ratecontrol.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file ratecontrol.c
  24. * Rate control for video encoders.
  25. */
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "ratecontrol.h"
  29. #include "mpegvideo.h"
  30. #include "eval.h"
  31. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  32. #include <assert.h>
  33. #ifndef M_E
  34. #define M_E 2.718281828
  35. #endif
  36. static int init_pass2(MpegEncContext *s);
  37. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  38. void ff_write_pass1_stats(MpegEncContext *s){
  39. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  40. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  41. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  42. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  43. }
  44. static inline double qp2bits(RateControlEntry *rce, double qp){
  45. if(qp<=0.0){
  46. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  47. }
  48. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  49. }
  50. static inline double bits2qp(RateControlEntry *rce, double bits){
  51. if(bits<0.9){
  52. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  53. }
  54. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  55. }
  56. int ff_rate_control_init(MpegEncContext *s)
  57. {
  58. RateControlContext *rcc= &s->rc_context;
  59. int i;
  60. char *error = NULL;
  61. static const char *const_names[]={
  62. "PI",
  63. "E",
  64. "iTex",
  65. "pTex",
  66. "tex",
  67. "mv",
  68. "fCode",
  69. "iCount",
  70. "mcVar",
  71. "var",
  72. "isI",
  73. "isP",
  74. "isB",
  75. "avgQP",
  76. "qComp",
  77. /* "lastIQP",
  78. "lastPQP",
  79. "lastBQP",
  80. "nextNonBQP",*/
  81. "avgIITex",
  82. "avgPITex",
  83. "avgPPTex",
  84. "avgBPTex",
  85. "avgTex",
  86. NULL
  87. };
  88. static double (*func1[])(void *, double)={
  89. (void *)bits2qp,
  90. (void *)qp2bits,
  91. NULL
  92. };
  93. static const char *func1_names[]={
  94. "bits2qp",
  95. "qp2bits",
  96. NULL
  97. };
  98. emms_c();
  99. rcc->rc_eq_eval = ff_parse(s->avctx->rc_eq, const_names, func1, func1_names, NULL, NULL, &error);
  100. if (!rcc->rc_eq_eval) {
  101. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
  102. return -1;
  103. }
  104. for(i=0; i<5; i++){
  105. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  106. rcc->pred[i].count= 1.0;
  107. rcc->pred[i].decay= 0.4;
  108. rcc->i_cplx_sum [i]=
  109. rcc->p_cplx_sum [i]=
  110. rcc->mv_bits_sum[i]=
  111. rcc->qscale_sum [i]=
  112. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  113. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  114. }
  115. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  116. if(s->flags&CODEC_FLAG_PASS2){
  117. int i;
  118. char *p;
  119. /* find number of pics */
  120. p= s->avctx->stats_in;
  121. for(i=-1; p; i++){
  122. p= strchr(p+1, ';');
  123. }
  124. i+= s->max_b_frames;
  125. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  126. return -1;
  127. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  128. rcc->num_entries= i;
  129. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  130. for(i=0; i<rcc->num_entries; i++){
  131. RateControlEntry *rce= &rcc->entry[i];
  132. rce->pict_type= rce->new_pict_type=P_TYPE;
  133. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  134. rce->misc_bits= s->mb_num + 10;
  135. rce->mb_var_sum= s->mb_num*100;
  136. }
  137. /* read stats */
  138. p= s->avctx->stats_in;
  139. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  140. RateControlEntry *rce;
  141. int picture_number;
  142. int e;
  143. char *next;
  144. next= strchr(p, ';');
  145. if(next){
  146. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  147. next++;
  148. }
  149. e= sscanf(p, " in:%d ", &picture_number);
  150. assert(picture_number >= 0);
  151. assert(picture_number < rcc->num_entries);
  152. rce= &rcc->entry[picture_number];
  153. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  154. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  155. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  156. if(e!=14){
  157. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  158. return -1;
  159. }
  160. p= next;
  161. }
  162. if(init_pass2(s) < 0) return -1;
  163. //FIXME maybe move to end
  164. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  165. #ifdef CONFIG_XVID
  166. return ff_xvid_rate_control_init(s);
  167. #else
  168. av_log(s->avctx, AV_LOG_ERROR, "XviD ratecontrol requires libavcodec compiled with XviD support\n");
  169. return -1;
  170. #endif
  171. }
  172. }
  173. if(!(s->flags&CODEC_FLAG_PASS2)){
  174. rcc->short_term_qsum=0.001;
  175. rcc->short_term_qcount=0.001;
  176. rcc->pass1_rc_eq_output_sum= 0.001;
  177. rcc->pass1_wanted_bits=0.001;
  178. /* init stuff with the user specified complexity */
  179. if(s->avctx->rc_initial_cplx){
  180. for(i=0; i<60*30; i++){
  181. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  182. RateControlEntry rce;
  183. double q;
  184. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  185. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  186. else rce.pict_type= P_TYPE;
  187. rce.new_pict_type= rce.pict_type;
  188. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  189. rce.mb_var_sum = s->mb_num;
  190. rce.qscale = FF_QP2LAMBDA * 2;
  191. rce.f_code = 2;
  192. rce.b_code = 1;
  193. rce.misc_bits= 1;
  194. if(s->pict_type== I_TYPE){
  195. rce.i_count = s->mb_num;
  196. rce.i_tex_bits= bits;
  197. rce.p_tex_bits= 0;
  198. rce.mv_bits= 0;
  199. }else{
  200. rce.i_count = 0; //FIXME we do know this approx
  201. rce.i_tex_bits= 0;
  202. rce.p_tex_bits= bits*0.9;
  203. rce.mv_bits= bits*0.1;
  204. }
  205. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  206. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  207. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  208. rcc->frame_count[rce.pict_type] ++;
  209. bits= rce.i_tex_bits + rce.p_tex_bits;
  210. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  211. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps
  212. }
  213. }
  214. }
  215. return 0;
  216. }
  217. void ff_rate_control_uninit(MpegEncContext *s)
  218. {
  219. RateControlContext *rcc= &s->rc_context;
  220. emms_c();
  221. ff_eval_free(rcc->rc_eq_eval);
  222. av_freep(&rcc->entry);
  223. #ifdef CONFIG_XVID
  224. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  225. ff_xvid_rate_control_uninit(s);
  226. #endif
  227. }
  228. int ff_vbv_update(MpegEncContext *s, int frame_size){
  229. RateControlContext *rcc= &s->rc_context;
  230. const double fps= 1/av_q2d(s->avctx->time_base);
  231. const int buffer_size= s->avctx->rc_buffer_size;
  232. const double min_rate= s->avctx->rc_min_rate/fps;
  233. const double max_rate= s->avctx->rc_max_rate/fps;
  234. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  235. if(buffer_size){
  236. int left;
  237. rcc->buffer_index-= frame_size;
  238. if(rcc->buffer_index < 0){
  239. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  240. rcc->buffer_index= 0;
  241. }
  242. left= buffer_size - rcc->buffer_index - 1;
  243. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  244. if(rcc->buffer_index > buffer_size){
  245. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  246. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  247. stuffing=4;
  248. rcc->buffer_index -= 8*stuffing;
  249. if(s->avctx->debug & FF_DEBUG_RC)
  250. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  251. return stuffing;
  252. }
  253. }
  254. return 0;
  255. }
  256. /**
  257. * modifies the bitrate curve from pass1 for one frame
  258. */
  259. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  260. RateControlContext *rcc= &s->rc_context;
  261. AVCodecContext *a= s->avctx;
  262. double q, bits;
  263. const int pict_type= rce->new_pict_type;
  264. const double mb_num= s->mb_num;
  265. int i;
  266. double const_values[]={
  267. M_PI,
  268. M_E,
  269. rce->i_tex_bits*rce->qscale,
  270. rce->p_tex_bits*rce->qscale,
  271. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  272. rce->mv_bits/mb_num,
  273. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  274. rce->i_count/mb_num,
  275. rce->mc_mb_var_sum/mb_num,
  276. rce->mb_var_sum/mb_num,
  277. rce->pict_type == I_TYPE,
  278. rce->pict_type == P_TYPE,
  279. rce->pict_type == B_TYPE,
  280. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  281. a->qcompress,
  282. /* rcc->last_qscale_for[I_TYPE],
  283. rcc->last_qscale_for[P_TYPE],
  284. rcc->last_qscale_for[B_TYPE],
  285. rcc->next_non_b_qscale,*/
  286. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  287. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  288. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  289. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  290. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  291. 0
  292. };
  293. bits= ff_parse_eval(rcc->rc_eq_eval, const_values, rce);
  294. if (isnan(bits)) {
  295. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  296. return -1;
  297. }
  298. rcc->pass1_rc_eq_output_sum+= bits;
  299. bits*=rate_factor;
  300. if(bits<0.0) bits=0.0;
  301. bits+= 1.0; //avoid 1/0 issues
  302. /* user override */
  303. for(i=0; i<s->avctx->rc_override_count; i++){
  304. RcOverride *rco= s->avctx->rc_override;
  305. if(rco[i].start_frame > frame_num) continue;
  306. if(rco[i].end_frame < frame_num) continue;
  307. if(rco[i].qscale)
  308. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  309. else
  310. bits*= rco[i].quality_factor;
  311. }
  312. q= bits2qp(rce, bits);
  313. /* I/B difference */
  314. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  315. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  316. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  317. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  318. return q;
  319. }
  320. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  321. RateControlContext *rcc= &s->rc_context;
  322. AVCodecContext *a= s->avctx;
  323. const int pict_type= rce->new_pict_type;
  324. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  325. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  326. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  327. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  328. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  329. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  330. /* last qscale / qdiff stuff */
  331. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  332. double last_q= rcc->last_qscale_for[pict_type];
  333. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  334. if (q > last_q + maxdiff) q= last_q + maxdiff;
  335. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  336. }
  337. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  338. if(pict_type!=B_TYPE)
  339. rcc->last_non_b_pict_type= pict_type;
  340. return q;
  341. }
  342. /**
  343. * gets the qmin & qmax for pict_type
  344. */
  345. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  346. int qmin= s->avctx->lmin;
  347. int qmax= s->avctx->lmax;
  348. assert(qmin <= qmax);
  349. if(pict_type==B_TYPE){
  350. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  351. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  352. }else if(pict_type==I_TYPE){
  353. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  354. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  355. }
  356. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  357. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  358. if(qmax<qmin) qmax= qmin;
  359. *qmin_ret= qmin;
  360. *qmax_ret= qmax;
  361. }
  362. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  363. RateControlContext *rcc= &s->rc_context;
  364. int qmin, qmax;
  365. double bits;
  366. const int pict_type= rce->new_pict_type;
  367. const double buffer_size= s->avctx->rc_buffer_size;
  368. const double fps= 1/av_q2d(s->avctx->time_base);
  369. const double min_rate= s->avctx->rc_min_rate / fps;
  370. const double max_rate= s->avctx->rc_max_rate / fps;
  371. get_qminmax(&qmin, &qmax, s, pict_type);
  372. /* modulation */
  373. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  374. q*= s->avctx->rc_qmod_amp;
  375. bits= qp2bits(rce, q);
  376. //printf("q:%f\n", q);
  377. /* buffer overflow/underflow protection */
  378. if(buffer_size){
  379. double expected_size= rcc->buffer_index;
  380. double q_limit;
  381. if(min_rate){
  382. double d= 2*(buffer_size - expected_size)/buffer_size;
  383. if(d>1.0) d=1.0;
  384. else if(d<0.0001) d=0.0001;
  385. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  386. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  387. if(q > q_limit){
  388. if(s->avctx->debug&FF_DEBUG_RC){
  389. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  390. }
  391. q= q_limit;
  392. }
  393. }
  394. if(max_rate){
  395. double d= 2*expected_size/buffer_size;
  396. if(d>1.0) d=1.0;
  397. else if(d<0.0001) d=0.0001;
  398. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  399. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  400. if(q < q_limit){
  401. if(s->avctx->debug&FF_DEBUG_RC){
  402. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  403. }
  404. q= q_limit;
  405. }
  406. }
  407. }
  408. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  409. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  410. if (q<qmin) q=qmin;
  411. else if(q>qmax) q=qmax;
  412. }else{
  413. double min2= log(qmin);
  414. double max2= log(qmax);
  415. q= log(q);
  416. q= (q - min2)/(max2-min2) - 0.5;
  417. q*= -4.0;
  418. q= 1.0/(1.0 + exp(q));
  419. q= q*(max2-min2) + min2;
  420. q= exp(q);
  421. }
  422. return q;
  423. }
  424. //----------------------------------
  425. // 1 Pass Code
  426. static double predict_size(Predictor *p, double q, double var)
  427. {
  428. return p->coeff*var / (q*p->count);
  429. }
  430. /*
  431. static double predict_qp(Predictor *p, double size, double var)
  432. {
  433. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  434. return p->coeff*var / (size*p->count);
  435. }
  436. */
  437. static void update_predictor(Predictor *p, double q, double var, double size)
  438. {
  439. double new_coeff= size*q / (var + 1);
  440. if(var<10) return;
  441. p->count*= p->decay;
  442. p->coeff*= p->decay;
  443. p->count++;
  444. p->coeff+= new_coeff;
  445. }
  446. static void adaptive_quantization(MpegEncContext *s, double q){
  447. int i;
  448. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  449. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  450. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  451. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  452. const float p_masking = s->avctx->p_masking;
  453. const float border_masking = s->avctx->border_masking;
  454. float bits_sum= 0.0;
  455. float cplx_sum= 0.0;
  456. float cplx_tab[s->mb_num];
  457. float bits_tab[s->mb_num];
  458. const int qmin= s->avctx->mb_lmin;
  459. const int qmax= s->avctx->mb_lmax;
  460. Picture * const pic= &s->current_picture;
  461. const int mb_width = s->mb_width;
  462. const int mb_height = s->mb_height;
  463. for(i=0; i<s->mb_num; i++){
  464. const int mb_xy= s->mb_index2xy[i];
  465. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  466. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  467. const int lumi= pic->mb_mean[mb_xy];
  468. float bits, cplx, factor;
  469. int mb_x = mb_xy % s->mb_stride;
  470. int mb_y = mb_xy / s->mb_stride;
  471. int mb_distance;
  472. float mb_factor = 0.0;
  473. #if 0
  474. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  475. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  476. #endif
  477. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  478. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  479. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  480. cplx= spat_cplx;
  481. factor= 1.0 + p_masking;
  482. }else{
  483. cplx= temp_cplx;
  484. factor= pow(temp_cplx, - temp_cplx_masking);
  485. }
  486. factor*=pow(spat_cplx, - spatial_cplx_masking);
  487. if(lumi>127)
  488. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  489. else
  490. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  491. if(mb_x < mb_width/5){
  492. mb_distance = mb_width/5 - mb_x;
  493. mb_factor = (float)mb_distance / (float)(mb_width/5);
  494. }else if(mb_x > 4*mb_width/5){
  495. mb_distance = mb_x - 4*mb_width/5;
  496. mb_factor = (float)mb_distance / (float)(mb_width/5);
  497. }
  498. if(mb_y < mb_height/5){
  499. mb_distance = mb_height/5 - mb_y;
  500. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  501. }else if(mb_y > 4*mb_height/5){
  502. mb_distance = mb_y - 4*mb_height/5;
  503. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  504. }
  505. factor*= 1.0 - border_masking*mb_factor;
  506. if(factor<0.00001) factor= 0.00001;
  507. bits= cplx*factor;
  508. cplx_sum+= cplx;
  509. bits_sum+= bits;
  510. cplx_tab[i]= cplx;
  511. bits_tab[i]= bits;
  512. }
  513. /* handle qmin/qmax cliping */
  514. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  515. float factor= bits_sum/cplx_sum;
  516. for(i=0; i<s->mb_num; i++){
  517. float newq= q*cplx_tab[i]/bits_tab[i];
  518. newq*= factor;
  519. if (newq > qmax){
  520. bits_sum -= bits_tab[i];
  521. cplx_sum -= cplx_tab[i]*q/qmax;
  522. }
  523. else if(newq < qmin){
  524. bits_sum -= bits_tab[i];
  525. cplx_sum -= cplx_tab[i]*q/qmin;
  526. }
  527. }
  528. if(bits_sum < 0.001) bits_sum= 0.001;
  529. if(cplx_sum < 0.001) cplx_sum= 0.001;
  530. }
  531. for(i=0; i<s->mb_num; i++){
  532. const int mb_xy= s->mb_index2xy[i];
  533. float newq= q*cplx_tab[i]/bits_tab[i];
  534. int intq;
  535. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  536. newq*= bits_sum/cplx_sum;
  537. }
  538. intq= (int)(newq + 0.5);
  539. if (intq > qmax) intq= qmax;
  540. else if(intq < qmin) intq= qmin;
  541. //if(i%s->mb_width==0) printf("\n");
  542. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  543. s->lambda_table[mb_xy]= intq;
  544. }
  545. }
  546. void ff_get_2pass_fcode(MpegEncContext *s){
  547. RateControlContext *rcc= &s->rc_context;
  548. int picture_number= s->picture_number;
  549. RateControlEntry *rce;
  550. rce= &rcc->entry[picture_number];
  551. s->f_code= rce->f_code;
  552. s->b_code= rce->b_code;
  553. }
  554. //FIXME rd or at least approx for dquant
  555. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  556. {
  557. float q;
  558. int qmin, qmax;
  559. float br_compensation;
  560. double diff;
  561. double short_term_q;
  562. double fps;
  563. int picture_number= s->picture_number;
  564. int64_t wanted_bits;
  565. RateControlContext *rcc= &s->rc_context;
  566. AVCodecContext *a= s->avctx;
  567. RateControlEntry local_rce, *rce;
  568. double bits;
  569. double rate_factor;
  570. int var;
  571. const int pict_type= s->pict_type;
  572. Picture * const pic= &s->current_picture;
  573. emms_c();
  574. #ifdef CONFIG_XVID
  575. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  576. return ff_xvid_rate_estimate_qscale(s, dry_run);
  577. #endif
  578. get_qminmax(&qmin, &qmax, s, pict_type);
  579. fps= 1/av_q2d(s->avctx->time_base);
  580. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  581. /* update predictors */
  582. if(picture_number>2 && !dry_run){
  583. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  584. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  585. }
  586. if(s->flags&CODEC_FLAG_PASS2){
  587. assert(picture_number>=0);
  588. assert(picture_number<rcc->num_entries);
  589. rce= &rcc->entry[picture_number];
  590. wanted_bits= rce->expected_bits;
  591. }else{
  592. rce= &local_rce;
  593. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  594. }
  595. diff= s->total_bits - wanted_bits;
  596. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  597. if(br_compensation<=0.0) br_compensation=0.001;
  598. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  599. short_term_q = 0; /* avoid warning */
  600. if(s->flags&CODEC_FLAG_PASS2){
  601. if(pict_type!=I_TYPE)
  602. assert(pict_type == rce->new_pict_type);
  603. q= rce->new_qscale / br_compensation;
  604. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  605. }else{
  606. rce->pict_type=
  607. rce->new_pict_type= pict_type;
  608. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  609. rce->mb_var_sum = pic-> mb_var_sum;
  610. rce->qscale = FF_QP2LAMBDA * 2;
  611. rce->f_code = s->f_code;
  612. rce->b_code = s->b_code;
  613. rce->misc_bits= 1;
  614. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  615. if(pict_type== I_TYPE){
  616. rce->i_count = s->mb_num;
  617. rce->i_tex_bits= bits;
  618. rce->p_tex_bits= 0;
  619. rce->mv_bits= 0;
  620. }else{
  621. rce->i_count = 0; //FIXME we do know this approx
  622. rce->i_tex_bits= 0;
  623. rce->p_tex_bits= bits*0.9;
  624. rce->mv_bits= bits*0.1;
  625. }
  626. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  627. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  628. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  629. rcc->frame_count[pict_type] ++;
  630. bits= rce->i_tex_bits + rce->p_tex_bits;
  631. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  632. q= get_qscale(s, rce, rate_factor, picture_number);
  633. if (q < 0)
  634. return -1;
  635. assert(q>0.0);
  636. //printf("%f ", q);
  637. q= get_diff_limited_q(s, rce, q);
  638. //printf("%f ", q);
  639. assert(q>0.0);
  640. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
  641. rcc->short_term_qsum*=a->qblur;
  642. rcc->short_term_qcount*=a->qblur;
  643. rcc->short_term_qsum+= q;
  644. rcc->short_term_qcount++;
  645. //printf("%f ", q);
  646. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  647. //printf("%f ", q);
  648. }
  649. assert(q>0.0);
  650. q= modify_qscale(s, rce, q, picture_number);
  651. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  652. assert(q>0.0);
  653. }
  654. if(s->avctx->debug&FF_DEBUG_RC){
  655. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  656. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  657. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  658. );
  659. }
  660. if (q<qmin) q=qmin;
  661. else if(q>qmax) q=qmax;
  662. if(s->adaptive_quant)
  663. adaptive_quantization(s, q);
  664. else
  665. q= (int)(q + 0.5);
  666. if(!dry_run){
  667. rcc->last_qscale= q;
  668. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  669. rcc->last_mb_var_sum= pic->mb_var_sum;
  670. }
  671. #if 0
  672. {
  673. static int mvsum=0, texsum=0;
  674. mvsum += s->mv_bits;
  675. texsum += s->i_tex_bits + s->p_tex_bits;
  676. printf("%d %d//\n\n", mvsum, texsum);
  677. }
  678. #endif
  679. return q;
  680. }
  681. //----------------------------------------------
  682. // 2-Pass code
  683. static int init_pass2(MpegEncContext *s)
  684. {
  685. RateControlContext *rcc= &s->rc_context;
  686. AVCodecContext *a= s->avctx;
  687. int i, toobig;
  688. double fps= 1/av_q2d(s->avctx->time_base);
  689. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  690. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  691. uint64_t all_const_bits;
  692. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  693. double rate_factor=0;
  694. double step;
  695. //int last_i_frame=-10000000;
  696. const int filter_size= (int)(a->qblur*4) | 1;
  697. double expected_bits;
  698. double *qscale, *blured_qscale, qscale_sum;
  699. /* find complexity & const_bits & decide the pict_types */
  700. for(i=0; i<rcc->num_entries; i++){
  701. RateControlEntry *rce= &rcc->entry[i];
  702. rce->new_pict_type= rce->pict_type;
  703. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  704. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  705. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  706. rcc->frame_count[rce->pict_type] ++;
  707. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  708. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  709. }
  710. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  711. if(all_available_bits < all_const_bits){
  712. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  713. return -1;
  714. }
  715. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  716. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  717. toobig = 0;
  718. for(step=256*256; step>0.0000001; step*=0.5){
  719. expected_bits=0;
  720. rate_factor+= step;
  721. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  722. /* find qscale */
  723. for(i=0; i<rcc->num_entries; i++){
  724. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  725. }
  726. assert(filter_size%2==1);
  727. /* fixed I/B QP relative to P mode */
  728. for(i=rcc->num_entries-1; i>=0; i--){
  729. RateControlEntry *rce= &rcc->entry[i];
  730. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  731. }
  732. /* smooth curve */
  733. for(i=0; i<rcc->num_entries; i++){
  734. RateControlEntry *rce= &rcc->entry[i];
  735. const int pict_type= rce->new_pict_type;
  736. int j;
  737. double q=0.0, sum=0.0;
  738. for(j=0; j<filter_size; j++){
  739. int index= i+j-filter_size/2;
  740. double d= index-i;
  741. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  742. if(index < 0 || index >= rcc->num_entries) continue;
  743. if(pict_type != rcc->entry[index].new_pict_type) continue;
  744. q+= qscale[index] * coeff;
  745. sum+= coeff;
  746. }
  747. blured_qscale[i]= q/sum;
  748. }
  749. /* find expected bits */
  750. for(i=0; i<rcc->num_entries; i++){
  751. RateControlEntry *rce= &rcc->entry[i];
  752. double bits;
  753. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  754. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  755. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  756. bits += 8*ff_vbv_update(s, bits);
  757. rce->expected_bits= expected_bits;
  758. expected_bits += bits;
  759. }
  760. /*
  761. av_log(s->avctx, AV_LOG_INFO,
  762. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  763. expected_bits, (int)all_available_bits, rate_factor);
  764. */
  765. if(expected_bits > all_available_bits) {
  766. rate_factor-= step;
  767. ++toobig;
  768. }
  769. }
  770. av_free(qscale);
  771. av_free(blured_qscale);
  772. /* check bitrate calculations and print info */
  773. qscale_sum = 0.0;
  774. for(i=0; i<rcc->num_entries; i++){
  775. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  776. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  777. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  778. }
  779. assert(toobig <= 40);
  780. av_log(s->avctx, AV_LOG_DEBUG,
  781. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  782. s->bit_rate,
  783. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  784. av_log(s->avctx, AV_LOG_DEBUG,
  785. "[lavc rc] estimated target average qp: %.3f\n",
  786. (float)qscale_sum / rcc->num_entries);
  787. if (toobig == 0) {
  788. av_log(s->avctx, AV_LOG_INFO,
  789. "[lavc rc] Using all of requested bitrate is not "
  790. "necessary for this video with these parameters.\n");
  791. } else if (toobig == 40) {
  792. av_log(s->avctx, AV_LOG_ERROR,
  793. "[lavc rc] Error: bitrate too low for this video "
  794. "with these parameters.\n");
  795. return -1;
  796. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  797. av_log(s->avctx, AV_LOG_ERROR,
  798. "[lavc rc] Error: 2pass curve failed to converge\n");
  799. return -1;
  800. }
  801. return 0;
  802. }