filters.texi 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380
  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{av_parse_graph()} function defined in
  17. @file{libavfilter/avfiltergraph}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your Libav build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section anull
  82. Pass the audio source unchanged to the output.
  83. @c man end AUDIO FILTERS
  84. @chapter Audio Sources
  85. @c man begin AUDIO SOURCES
  86. Below is a description of the currently available audio sources.
  87. @section anullsrc
  88. Null audio source, never return audio frames. It is mainly useful as a
  89. template and to be employed in analysis / debugging tools.
  90. It accepts as optional parameter a string of the form
  91. @var{sample_rate}:@var{channel_layout}.
  92. @var{sample_rate} specify the sample rate, and defaults to 44100.
  93. @var{channel_layout} specify the channel layout, and can be either an
  94. integer or a string representing a channel layout. The default value
  95. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  96. Check the channel_layout_map definition in
  97. @file{libavcodec/audioconvert.c} for the mapping between strings and
  98. channel layout values.
  99. Follow some examples:
  100. @example
  101. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  102. anullsrc=48000:4
  103. # same as
  104. anullsrc=48000:mono
  105. @end example
  106. @c man end AUDIO SOURCES
  107. @chapter Audio Sinks
  108. @c man begin AUDIO SINKS
  109. Below is a description of the currently available audio sinks.
  110. @section anullsink
  111. Null audio sink, do absolutely nothing with the input audio. It is
  112. mainly useful as a template and to be employed in analysis / debugging
  113. tools.
  114. @c man end AUDIO SINKS
  115. @chapter Video Filters
  116. @c man begin VIDEO FILTERS
  117. When you configure your Libav build, you can disable any of the
  118. existing filters using --disable-filters.
  119. The configure output will show the video filters included in your
  120. build.
  121. Below is a description of the currently available video filters.
  122. @section blackframe
  123. Detect frames that are (almost) completely black. Can be useful to
  124. detect chapter transitions or commercials. Output lines consist of
  125. the frame number of the detected frame, the percentage of blackness,
  126. the position in the file if known or -1 and the timestamp in seconds.
  127. In order to display the output lines, you need to set the loglevel at
  128. least to the AV_LOG_INFO value.
  129. The filter accepts the syntax:
  130. @example
  131. blackframe[=@var{amount}:[@var{threshold}]]
  132. @end example
  133. @var{amount} is the percentage of the pixels that have to be below the
  134. threshold, and defaults to 98.
  135. @var{threshold} is the threshold below which a pixel value is
  136. considered black, and defaults to 32.
  137. @section copy
  138. Copy the input source unchanged to the output. Mainly useful for
  139. testing purposes.
  140. @section crop
  141. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  142. The parameters are expressions containing the following constants:
  143. @table @option
  144. @item E, PI, PHI
  145. the corresponding mathematical approximated values for e
  146. (euler number), pi (greek PI), PHI (golden ratio)
  147. @item x, y
  148. the computed values for @var{x} and @var{y}. They are evaluated for
  149. each new frame.
  150. @item in_w, in_h
  151. the input width and heigth
  152. @item iw, ih
  153. same as @var{in_w} and @var{in_h}
  154. @item out_w, out_h
  155. the output (cropped) width and heigth
  156. @item ow, oh
  157. same as @var{out_w} and @var{out_h}
  158. @item n
  159. the number of input frame, starting from 0
  160. @item pos
  161. the position in the file of the input frame, NAN if unknown
  162. @item t
  163. timestamp expressed in seconds, NAN if the input timestamp is unknown
  164. @end table
  165. The @var{out_w} and @var{out_h} parameters specify the expressions for
  166. the width and height of the output (cropped) video. They are
  167. evaluated just at the configuration of the filter.
  168. The default value of @var{out_w} is "in_w", and the default value of
  169. @var{out_h} is "in_h".
  170. The expression for @var{out_w} may depend on the value of @var{out_h},
  171. and the expression for @var{out_h} may depend on @var{out_w}, but they
  172. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  173. evaluated after @var{out_w} and @var{out_h}.
  174. The @var{x} and @var{y} parameters specify the expressions for the
  175. position of the top-left corner of the output (non-cropped) area. They
  176. are evaluated for each frame. If the evaluated value is not valid, it
  177. is approximated to the nearest valid value.
  178. The default value of @var{x} is "(in_w-out_w)/2", and the default
  179. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  180. the center of the input image.
  181. The expression for @var{x} may depend on @var{y}, and the expression
  182. for @var{y} may depend on @var{x}.
  183. Follow some examples:
  184. @example
  185. # crop the central input area with size 100x100
  186. crop=100:100
  187. # crop the central input area with size 2/3 of the input video
  188. "crop=2/3*in_w:2/3*in_h"
  189. # crop the input video central square
  190. crop=in_h
  191. # delimit the rectangle with the top-left corner placed at position
  192. # 100:100 and the right-bottom corner corresponding to the right-bottom
  193. # corner of the input image.
  194. crop=in_w-100:in_h-100:100:100
  195. # crop 10 pixels from the left and right borders, and 20 pixels from
  196. # the top and bottom borders
  197. "crop=in_w-2*10:in_h-2*20"
  198. # keep only the bottom right quarter of the input image
  199. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  200. # crop height for getting Greek harmony
  201. "crop=in_w:1/PHI*in_w"
  202. # trembling effect
  203. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  204. # erratic camera effect depending on timestamp
  205. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  206. # set x depending on the value of y
  207. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  208. @end example
  209. @section cropdetect
  210. Auto-detect crop size.
  211. Calculate necessary cropping parameters and prints the recommended
  212. parameters through the logging system. The detected dimensions
  213. correspond to the non-black area of the input video.
  214. It accepts the syntax:
  215. @example
  216. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  217. @end example
  218. @table @option
  219. @item limit
  220. Threshold, which can be optionally specified from nothing (0) to
  221. everything (255), defaults to 24.
  222. @item round
  223. Value which the width/height should be divisible by, defaults to
  224. 16. The offset is automatically adjusted to center the video. Use 2 to
  225. get only even dimensions (needed for 4:2:2 video). 16 is best when
  226. encoding to most video codecs.
  227. @item reset
  228. Counter that determines after how many frames cropdetect will reset
  229. the previously detected largest video area and start over to detect
  230. the current optimal crop area. Defaults to 0.
  231. This can be useful when channel logos distort the video area. 0
  232. indicates never reset and return the largest area encountered during
  233. playback.
  234. @end table
  235. @section drawbox
  236. Draw a colored box on the input image.
  237. It accepts the syntax:
  238. @example
  239. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  240. @end example
  241. @table @option
  242. @item x, y
  243. Specify the top left corner coordinates of the box. Default to 0.
  244. @item width, height
  245. Specify the width and height of the box, if 0 they are interpreted as
  246. the input width and height. Default to 0.
  247. @item color
  248. Specify the color of the box to write, it can be the name of a color
  249. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  250. @end table
  251. Follow some examples:
  252. @example
  253. # draw a black box around the edge of the input image
  254. drawbox
  255. # draw a box with color red and an opacity of 50%
  256. drawbox=10:20:200:60:red@@0.5"
  257. @end example
  258. @section fade
  259. Apply fade-in/out effect to input video.
  260. It accepts the parameters:
  261. @var{type}:@var{start_frame}:@var{nb_frames}
  262. @var{type} specifies if the effect type, can be either "in" for
  263. fade-in, or "out" for a fade-out effect.
  264. @var{start_frame} specifies the number of the start frame for starting
  265. to apply the fade effect.
  266. @var{nb_frames} specifies the number of frames for which the fade
  267. effect has to last. At the end of the fade-in effect the output video
  268. will have the same intensity as the input video, at the end of the
  269. fade-out transition the output video will be completely black.
  270. A few usage examples follow, usable too as test scenarios.
  271. @example
  272. # fade in first 30 frames of video
  273. fade=in:0:30
  274. # fade out last 45 frames of a 200-frame video
  275. fade=out:155:45
  276. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  277. fade=in:0:25, fade=out:975:25
  278. # make first 5 frames black, then fade in from frame 5-24
  279. fade=in:5:20
  280. @end example
  281. @section fieldorder
  282. Transform the field order of the input video.
  283. It accepts one parameter which specifies the required field order that
  284. the input interlaced video will be transformed to. The parameter can
  285. assume one of the following values:
  286. @table @option
  287. @item 0 or bff
  288. output bottom field first
  289. @item 1 or tff
  290. output top field first
  291. @end table
  292. Default value is "tff".
  293. Transformation is achieved by shifting the picture content up or down
  294. by one line, and filling the remaining line with appropriate picture content.
  295. This method is consistent with most broadcast field order converters.
  296. If the input video is not flagged as being interlaced, or it is already
  297. flagged as being of the required output field order then this filter does
  298. not alter the incoming video.
  299. This filter is very useful when converting to or from PAL DV material,
  300. which is bottom field first.
  301. For example:
  302. @example
  303. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  304. @end example
  305. @section fifo
  306. Buffer input images and send them when they are requested.
  307. This filter is mainly useful when auto-inserted by the libavfilter
  308. framework.
  309. The filter does not take parameters.
  310. @section format
  311. Convert the input video to one of the specified pixel formats.
  312. Libavfilter will try to pick one that is supported for the input to
  313. the next filter.
  314. The filter accepts a list of pixel format names, separated by ":",
  315. for example "yuv420p:monow:rgb24".
  316. Some examples follow:
  317. @example
  318. # convert the input video to the format "yuv420p"
  319. format=yuv420p
  320. # convert the input video to any of the formats in the list
  321. format=yuv420p:yuv444p:yuv410p
  322. @end example
  323. @anchor{frei0r}
  324. @section frei0r
  325. Apply a frei0r effect to the input video.
  326. To enable compilation of this filter you need to install the frei0r
  327. header and configure Libav with --enable-frei0r.
  328. The filter supports the syntax:
  329. @example
  330. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  331. @end example
  332. @var{filter_name} is the name to the frei0r effect to load. If the
  333. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  334. is searched in each one of the directories specified by the colon
  335. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  336. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  337. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  338. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  339. for the frei0r effect.
  340. A frei0r effect parameter can be a boolean (whose values are specified
  341. with "y" and "n"), a double, a color (specified by the syntax
  342. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  343. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  344. description), a position (specified by the syntax @var{X}/@var{Y},
  345. @var{X} and @var{Y} being float numbers) and a string.
  346. The number and kind of parameters depend on the loaded effect. If an
  347. effect parameter is not specified the default value is set.
  348. Some examples follow:
  349. @example
  350. # apply the distort0r effect, set the first two double parameters
  351. frei0r=distort0r:0.5:0.01
  352. # apply the colordistance effect, takes a color as first parameter
  353. frei0r=colordistance:0.2/0.3/0.4
  354. frei0r=colordistance:violet
  355. frei0r=colordistance:0x112233
  356. # apply the perspective effect, specify the top left and top right
  357. # image positions
  358. frei0r=perspective:0.2/0.2:0.8/0.2
  359. @end example
  360. For more information see:
  361. @url{http://piksel.org/frei0r}
  362. @section gradfun
  363. Fix the banding artifacts that are sometimes introduced into nearly flat
  364. regions by truncation to 8bit colordepth.
  365. Interpolate the gradients that should go where the bands are, and
  366. dither them.
  367. This filter is designed for playback only. Do not use it prior to
  368. lossy compression, because compression tends to lose the dither and
  369. bring back the bands.
  370. The filter takes two optional parameters, separated by ':':
  371. @var{strength}:@var{radius}
  372. @var{strength} is the maximum amount by which the filter will change
  373. any one pixel. Also the threshold for detecting nearly flat
  374. regions. Acceptable values range from .51 to 255, default value is
  375. 1.2, out-of-range values will be clipped to the valid range.
  376. @var{radius} is the neighborhood to fit the gradient to. A larger
  377. radius makes for smoother gradients, but also prevents the filter from
  378. modifying the pixels near detailed regions. Acceptable values are
  379. 8-32, default value is 16, out-of-range values will be clipped to the
  380. valid range.
  381. @example
  382. # default parameters
  383. gradfun=1.2:16
  384. # omitting radius
  385. gradfun=1.2
  386. @end example
  387. @section hflip
  388. Flip the input video horizontally.
  389. For example to horizontally flip the video in input with
  390. @file{ffmpeg}:
  391. @example
  392. ffmpeg -i in.avi -vf "hflip" out.avi
  393. @end example
  394. @section hqdn3d
  395. High precision/quality 3d denoise filter. This filter aims to reduce
  396. image noise producing smooth images and making still images really
  397. still. It should enhance compressibility.
  398. It accepts the following optional parameters:
  399. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  400. @table @option
  401. @item luma_spatial
  402. a non-negative float number which specifies spatial luma strength,
  403. defaults to 4.0
  404. @item chroma_spatial
  405. a non-negative float number which specifies spatial chroma strength,
  406. defaults to 3.0*@var{luma_spatial}/4.0
  407. @item luma_tmp
  408. a float number which specifies luma temporal strength, defaults to
  409. 6.0*@var{luma_spatial}/4.0
  410. @item chroma_tmp
  411. a float number which specifies chroma temporal strength, defaults to
  412. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  413. @end table
  414. @section noformat
  415. Force libavfilter not to use any of the specified pixel formats for the
  416. input to the next filter.
  417. The filter accepts a list of pixel format names, separated by ":",
  418. for example "yuv420p:monow:rgb24".
  419. Some examples follow:
  420. @example
  421. # force libavfilter to use a format different from "yuv420p" for the
  422. # input to the vflip filter
  423. noformat=yuv420p,vflip
  424. # convert the input video to any of the formats not contained in the list
  425. noformat=yuv420p:yuv444p:yuv410p
  426. @end example
  427. @section null
  428. Pass the video source unchanged to the output.
  429. @section ocv
  430. Apply video transform using libopencv.
  431. To enable this filter install libopencv library and headers and
  432. configure Libav with --enable-libopencv.
  433. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  434. @var{filter_name} is the name of the libopencv filter to apply.
  435. @var{filter_params} specifies the parameters to pass to the libopencv
  436. filter. If not specified the default values are assumed.
  437. Refer to the official libopencv documentation for more precise
  438. informations:
  439. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  440. Follows the list of supported libopencv filters.
  441. @anchor{dilate}
  442. @subsection dilate
  443. Dilate an image by using a specific structuring element.
  444. This filter corresponds to the libopencv function @code{cvDilate}.
  445. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  446. @var{struct_el} represents a structuring element, and has the syntax:
  447. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  448. @var{cols} and @var{rows} represent the number of colums and rows of
  449. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  450. point, and @var{shape} the shape for the structuring element, and
  451. can be one of the values "rect", "cross", "ellipse", "custom".
  452. If the value for @var{shape} is "custom", it must be followed by a
  453. string of the form "=@var{filename}". The file with name
  454. @var{filename} is assumed to represent a binary image, with each
  455. printable character corresponding to a bright pixel. When a custom
  456. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  457. or columns and rows of the read file are assumed instead.
  458. The default value for @var{struct_el} is "3x3+0x0/rect".
  459. @var{nb_iterations} specifies the number of times the transform is
  460. applied to the image, and defaults to 1.
  461. Follow some example:
  462. @example
  463. # use the default values
  464. ocv=dilate
  465. # dilate using a structuring element with a 5x5 cross, iterate two times
  466. ocv=dilate=5x5+2x2/cross:2
  467. # read the shape from the file diamond.shape, iterate two times
  468. # the file diamond.shape may contain a pattern of characters like this:
  469. # *
  470. # ***
  471. # *****
  472. # ***
  473. # *
  474. # the specified cols and rows are ignored (but not the anchor point coordinates)
  475. ocv=0x0+2x2/custom=diamond.shape:2
  476. @end example
  477. @subsection erode
  478. Erode an image by using a specific structuring element.
  479. This filter corresponds to the libopencv function @code{cvErode}.
  480. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  481. with the same meaning and use of those of the dilate filter
  482. (@pxref{dilate}).
  483. @subsection smooth
  484. Smooth the input video.
  485. The filter takes the following parameters:
  486. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  487. @var{type} is the type of smooth filter to apply, and can be one of
  488. the following values: "blur", "blur_no_scale", "median", "gaussian",
  489. "bilateral". The default value is "gaussian".
  490. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  491. parameters whose meanings depend on smooth type. @var{param1} and
  492. @var{param2} accept integer positive values or 0, @var{param3} and
  493. @var{param4} accept float values.
  494. The default value for @var{param1} is 3, the default value for the
  495. other parameters is 0.
  496. These parameters correspond to the parameters assigned to the
  497. libopencv function @code{cvSmooth}.
  498. @section overlay
  499. Overlay one video on top of another.
  500. It takes two inputs and one output, the first input is the "main"
  501. video on which the second input is overlayed.
  502. It accepts the parameters: @var{x}:@var{y}.
  503. @var{x} is the x coordinate of the overlayed video on the main video,
  504. @var{y} is the y coordinate. The parameters are expressions containing
  505. the following parameters:
  506. @table @option
  507. @item main_w, main_h
  508. main input width and height
  509. @item W, H
  510. same as @var{main_w} and @var{main_h}
  511. @item overlay_w, overlay_h
  512. overlay input width and height
  513. @item w, h
  514. same as @var{overlay_w} and @var{overlay_h}
  515. @end table
  516. Be aware that frames are taken from each input video in timestamp
  517. order, hence, if their initial timestamps differ, it is a a good idea
  518. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  519. have them begin in the same zero timestamp, as it does the example for
  520. the @var{movie} filter.
  521. Follow some examples:
  522. @example
  523. # draw the overlay at 10 pixels from the bottom right
  524. # corner of the main video.
  525. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  526. # insert a transparent PNG logo in the bottom left corner of the input
  527. movie=logo.png [logo];
  528. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  529. # insert 2 different transparent PNG logos (second logo on bottom
  530. # right corner):
  531. movie=logo1.png [logo1];
  532. movie=logo2.png [logo2];
  533. [in][logo1] overlay=10:H-h-10 [in+logo1];
  534. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  535. # add a transparent color layer on top of the main video,
  536. # WxH specifies the size of the main input to the overlay filter
  537. color=red@.3:WxH [over]; [in][over] overlay [out]
  538. @end example
  539. You can chain togheter more overlays but the efficiency of such
  540. approach is yet to be tested.
  541. @section pad
  542. Add paddings to the input image, and places the original input at the
  543. given coordinates @var{x}, @var{y}.
  544. It accepts the following parameters:
  545. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  546. Follows the description of the accepted parameters.
  547. @table @option
  548. @item width, height
  549. Specify the size of the output image with the paddings added. If the
  550. value for @var{width} or @var{height} is 0, the corresponding input size
  551. is used for the output.
  552. The default value of @var{width} and @var{height} is 0.
  553. @item x, y
  554. Specify the offsets where to place the input image in the padded area
  555. with respect to the top/left border of the output image.
  556. The default value of @var{x} and @var{y} is 0.
  557. @item color
  558. Specify the color of the padded area, it can be the name of a color
  559. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  560. The default value of @var{color} is "black".
  561. @end table
  562. For example:
  563. @example
  564. # Add paddings with color "violet" to the input video. Output video
  565. # size is 640x480, the top-left corner of the input video is placed at
  566. # column 0, row 40.
  567. pad=640:480:0:40:violet
  568. @end example
  569. @section pixdesctest
  570. Pixel format descriptor test filter, mainly useful for internal
  571. testing. The output video should be equal to the input video.
  572. For example:
  573. @example
  574. format=monow, pixdesctest
  575. @end example
  576. can be used to test the monowhite pixel format descriptor definition.
  577. @section scale
  578. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  579. The parameters @var{width} and @var{height} are expressions containing
  580. the following constants:
  581. @table @option
  582. @item E, PI, PHI
  583. the corresponding mathematical approximated values for e
  584. (euler number), pi (greek PI), phi (golden ratio)
  585. @item in_w, in_h
  586. the input width and heigth
  587. @item iw, ih
  588. same as @var{in_w} and @var{in_h}
  589. @item out_w, out_h
  590. the output (cropped) width and heigth
  591. @item ow, oh
  592. same as @var{out_w} and @var{out_h}
  593. @item a
  594. input display aspect ratio, same as @var{iw} / @var{ih}
  595. @item hsub, vsub
  596. horizontal and vertical chroma subsample values. For example for the
  597. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  598. @end table
  599. If the input image format is different from the format requested by
  600. the next filter, the scale filter will convert the input to the
  601. requested format.
  602. If the value for @var{width} or @var{height} is 0, the respective input
  603. size is used for the output.
  604. If the value for @var{width} or @var{height} is -1, the scale filter will
  605. use, for the respective output size, a value that maintains the aspect
  606. ratio of the input image.
  607. The default value of @var{width} and @var{height} is 0.
  608. Some examples follow:
  609. @example
  610. # scale the input video to a size of 200x100.
  611. scale=200:100
  612. # scale the input to 2x
  613. scale=2*iw:2*ih
  614. # the above is the same as
  615. scale=2*in_w:2*in_h
  616. # scale the input to half size
  617. scale=iw/2:ih/2
  618. # increase the width, and set the height to the same size
  619. scale=3/2*iw:ow
  620. # seek for Greek harmony
  621. scale=iw:1/PHI*iw
  622. scale=ih*PHI:ih
  623. # increase the height, and set the width to 3/2 of the height
  624. scale=3/2*oh:3/5*ih
  625. # increase the size, but make the size a multiple of the chroma
  626. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  627. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  628. scale='min(500\, iw*3/2):-1'
  629. @end example
  630. @anchor{setdar}
  631. @section setdar
  632. Set the Display Aspect Ratio for the filter output video.
  633. This is done by changing the specified Sample (aka Pixel) Aspect
  634. Ratio, according to the following equation:
  635. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  636. Keep in mind that this filter does not modify the pixel dimensions of
  637. the video frame. Also the display aspect ratio set by this filter may
  638. be changed by later filters in the filterchain, e.g. in case of
  639. scaling or if another "setdar" or a "setsar" filter is applied.
  640. The filter accepts a parameter string which represents the wanted
  641. display aspect ratio.
  642. The parameter can be a floating point number string, or an expression
  643. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  644. numerator and denominator of the aspect ratio.
  645. If the parameter is not specified, it is assumed the value "0:1".
  646. For example to change the display aspect ratio to 16:9, specify:
  647. @example
  648. setdar=16:9
  649. # the above is equivalent to
  650. setdar=1.77777
  651. @end example
  652. See also the "setsar" filter documentation (@pxref{setsar}).
  653. @section setpts
  654. Change the PTS (presentation timestamp) of the input video frames.
  655. Accept in input an expression evaluated through the eval API, which
  656. can contain the following constants:
  657. @table @option
  658. @item PTS
  659. the presentation timestamp in input
  660. @item PI
  661. Greek PI
  662. @item PHI
  663. golden ratio
  664. @item E
  665. Euler number
  666. @item N
  667. the count of the input frame, starting from 0.
  668. @item STARTPTS
  669. the PTS of the first video frame
  670. @item INTERLACED
  671. tell if the current frame is interlaced
  672. @item POS
  673. original position in the file of the frame, or undefined if undefined
  674. for the current frame
  675. @item PREV_INPTS
  676. previous input PTS
  677. @item PREV_OUTPTS
  678. previous output PTS
  679. @end table
  680. Some examples follow:
  681. @example
  682. # start counting PTS from zero
  683. setpts=PTS-STARTPTS
  684. # fast motion
  685. setpts=0.5*PTS
  686. # slow motion
  687. setpts=2.0*PTS
  688. # fixed rate 25 fps
  689. setpts=N/(25*TB)
  690. # fixed rate 25 fps with some jitter
  691. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  692. @end example
  693. @anchor{setsar}
  694. @section setsar
  695. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  696. Note that as a consequence of the application of this filter, the
  697. output display aspect ratio will change according to the following
  698. equation:
  699. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  700. Keep in mind that the sample aspect ratio set by this filter may be
  701. changed by later filters in the filterchain, e.g. if another "setsar"
  702. or a "setdar" filter is applied.
  703. The filter accepts a parameter string which represents the wanted
  704. sample aspect ratio.
  705. The parameter can be a floating point number string, or an expression
  706. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  707. numerator and denominator of the aspect ratio.
  708. If the parameter is not specified, it is assumed the value "0:1".
  709. For example to change the sample aspect ratio to 10:11, specify:
  710. @example
  711. setsar=10:11
  712. @end example
  713. @section settb
  714. Set the timebase to use for the output frames timestamps.
  715. It is mainly useful for testing timebase configuration.
  716. It accepts in input an arithmetic expression representing a rational.
  717. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  718. default timebase), and "intb" (the input timebase).
  719. The default value for the input is "intb".
  720. Follow some examples.
  721. @example
  722. # set the timebase to 1/25
  723. settb=1/25
  724. # set the timebase to 1/10
  725. settb=0.1
  726. #set the timebase to 1001/1000
  727. settb=1+0.001
  728. #set the timebase to 2*intb
  729. settb=2*intb
  730. #set the default timebase value
  731. settb=AVTB
  732. @end example
  733. @section slicify
  734. Pass the images of input video on to next video filter as multiple
  735. slices.
  736. @example
  737. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  738. @end example
  739. The filter accepts the slice height as parameter. If the parameter is
  740. not specified it will use the default value of 16.
  741. Adding this in the beginning of filter chains should make filtering
  742. faster due to better use of the memory cache.
  743. @section transpose
  744. Transpose rows with columns in the input video and optionally flip it.
  745. It accepts a parameter representing an integer, which can assume the
  746. values:
  747. @table @samp
  748. @item 0
  749. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  750. @example
  751. L.R L.l
  752. . . -> . .
  753. l.r R.r
  754. @end example
  755. @item 1
  756. Rotate by 90 degrees clockwise, that is:
  757. @example
  758. L.R l.L
  759. . . -> . .
  760. l.r r.R
  761. @end example
  762. @item 2
  763. Rotate by 90 degrees counterclockwise, that is:
  764. @example
  765. L.R R.r
  766. . . -> . .
  767. l.r L.l
  768. @end example
  769. @item 3
  770. Rotate by 90 degrees clockwise and vertically flip, that is:
  771. @example
  772. L.R r.R
  773. . . -> . .
  774. l.r l.L
  775. @end example
  776. @end table
  777. @section unsharp
  778. Sharpen or blur the input video.
  779. It accepts the following parameters:
  780. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  781. Negative values for the amount will blur the input video, while positive
  782. values will sharpen. All parameters are optional and default to the
  783. equivalent of the string '5:5:1.0:0:0:0.0'.
  784. @table @option
  785. @item luma_msize_x
  786. Set the luma matrix horizontal size. It can be an integer between 3
  787. and 13, default value is 5.
  788. @item luma_msize_y
  789. Set the luma matrix vertical size. It can be an integer between 3
  790. and 13, default value is 5.
  791. @item luma_amount
  792. Set the luma effect strength. It can be a float number between -2.0
  793. and 5.0, default value is 1.0.
  794. @item chroma_msize_x
  795. Set the chroma matrix horizontal size. It can be an integer between 3
  796. and 13, default value is 0.
  797. @item chroma_msize_y
  798. Set the chroma matrix vertical size. It can be an integer between 3
  799. and 13, default value is 0.
  800. @item luma_amount
  801. Set the chroma effect strength. It can be a float number between -2.0
  802. and 5.0, default value is 0.0.
  803. @end table
  804. @example
  805. # Strong luma sharpen effect parameters
  806. unsharp=7:7:2.5
  807. # Strong blur of both luma and chroma parameters
  808. unsharp=7:7:-2:7:7:-2
  809. # Use the default values with @command{ffmpeg}
  810. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  811. @end example
  812. @section vflip
  813. Flip the input video vertically.
  814. @example
  815. ./ffmpeg -i in.avi -vf "vflip" out.avi
  816. @end example
  817. @section yadif
  818. Deinterlace the input video ("yadif" means "yet another deinterlacing
  819. filter").
  820. It accepts the optional parameters: @var{mode}:@var{parity}.
  821. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  822. following values:
  823. @table @option
  824. @item 0
  825. output 1 frame for each frame
  826. @item 1
  827. output 1 frame for each field
  828. @item 2
  829. like 0 but skips spatial interlacing check
  830. @item 3
  831. like 1 but skips spatial interlacing check
  832. @end table
  833. Default value is 0.
  834. @var{parity} specifies the picture field parity assumed for the input
  835. interlaced video, accepts one of the following values:
  836. @table @option
  837. @item 0
  838. assume bottom field first
  839. @item 1
  840. assume top field first
  841. @item -1
  842. enable automatic detection
  843. @end table
  844. Default value is -1.
  845. If interlacing is unknown or decoder does not export this information,
  846. top field first will be assumed.
  847. @c man end VIDEO FILTERS
  848. @chapter Video Sources
  849. @c man begin VIDEO SOURCES
  850. Below is a description of the currently available video sources.
  851. @section buffer
  852. Buffer video frames, and make them available to the filter chain.
  853. This source is mainly intended for a programmatic use, in particular
  854. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  855. It accepts the following parameters:
  856. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}
  857. All the parameters need to be explicitely defined.
  858. Follows the list of the accepted parameters.
  859. @table @option
  860. @item width, height
  861. Specify the width and height of the buffered video frames.
  862. @item pix_fmt_string
  863. A string representing the pixel format of the buffered video frames.
  864. It may be a number corresponding to a pixel format, or a pixel format
  865. name.
  866. @item timebase_num, timebase_den
  867. Specify numerator and denomitor of the timebase assumed by the
  868. timestamps of the buffered frames.
  869. @end table
  870. For example:
  871. @example
  872. buffer=320:240:yuv410p:1:24
  873. @end example
  874. will instruct the source to accept video frames with size 320x240 and
  875. with format "yuv410p" and assuming 1/24 as the timestamps timebase.
  876. Since the pixel format with name "yuv410p" corresponds to the number 6
  877. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  878. this example corresponds to:
  879. @example
  880. buffer=320:240:6:1:24
  881. @end example
  882. @section color
  883. Provide an uniformly colored input.
  884. It accepts the following parameters:
  885. @var{color}:@var{frame_size}:@var{frame_rate}
  886. Follows the description of the accepted parameters.
  887. @table @option
  888. @item color
  889. Specify the color of the source. It can be the name of a color (case
  890. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  891. alpha specifier. The default value is "black".
  892. @item frame_size
  893. Specify the size of the sourced video, it may be a string of the form
  894. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  895. default value is "320x240".
  896. @item frame_rate
  897. Specify the frame rate of the sourced video, as the number of frames
  898. generated per second. It has to be a string in the format
  899. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  900. number or a valid video frame rate abbreviation. The default value is
  901. "25".
  902. @end table
  903. For example the following graph description will generate a red source
  904. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  905. frames per second, which will be overlayed over the source connected
  906. to the pad with identifier "in".
  907. @example
  908. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  909. @end example
  910. @section movie
  911. Read a video stream from a movie container.
  912. It accepts the syntax: @var{movie_name}[:@var{options}] where
  913. @var{movie_name} is the name of the resource to read (not necessarily
  914. a file but also a device or a stream accessed through some protocol),
  915. and @var{options} is an optional sequence of @var{key}=@var{value}
  916. pairs, separated by ":".
  917. The description of the accepted options follows.
  918. @table @option
  919. @item format_name, f
  920. Specifies the format assumed for the movie to read, and can be either
  921. the name of a container or an input device. If not specified the
  922. format is guessed from @var{movie_name} or by probing.
  923. @item seek_point, sp
  924. Specifies the seek point in seconds, the frames will be output
  925. starting from this seek point, the parameter is evaluated with
  926. @code{av_strtod} so the numerical value may be suffixed by an IS
  927. postfix. Default value is "0".
  928. @item stream_index, si
  929. Specifies the index of the video stream to read. If the value is -1,
  930. the best suited video stream will be automatically selected. Default
  931. value is "-1".
  932. @end table
  933. This filter allows to overlay a second video on top of main input of
  934. a filtergraph as shown in this graph:
  935. @example
  936. input -----------> deltapts0 --> overlay --> output
  937. ^
  938. |
  939. movie --> scale--> deltapts1 -------+
  940. @end example
  941. Some examples follow:
  942. @example
  943. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  944. # on top of the input labelled as "in".
  945. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  946. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  947. # read from a video4linux2 device, and overlay it on top of the input
  948. # labelled as "in"
  949. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  950. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  951. @end example
  952. @section nullsrc
  953. Null video source, never return images. It is mainly useful as a
  954. template and to be employed in analysis / debugging tools.
  955. It accepts as optional parameter a string of the form
  956. @var{width}:@var{height}:@var{timebase}.
  957. @var{width} and @var{height} specify the size of the configured
  958. source. The default values of @var{width} and @var{height} are
  959. respectively 352 and 288 (corresponding to the CIF size format).
  960. @var{timebase} specifies an arithmetic expression representing a
  961. timebase. The expression can contain the constants "PI", "E", "PHI",
  962. "AVTB" (the default timebase), and defaults to the value "AVTB".
  963. @section frei0r_src
  964. Provide a frei0r source.
  965. To enable compilation of this filter you need to install the frei0r
  966. header and configure Libav with --enable-frei0r.
  967. The source supports the syntax:
  968. @example
  969. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  970. @end example
  971. @var{size} is the size of the video to generate, may be a string of the
  972. form @var{width}x@var{height} or a frame size abbreviation.
  973. @var{rate} is the rate of the video to generate, may be a string of
  974. the form @var{num}/@var{den} or a frame rate abbreviation.
  975. @var{src_name} is the name to the frei0r source to load. For more
  976. information regarding frei0r and how to set the parameters read the
  977. section "frei0r" (@pxref{frei0r}) in the description of the video
  978. filters.
  979. Some examples follow:
  980. @example
  981. # generate a frei0r partik0l source with size 200x200 and framerate 10
  982. # which is overlayed on the overlay filter main input
  983. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  984. @end example
  985. @c man end VIDEO SOURCES
  986. @chapter Video Sinks
  987. @c man begin VIDEO SINKS
  988. Below is a description of the currently available video sinks.
  989. @section nullsink
  990. Null video sink, do absolutely nothing with the input video. It is
  991. mainly useful as a template and to be employed in analysis / debugging
  992. tools.
  993. @c man end VIDEO SINKS