];
  881. c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + dst_stride_px;
  882. }
  883. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  884. for (i=0; i<c->vLumBufSize; i++) {
  885. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+1, fail);
  886. c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
  887. }
  888. //try to avoid drawing green stuff between the right end and the stride end
  889. for (i=0; i<c->vChrBufSize; i++)
  890. memset(c->chrUPixBuf[i], 64, dst_stride*2+1);
  891. assert(c->chrDstH <= dstH);
  892. if (flags&SWS_PRINT_INFO) {
  893. if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  894. else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  895. else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  896. else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  897. else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  898. else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  899. else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  900. else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  901. else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  902. else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  903. else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  904. else av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  905. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  906. av_get_pix_fmt_name(srcFormat),
  907. #ifdef DITHER1XBPP
  908. dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
  909. dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  910. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
  911. #else
  912. "",
  913. #endif
  914. av_get_pix_fmt_name(dstFormat));
  915. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n");
  916. else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  917. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) av_log(c, AV_LOG_INFO, "using MMX\n");
  918. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
  919. else av_log(c, AV_LOG_INFO, "using C\n");
  920. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  921. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  922. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  923. else {
  924. if (c->hLumFilterSize==4)
  925. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  926. else if (c->hLumFilterSize==8)
  927. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  928. else
  929. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  930. if (c->hChrFilterSize==4)
  931. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  932. else if (c->hChrFilterSize==8)
  933. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  934. else
  935. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  936. }
  937. } else {
  938. #if HAVE_MMX
  939. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  940. #else
  941. if (flags & SWS_FAST_BILINEAR)
  942. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  943. else
  944. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  945. #endif
  946. }
  947. if (isPlanarYUV(dstFormat)) {
  948. if (c->vLumFilterSize==1)
  949. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n",
  950. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  951. else
  952. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n",
  953. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  954. } else {
  955. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  956. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  957. " 2-tap scaler for vertical chrominance scaling (BGR)\n",
  958. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  959. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  960. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n",
  961. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  962. else
  963. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n",
  964. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  965. }
  966. if (dstFormat==PIX_FMT_BGR24)
  967. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  968. (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) ? "MMX2" :
  969. ((HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C"));
  970. else if (dstFormat==PIX_FMT_RGB32)
  971. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n",
  972. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  973. else if (dstFormat==PIX_FMT_BGR565)
  974. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n",
  975. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  976. else if (dstFormat==PIX_FMT_BGR555)
  977. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n",
  978. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  979. else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  980. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
  981. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n",
  982. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  983. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  984. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  985. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  986. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  987. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  988. }
  989. c->swScale= ff_getSwsFunc(c);
  990. return 0;
  991. fail: //FIXME replace things by appropriate error codes
  992. return -1;
  993. }
  994. #if FF_API_SWS_GETCONTEXT
  995. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
  996. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  997. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  998. {
  999. SwsContext *c;
  1000. if(!(c=sws_alloc_context()))
  1001. return NULL;
  1002. c->flags= flags;
  1003. c->srcW= srcW;
  1004. c->srcH= srcH;
  1005. c->dstW= dstW;
  1006. c->dstH= dstH;
  1007. c->srcRange = handle_jpeg(&srcFormat);
  1008. c->dstRange = handle_jpeg(&dstFormat);
  1009. c->srcFormat= srcFormat;
  1010. c->dstFormat= dstFormat;
  1011. if (param) {
  1012. c->param[0] = param[0];
  1013. c->param[1] = param[1];
  1014. }
  1015. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
  1016. if(sws_init_context(c, srcFilter, dstFilter) < 0){
  1017. sws_freeContext(c);
  1018. return NULL;
  1019. }
  1020. return c;
  1021. }
  1022. #endif
  1023. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1024. float lumaSharpen, float chromaSharpen,
  1025. float chromaHShift, float chromaVShift,
  1026. int verbose)
  1027. {
  1028. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  1029. if (!filter)
  1030. return NULL;
  1031. if (lumaGBlur!=0.0) {
  1032. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  1033. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  1034. } else {
  1035. filter->lumH= sws_getIdentityVec();
  1036. filter->lumV= sws_getIdentityVec();
  1037. }
  1038. if (chromaGBlur!=0.0) {
  1039. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  1040. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  1041. } else {
  1042. filter->chrH= sws_getIdentityVec();
  1043. filter->chrV= sws_getIdentityVec();
  1044. }
  1045. if (chromaSharpen!=0.0) {
  1046. SwsVector *id= sws_getIdentityVec();
  1047. sws_scaleVec(filter->chrH, -chromaSharpen);
  1048. sws_scaleVec(filter->chrV, -chromaSharpen);
  1049. sws_addVec(filter->chrH, id);
  1050. sws_addVec(filter->chrV, id);
  1051. sws_freeVec(id);
  1052. }
  1053. if (lumaSharpen!=0.0) {
  1054. SwsVector *id= sws_getIdentityVec();
  1055. sws_scaleVec(filter->lumH, -lumaSharpen);
  1056. sws_scaleVec(filter->lumV, -lumaSharpen);
  1057. sws_addVec(filter->lumH, id);
  1058. sws_addVec(filter->lumV, id);
  1059. sws_freeVec(id);
  1060. }
  1061. if (chromaHShift != 0.0)
  1062. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  1063. if (chromaVShift != 0.0)
  1064. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  1065. sws_normalizeVec(filter->chrH, 1.0);
  1066. sws_normalizeVec(filter->chrV, 1.0);
  1067. sws_normalizeVec(filter->lumH, 1.0);
  1068. sws_normalizeVec(filter->lumV, 1.0);
  1069. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1070. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1071. return filter;
  1072. }
  1073. SwsVector *sws_allocVec(int length)
  1074. {
  1075. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1076. if (!vec)
  1077. return NULL;
  1078. vec->length = length;
  1079. vec->coeff = av_malloc(sizeof(double) * length);
  1080. if (!vec->coeff)
  1081. av_freep(&vec);
  1082. return vec;
  1083. }
  1084. SwsVector *sws_getGaussianVec(double variance, double quality)
  1085. {
  1086. const int length= (int)(variance*quality + 0.5) | 1;
  1087. int i;
  1088. double middle= (length-1)*0.5;
  1089. SwsVector *vec= sws_allocVec(length);
  1090. if (!vec)
  1091. return NULL;
  1092. for (i=0; i<length; i++) {
  1093. double dist= i-middle;
  1094. vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
  1095. }
  1096. sws_normalizeVec(vec, 1.0);
  1097. return vec;
  1098. }
  1099. SwsVector *sws_getConstVec(double c, int length)
  1100. {
  1101. int i;
  1102. SwsVector *vec= sws_allocVec(length);
  1103. if (!vec)
  1104. return NULL;
  1105. for (i=0; i<length; i++)
  1106. vec->coeff[i]= c;
  1107. return vec;
  1108. }
  1109. SwsVector *sws_getIdentityVec(void)
  1110. {
  1111. return sws_getConstVec(1.0, 1);
  1112. }
  1113. static double sws_dcVec(SwsVector *a)
  1114. {
  1115. int i;
  1116. double sum=0;
  1117. for (i=0; i<a->length; i++)
  1118. sum+= a->coeff[i];
  1119. return sum;
  1120. }
  1121. void sws_scaleVec(SwsVector *a, double scalar)
  1122. {
  1123. int i;
  1124. for (i=0; i<a->length; i++)
  1125. a->coeff[i]*= scalar;
  1126. }
  1127. void sws_normalizeVec(SwsVector *a, double height)
  1128. {
  1129. sws_scaleVec(a, height/sws_dcVec(a));
  1130. }
  1131. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1132. {
  1133. int length= a->length + b->length - 1;
  1134. int i, j;
  1135. SwsVector *vec= sws_getConstVec(0.0, length);
  1136. if (!vec)
  1137. return NULL;
  1138. for (i=0; i<a->length; i++) {
  1139. for (j=0; j<b->length; j++) {
  1140. vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
  1141. }
  1142. }
  1143. return vec;
  1144. }
  1145. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1146. {
  1147. int length= FFMAX(a->length, b->length);
  1148. int i;
  1149. SwsVector *vec= sws_getConstVec(0.0, length);
  1150. if (!vec)
  1151. return NULL;
  1152. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1153. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  1154. return vec;
  1155. }
  1156. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1157. {
  1158. int length= FFMAX(a->length, b->length);
  1159. int i;
  1160. SwsVector *vec= sws_getConstVec(0.0, length);
  1161. if (!vec)
  1162. return NULL;
  1163. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1164. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  1165. return vec;
  1166. }
  1167. /* shift left / or right if "shift" is negative */
  1168. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1169. {
  1170. int length= a->length + FFABS(shift)*2;
  1171. int i;
  1172. SwsVector *vec= sws_getConstVec(0.0, length);
  1173. if (!vec)
  1174. return NULL;
  1175. for (i=0; i<a->length; i++) {
  1176. vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  1177. }
  1178. return vec;
  1179. }
  1180. void sws_shiftVec(SwsVector *a, int shift)
  1181. {
  1182. SwsVector *shifted= sws_getShiftedVec(a, shift);
  1183. av_free(a->coeff);
  1184. a->coeff= shifted->coeff;
  1185. a->length= shifted->length;
  1186. av_free(shifted);
  1187. }
  1188. void sws_addVec(SwsVector *a, SwsVector *b)
  1189. {
  1190. SwsVector *sum= sws_sumVec(a, b);
  1191. av_free(a->coeff);
  1192. a->coeff= sum->coeff;
  1193. a->length= sum->length;
  1194. av_free(sum);
  1195. }
  1196. void sws_subVec(SwsVector *a, SwsVector *b)
  1197. {
  1198. SwsVector *diff= sws_diffVec(a, b);
  1199. av_free(a->coeff);
  1200. a->coeff= diff->coeff;
  1201. a->length= diff->length;
  1202. av_free(diff);
  1203. }
  1204. void sws_convVec(SwsVector *a, SwsVector *b)
  1205. {
  1206. SwsVector *conv= sws_getConvVec(a, b);
  1207. av_free(a->coeff);
  1208. a->coeff= conv->coeff;
  1209. a->length= conv->length;
  1210. av_free(conv);
  1211. }
  1212. SwsVector *sws_cloneVec(SwsVector *a)
  1213. {
  1214. int i;
  1215. SwsVector *vec= sws_allocVec(a->length);
  1216. if (!vec)
  1217. return NULL;
  1218. for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
  1219. return vec;
  1220. }
  1221. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1222. {
  1223. int i;
  1224. double max=0;
  1225. double min=0;
  1226. double range;
  1227. for (i=0; i<a->length; i++)
  1228. if (a->coeff[i]>max) max= a->coeff[i];
  1229. for (i=0; i<a->length; i++)
  1230. if (a->coeff[i]<min) min= a->coeff[i];
  1231. range= max - min;
  1232. for (i=0; i<a->length; i++) {
  1233. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  1234. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1235. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  1236. av_log(log_ctx, log_level, "|\n");
  1237. }
  1238. }
  1239. #if LIBSWSCALE_VERSION_MAJOR < 1
  1240. void sws_printVec(SwsVector *a)
  1241. {
  1242. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  1243. }
  1244. #endif
  1245. void sws_freeVec(SwsVector *a)
  1246. {
  1247. if (!a) return;
  1248. av_freep(&a->coeff);
  1249. a->length=0;
  1250. av_free(a);
  1251. }
  1252. void sws_freeFilter(SwsFilter *filter)
  1253. {
  1254. if (!filter) return;
  1255. if (filter->lumH) sws_freeVec(filter->lumH);
  1256. if (filter->lumV) sws_freeVec(filter->lumV);
  1257. if (filter->chrH) sws_freeVec(filter->chrH);
  1258. if (filter->chrV) sws_freeVec(filter->chrV);
  1259. av_free(filter);
  1260. }
  1261. void sws_freeContext(SwsContext *c)
  1262. {
  1263. int i;
  1264. if (!c) return;
  1265. if (c->lumPixBuf) {
  1266. for (i=0; i<c->vLumBufSize; i++)
  1267. av_freep(&c->lumPixBuf[i]);
  1268. av_freep(&c->lumPixBuf);
  1269. }
  1270. if (c->chrUPixBuf) {
  1271. for (i=0; i<c->vChrBufSize; i++)
  1272. av_freep(&c->chrUPixBuf[i]);
  1273. av_freep(&c->chrUPixBuf);
  1274. av_freep(&c->chrVPixBuf);
  1275. }
  1276. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1277. for (i=0; i<c->vLumBufSize; i++)
  1278. av_freep(&c->alpPixBuf[i]);
  1279. av_freep(&c->alpPixBuf);
  1280. }
  1281. av_freep(&c->vLumFilter);
  1282. av_freep(&c->vChrFilter);
  1283. av_freep(&c->hLumFilter);
  1284. av_freep(&c->hChrFilter);
  1285. #if HAVE_ALTIVEC
  1286. av_freep(&c->vYCoeffsBank);
  1287. av_freep(&c->vCCoeffsBank);
  1288. #endif
  1289. av_freep(&c->vLumFilterPos);
  1290. av_freep(&c->vChrFilterPos);
  1291. av_freep(&c->hLumFilterPos);
  1292. av_freep(&c->hChrFilterPos);
  1293. #if HAVE_MMX
  1294. #ifdef MAP_ANONYMOUS
  1295. if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1296. if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1297. #elif HAVE_VIRTUALALLOC
  1298. if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1299. if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1300. #else
  1301. av_free(c->lumMmx2FilterCode);
  1302. av_free(c->chrMmx2FilterCode);
  1303. #endif
  1304. c->lumMmx2FilterCode=NULL;
  1305. c->chrMmx2FilterCode=NULL;
  1306. #endif /* HAVE_MMX */
  1307. av_freep(&c->yuvTable);
  1308. av_freep(&c->formatConvBuffer);
  1309. av_free(c);
  1310. }
  1311. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  1312. int srcW, int srcH, enum PixelFormat srcFormat,
  1313. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1314. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1315. {
  1316. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  1317. if (!param)
  1318. param = default_param;
  1319. if (context &&
  1320. (context->srcW != srcW ||
  1321. context->srcH != srcH ||
  1322. context->srcFormat != srcFormat ||
  1323. context->dstW != dstW ||
  1324. context->dstH != dstH ||
  1325. context->dstFormat != dstFormat ||
  1326. context->flags != flags ||
  1327. context->param[0] != param[0] ||
  1328. context->param[1] != param[1])) {
  1329. sws_freeContext(context);
  1330. context = NULL;
  1331. }
  1332. if (!context) {
  1333. if (!(context = sws_alloc_context()))
  1334. return NULL;
  1335. context->srcW = srcW;
  1336. context->srcH = srcH;
  1337. context->srcRange = handle_jpeg(&srcFormat);
  1338. context->srcFormat = srcFormat;
  1339. context->dstW = dstW;
  1340. context->dstH = dstH;
  1341. context->dstRange = handle_jpeg(&dstFormat);
  1342. context->dstFormat = dstFormat;
  1343. context->flags = flags;
  1344. context->param[0] = param[0];
  1345. context->param[1] = param[1];
  1346. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
  1347. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1348. sws_freeContext(context);
  1349. return NULL;
  1350. }
  1351. }
  1352. return context;
  1353. }