qdm2.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042
  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. *
  24. */
  25. /**
  26. * @file qdm2.c
  27. * QDM2 decoder
  28. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  29. * The decoder is not perfect yet, there are still some distortions
  30. * especially on files encoded with 16 or 8 subbands.
  31. */
  32. #include <math.h>
  33. #include <stddef.h>
  34. #include <stdio.h>
  35. #define ALT_BITSTREAM_READER_LE
  36. #include "avcodec.h"
  37. #include "bitstream.h"
  38. #include "dsputil.h"
  39. #ifdef CONFIG_MPEGAUDIO_HP
  40. #define USE_HIGHPRECISION
  41. #endif
  42. #include "mpegaudio.h"
  43. #include "qdm2data.h"
  44. #undef NDEBUG
  45. #include <assert.h>
  46. #define SOFTCLIP_THRESHOLD 27600
  47. #define HARDCLIP_THRESHOLD 35716
  48. #define QDM2_LIST_ADD(list, size, packet) \
  49. do { \
  50. if (size > 0) { \
  51. list[size - 1].next = &list[size]; \
  52. } \
  53. list[size].packet = packet; \
  54. list[size].next = NULL; \
  55. size++; \
  56. } while(0)
  57. // Result is 8, 16 or 30
  58. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  59. #define FIX_NOISE_IDX(noise_idx) \
  60. if ((noise_idx) >= 3840) \
  61. (noise_idx) -= 3840; \
  62. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  63. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  64. #define SAMPLES_NEEDED \
  65. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  66. #define SAMPLES_NEEDED_2(why) \
  67. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  68. typedef int8_t sb_int8_array[2][30][64];
  69. /**
  70. * Subpacket
  71. */
  72. typedef struct {
  73. int type; ///< subpacket type
  74. unsigned int size; ///< subpacket size
  75. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  76. } QDM2SubPacket;
  77. /**
  78. * A node in the subpacket list
  79. */
  80. typedef struct _QDM2SubPNode {
  81. QDM2SubPacket *packet; ///< packet
  82. struct _QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  83. } QDM2SubPNode;
  84. typedef struct {
  85. float level;
  86. float *samples_im;
  87. float *samples_re;
  88. float *table;
  89. int phase;
  90. int phase_shift;
  91. int duration;
  92. short time_index;
  93. short cutoff;
  94. } FFTTone;
  95. typedef struct {
  96. int16_t sub_packet;
  97. uint8_t channel;
  98. int16_t offset;
  99. int16_t exp;
  100. uint8_t phase;
  101. } FFTCoefficient;
  102. typedef struct {
  103. float re;
  104. float im;
  105. } QDM2Complex;
  106. typedef struct {
  107. QDM2Complex complex[256 + 1] __attribute__((aligned(16)));
  108. float samples_im[MPA_MAX_CHANNELS][256];
  109. float samples_re[MPA_MAX_CHANNELS][256];
  110. } QDM2FFT;
  111. /**
  112. * QDM2 decoder context
  113. */
  114. typedef struct {
  115. /// Parameters from codec header, do not change during playback
  116. int nb_channels; ///< number of channels
  117. int channels; ///< number of channels
  118. int group_size; ///< size of frame group (16 frames per group)
  119. int fft_size; ///< size of FFT, in complex numbers
  120. int checksum_size; ///< size of data block, used also for checksum
  121. /// Parameters built from header parameters, do not change during playback
  122. int group_order; ///< order of frame group
  123. int fft_order; ///< order of FFT (actually fftorder+1)
  124. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  125. int frame_size; ///< size of data frame
  126. int frequency_range;
  127. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  128. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  129. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  130. /// Packets and packet lists
  131. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  132. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  133. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  134. int sub_packets_B; ///< number of packets on 'B' list
  135. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  136. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  137. /// FFT and tones
  138. FFTTone fft_tones[1000];
  139. int fft_tone_start;
  140. int fft_tone_end;
  141. FFTCoefficient fft_coefs[1000];
  142. int fft_coefs_index;
  143. int fft_coefs_min_index[5];
  144. int fft_coefs_max_index[5];
  145. int fft_level_exp[6];
  146. FFTContext fft_ctx;
  147. FFTComplex exptab[128];
  148. QDM2FFT fft;
  149. /// I/O data
  150. uint8_t *compressed_data;
  151. int compressed_size;
  152. float output_buffer[1024];
  153. /// Synthesis filter
  154. MPA_INT synth_buf[MPA_MAX_CHANNELS][512*2] __attribute__((aligned(16)));
  155. int synth_buf_offset[MPA_MAX_CHANNELS];
  156. int32_t sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT] __attribute__((aligned(16)));
  157. /// Mixed temporary data used in decoding
  158. float tone_level[MPA_MAX_CHANNELS][30][64];
  159. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  160. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  161. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  162. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  163. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  164. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  165. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  166. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  167. // Flags
  168. int has_errors; ///< packet has errors
  169. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  170. int do_synth_filter; ///< used to perform or skip synthesis filter
  171. int sub_packet;
  172. int noise_idx; ///< index for dithering noise table
  173. } QDM2Context;
  174. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  175. static VLC vlc_tab_level;
  176. static VLC vlc_tab_diff;
  177. static VLC vlc_tab_run;
  178. static VLC fft_level_exp_alt_vlc;
  179. static VLC fft_level_exp_vlc;
  180. static VLC fft_stereo_exp_vlc;
  181. static VLC fft_stereo_phase_vlc;
  182. static VLC vlc_tab_tone_level_idx_hi1;
  183. static VLC vlc_tab_tone_level_idx_mid;
  184. static VLC vlc_tab_tone_level_idx_hi2;
  185. static VLC vlc_tab_type30;
  186. static VLC vlc_tab_type34;
  187. static VLC vlc_tab_fft_tone_offset[5];
  188. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  189. static float noise_table[4096];
  190. static uint8_t random_dequant_index[256][5];
  191. static uint8_t random_dequant_type24[128][3];
  192. static float noise_samples[128];
  193. static MPA_INT mpa_window[512] __attribute__((aligned(16)));
  194. static void softclip_table_init(void) {
  195. int i;
  196. double dfl = SOFTCLIP_THRESHOLD - 32767;
  197. float delta = 1.0 / -dfl;
  198. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  199. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  200. }
  201. // random generated table
  202. static void rnd_table_init(void) {
  203. int i,j;
  204. uint32_t ldw,hdw;
  205. uint64_t tmp64_1;
  206. uint64_t random_seed = 0;
  207. float delta = 1.0 / 16384.0;
  208. for(i = 0; i < 4096 ;i++) {
  209. random_seed = random_seed * 214013 + 2531011;
  210. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  211. }
  212. for (i = 0; i < 256 ;i++) {
  213. random_seed = 81;
  214. ldw = i;
  215. for (j = 0; j < 5 ;j++) {
  216. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  217. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  218. tmp64_1 = (random_seed * 0x55555556);
  219. hdw = (uint32_t)(tmp64_1 >> 32);
  220. random_seed = (uint64_t)(hdw + (ldw >> 31));
  221. }
  222. }
  223. for (i = 0; i < 128 ;i++) {
  224. random_seed = 25;
  225. ldw = i;
  226. for (j = 0; j < 3 ;j++) {
  227. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  228. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  229. tmp64_1 = (random_seed * 0x66666667);
  230. hdw = (uint32_t)(tmp64_1 >> 33);
  231. random_seed = hdw + (ldw >> 31);
  232. }
  233. }
  234. }
  235. static void init_noise_samples(void) {
  236. int i;
  237. int random_seed = 0;
  238. float delta = 1.0 / 16384.0;
  239. for (i = 0; i < 128;i++) {
  240. random_seed = random_seed * 214013 + 2531011;
  241. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  242. }
  243. }
  244. static void qdm2_init_vlc(void)
  245. {
  246. init_vlc (&vlc_tab_level, 8, 24,
  247. vlc_tab_level_huffbits, 1, 1,
  248. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  249. init_vlc (&vlc_tab_diff, 8, 37,
  250. vlc_tab_diff_huffbits, 1, 1,
  251. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  252. init_vlc (&vlc_tab_run, 5, 6,
  253. vlc_tab_run_huffbits, 1, 1,
  254. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  255. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  256. fft_level_exp_alt_huffbits, 1, 1,
  257. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  258. init_vlc (&fft_level_exp_vlc, 8, 20,
  259. fft_level_exp_huffbits, 1, 1,
  260. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  261. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  262. fft_stereo_exp_huffbits, 1, 1,
  263. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  264. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  265. fft_stereo_phase_huffbits, 1, 1,
  266. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  267. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  268. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  269. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  270. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  271. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  272. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  273. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  274. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  275. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  276. init_vlc (&vlc_tab_type30, 6, 9,
  277. vlc_tab_type30_huffbits, 1, 1,
  278. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  279. init_vlc (&vlc_tab_type34, 5, 10,
  280. vlc_tab_type34_huffbits, 1, 1,
  281. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  282. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  283. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  284. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  285. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  286. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  287. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  288. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  289. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  290. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  291. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  292. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  293. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  294. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  295. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  296. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  297. }
  298. /* for floating point to fixed point conversion */
  299. static float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  300. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  301. {
  302. int value;
  303. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  304. /* stage-2, 3 bits exponent escape sequence */
  305. if (value-- == 0)
  306. value = get_bits (gb, get_bits (gb, 3) + 1);
  307. /* stage-3, optional */
  308. if (flag) {
  309. int tmp = vlc_stage3_values[value];
  310. if ((value & ~3) > 0)
  311. tmp += get_bits (gb, (value >> 2));
  312. value = tmp;
  313. }
  314. return value;
  315. }
  316. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  317. {
  318. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  319. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  320. }
  321. /**
  322. * QDM2 checksum
  323. *
  324. * @param data pointer to data to be checksum'ed
  325. * @param length data length
  326. * @param value checksum value
  327. *
  328. * @return 0 if checksum is OK
  329. */
  330. static uint16_t qdm2_packet_checksum (uint8_t *data, int length, int value) {
  331. int i;
  332. for (i=0; i < length; i++)
  333. value -= data[i];
  334. return (uint16_t)(value & 0xffff);
  335. }
  336. /**
  337. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  338. *
  339. * @param gb bitreader context
  340. * @param sub_packet packet under analysis
  341. */
  342. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  343. {
  344. sub_packet->type = get_bits (gb, 8);
  345. if (sub_packet->type == 0) {
  346. sub_packet->size = 0;
  347. sub_packet->data = NULL;
  348. } else {
  349. sub_packet->size = get_bits (gb, 8);
  350. if (sub_packet->type & 0x80) {
  351. sub_packet->size <<= 8;
  352. sub_packet->size |= get_bits (gb, 8);
  353. sub_packet->type &= 0x7f;
  354. }
  355. if (sub_packet->type == 0x7f)
  356. sub_packet->type |= (get_bits (gb, 8) << 8);
  357. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  358. }
  359. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  360. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  361. }
  362. /**
  363. * Return node pointer to first packet of requested type in list.
  364. *
  365. * @param list list of subpackets to be scanned
  366. * @param type type of searched subpacket
  367. * @return node pointer for subpacket if found, else NULL
  368. */
  369. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  370. {
  371. while (list != NULL && list->packet != NULL) {
  372. if (list->packet->type == type)
  373. return list;
  374. list = list->next;
  375. }
  376. return NULL;
  377. }
  378. /**
  379. * Replaces 8 elements with their average value.
  380. * Called by qdm2_decode_superblock before starting subblock decoding.
  381. *
  382. * @param q context
  383. */
  384. static void average_quantized_coeffs (QDM2Context *q)
  385. {
  386. int i, j, n, ch, sum;
  387. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  388. for (ch = 0; ch < q->nb_channels; ch++)
  389. for (i = 0; i < n; i++) {
  390. sum = 0;
  391. for (j = 0; j < 8; j++)
  392. sum += q->quantized_coeffs[ch][i][j];
  393. sum /= 8;
  394. if (sum > 0)
  395. sum--;
  396. for (j=0; j < 8; j++)
  397. q->quantized_coeffs[ch][i][j] = sum;
  398. }
  399. }
  400. /**
  401. * Build subband samples with noise weighted by q->tone_level.
  402. * Called by synthfilt_build_sb_samples.
  403. *
  404. * @param q context
  405. * @param sb subband index
  406. */
  407. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  408. {
  409. int ch, j;
  410. FIX_NOISE_IDX(q->noise_idx);
  411. if (!q->nb_channels)
  412. return;
  413. for (ch = 0; ch < q->nb_channels; ch++)
  414. for (j = 0; j < 64; j++) {
  415. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  416. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  417. }
  418. }
  419. /**
  420. * Called while processing data from subpackets 11 and 12.
  421. * Used after making changes to coding_method array.
  422. *
  423. * @param sb subband index
  424. * @param channels number of channels
  425. * @param coding_method q->coding_method[0][0][0]
  426. */
  427. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  428. {
  429. int j,k;
  430. int ch;
  431. int run, case_val;
  432. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  433. for (ch = 0; ch < channels; ch++) {
  434. for (j = 0; j < 64; ) {
  435. if((coding_method[ch][sb][j] - 8) > 22) {
  436. run = 1;
  437. case_val = 8;
  438. } else {
  439. switch (switchtable[coding_method[ch][sb][j]-8]) {
  440. case 0: run = 10; case_val = 10; break;
  441. case 1: run = 1; case_val = 16; break;
  442. case 2: run = 5; case_val = 24; break;
  443. case 3: run = 3; case_val = 30; break;
  444. case 4: run = 1; case_val = 30; break;
  445. case 5: run = 1; case_val = 8; break;
  446. default: run = 1; case_val = 8; break;
  447. }
  448. }
  449. for (k = 0; k < run; k++)
  450. if (j + k < 128)
  451. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  452. if (k > 0) {
  453. SAMPLES_NEEDED
  454. //not debugged, almost never used
  455. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  456. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  457. }
  458. j += run;
  459. }
  460. }
  461. }
  462. /**
  463. * Related to synthesis filter
  464. * Called by process_subpacket_10
  465. *
  466. * @param q context
  467. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  468. */
  469. static void fill_tone_level_array (QDM2Context *q, int flag)
  470. {
  471. int i, sb, ch, sb_used;
  472. int tmp, tab;
  473. // This should never happen
  474. if (q->nb_channels <= 0)
  475. return;
  476. for (ch = 0; ch < q->nb_channels; ch++)
  477. for (sb = 0; sb < 30; sb++)
  478. for (i = 0; i < 8; i++) {
  479. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  480. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  481. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  482. else
  483. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  484. if(tmp < 0)
  485. tmp += 0xff;
  486. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  487. }
  488. sb_used = QDM2_SB_USED(q->sub_sampling);
  489. if ((q->superblocktype_2_3 != 0) && !flag) {
  490. for (sb = 0; sb < sb_used; sb++)
  491. for (ch = 0; ch < q->nb_channels; ch++)
  492. for (i = 0; i < 64; i++) {
  493. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  494. if (q->tone_level_idx[ch][sb][i] < 0)
  495. q->tone_level[ch][sb][i] = 0;
  496. else
  497. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  498. }
  499. } else {
  500. tab = q->superblocktype_2_3 ? 0 : 1;
  501. for (sb = 0; sb < sb_used; sb++) {
  502. if ((sb >= 4) && (sb <= 23)) {
  503. for (ch = 0; ch < q->nb_channels; ch++)
  504. for (i = 0; i < 64; i++) {
  505. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  506. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  507. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  508. q->tone_level_idx_hi2[ch][sb - 4];
  509. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  510. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  511. q->tone_level[ch][sb][i] = 0;
  512. else
  513. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  514. }
  515. } else {
  516. if (sb > 4) {
  517. for (ch = 0; ch < q->nb_channels; ch++)
  518. for (i = 0; i < 64; i++) {
  519. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  520. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  521. q->tone_level_idx_hi2[ch][sb - 4];
  522. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  523. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  524. q->tone_level[ch][sb][i] = 0;
  525. else
  526. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  527. }
  528. } else {
  529. for (ch = 0; ch < q->nb_channels; ch++)
  530. for (i = 0; i < 64; i++) {
  531. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  532. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  533. q->tone_level[ch][sb][i] = 0;
  534. else
  535. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  536. }
  537. }
  538. }
  539. }
  540. }
  541. return;
  542. }
  543. /**
  544. * Related to synthesis filter
  545. * Called by process_subpacket_11
  546. * c is built with data from subpacket 11
  547. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  548. *
  549. * @param tone_level_idx
  550. * @param tone_level_idx_temp
  551. * @param coding_method q->coding_method[0][0][0]
  552. * @param nb_channels number of channels
  553. * @param c coming from subpacket 11, passed as 8*c
  554. * @param superblocktype_2_3 flag based on superblock packet type
  555. * @param cm_table_select q->cm_table_select
  556. */
  557. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  558. sb_int8_array coding_method, int nb_channels,
  559. int c, int superblocktype_2_3, int cm_table_select)
  560. {
  561. int ch, sb, j;
  562. int tmp, acc, esp_40, comp;
  563. int add1, add2, add3, add4;
  564. int64_t multres;
  565. // This should never happen
  566. if (nb_channels <= 0)
  567. return;
  568. if (!superblocktype_2_3) {
  569. /* This case is untested, no samples available */
  570. SAMPLES_NEEDED
  571. for (ch = 0; ch < nb_channels; ch++)
  572. for (sb = 0; sb < 30; sb++) {
  573. for (j = 1; j < 64; j++) {
  574. add1 = tone_level_idx[ch][sb][j] - 10;
  575. if (add1 < 0)
  576. add1 = 0;
  577. add2 = add3 = add4 = 0;
  578. if (sb > 1) {
  579. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  580. if (add2 < 0)
  581. add2 = 0;
  582. }
  583. if (sb > 0) {
  584. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  585. if (add3 < 0)
  586. add3 = 0;
  587. }
  588. if (sb < 29) {
  589. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  590. if (add4 < 0)
  591. add4 = 0;
  592. }
  593. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  594. if (tmp < 0)
  595. tmp = 0;
  596. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  597. }
  598. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  599. }
  600. acc = 0;
  601. for (ch = 0; ch < nb_channels; ch++)
  602. for (sb = 0; sb < 30; sb++)
  603. for (j = 0; j < 64; j++)
  604. acc += tone_level_idx_temp[ch][sb][j];
  605. if (acc)
  606. tmp = c * 256 / (acc & 0xffff);
  607. multres = 0x66666667 * (acc * 10);
  608. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  609. for (ch = 0; ch < nb_channels; ch++)
  610. for (sb = 0; sb < 30; sb++)
  611. for (j = 0; j < 64; j++) {
  612. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  613. if (comp < 0)
  614. comp += 0xff;
  615. comp /= 256; // signed shift
  616. switch(sb) {
  617. case 0:
  618. if (comp < 30)
  619. comp = 30;
  620. comp += 15;
  621. break;
  622. case 1:
  623. if (comp < 24)
  624. comp = 24;
  625. comp += 10;
  626. break;
  627. case 2:
  628. case 3:
  629. case 4:
  630. if (comp < 16)
  631. comp = 16;
  632. }
  633. if (comp <= 5)
  634. tmp = 0;
  635. else if (comp <= 10)
  636. tmp = 10;
  637. else if (comp <= 16)
  638. tmp = 16;
  639. else if (comp <= 24)
  640. tmp = -1;
  641. else
  642. tmp = 0;
  643. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  644. }
  645. for (sb = 0; sb < 30; sb++)
  646. fix_coding_method_array(sb, nb_channels, coding_method);
  647. for (ch = 0; ch < nb_channels; ch++)
  648. for (sb = 0; sb < 30; sb++)
  649. for (j = 0; j < 64; j++)
  650. if (sb >= 10) {
  651. if (coding_method[ch][sb][j] < 10)
  652. coding_method[ch][sb][j] = 10;
  653. } else {
  654. if (sb >= 2) {
  655. if (coding_method[ch][sb][j] < 16)
  656. coding_method[ch][sb][j] = 16;
  657. } else {
  658. if (coding_method[ch][sb][j] < 30)
  659. coding_method[ch][sb][j] = 30;
  660. }
  661. }
  662. } else { // superblocktype_2_3 != 0
  663. for (ch = 0; ch < nb_channels; ch++)
  664. for (sb = 0; sb < 30; sb++)
  665. for (j = 0; j < 64; j++)
  666. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  667. }
  668. return;
  669. }
  670. /**
  671. *
  672. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  673. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  674. *
  675. * @param q context
  676. * @param gb bitreader context
  677. * @param length packet length in bits
  678. * @param sb_min lower subband processed (sb_min included)
  679. * @param sb_max higher subband processed (sb_max excluded)
  680. */
  681. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  682. {
  683. int sb, j, k, n, ch, run, channels;
  684. int joined_stereo, zero_encoding, chs;
  685. int type34_first;
  686. float type34_div = 0;
  687. float type34_predictor;
  688. float samples[10], sign_bits[16];
  689. if (length == 0) {
  690. // If no data use noise
  691. for (sb=sb_min; sb < sb_max; sb++)
  692. build_sb_samples_from_noise (q, sb);
  693. return;
  694. }
  695. for (sb = sb_min; sb < sb_max; sb++) {
  696. FIX_NOISE_IDX(q->noise_idx);
  697. channels = q->nb_channels;
  698. if (q->nb_channels <= 1 || sb < 12)
  699. joined_stereo = 0;
  700. else if (sb >= 24)
  701. joined_stereo = 1;
  702. else
  703. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  704. if (joined_stereo) {
  705. if (BITS_LEFT(length,gb) >= 16)
  706. for (j = 0; j < 16; j++)
  707. sign_bits[j] = get_bits1 (gb);
  708. for (j = 0; j < 64; j++)
  709. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  710. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  711. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  712. channels = 1;
  713. }
  714. for (ch = 0; ch < channels; ch++) {
  715. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  716. type34_predictor = 0.0;
  717. type34_first = 1;
  718. for (j = 0; j < 128; ) {
  719. switch (q->coding_method[ch][sb][j / 2]) {
  720. case 8:
  721. if (BITS_LEFT(length,gb) >= 10) {
  722. if (zero_encoding) {
  723. for (k = 0; k < 5; k++) {
  724. if ((j + 2 * k) >= 128)
  725. break;
  726. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  727. }
  728. } else {
  729. n = get_bits(gb, 8);
  730. for (k = 0; k < 5; k++)
  731. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  732. }
  733. for (k = 0; k < 5; k++)
  734. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  735. } else {
  736. for (k = 0; k < 10; k++)
  737. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  738. }
  739. run = 10;
  740. break;
  741. case 10:
  742. if (BITS_LEFT(length,gb) >= 1) {
  743. float f = 0.81;
  744. if (get_bits1(gb))
  745. f = -f;
  746. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  747. samples[0] = f;
  748. } else {
  749. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  750. }
  751. run = 1;
  752. break;
  753. case 16:
  754. if (BITS_LEFT(length,gb) >= 10) {
  755. if (zero_encoding) {
  756. for (k = 0; k < 5; k++) {
  757. if ((j + k) >= 128)
  758. break;
  759. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  760. }
  761. } else {
  762. n = get_bits (gb, 8);
  763. for (k = 0; k < 5; k++)
  764. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  765. }
  766. } else {
  767. for (k = 0; k < 5; k++)
  768. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  769. }
  770. run = 5;
  771. break;
  772. case 24:
  773. if (BITS_LEFT(length,gb) >= 7) {
  774. n = get_bits(gb, 7);
  775. for (k = 0; k < 3; k++)
  776. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  777. } else {
  778. for (k = 0; k < 3; k++)
  779. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  780. }
  781. run = 3;
  782. break;
  783. case 30:
  784. if (BITS_LEFT(length,gb) >= 4)
  785. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  786. else
  787. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  788. run = 1;
  789. break;
  790. case 34:
  791. if (BITS_LEFT(length,gb) >= 7) {
  792. if (type34_first) {
  793. type34_div = (float)(1 << get_bits(gb, 2));
  794. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  795. type34_predictor = samples[0];
  796. type34_first = 0;
  797. } else {
  798. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  799. type34_predictor = samples[0];
  800. }
  801. } else {
  802. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  803. }
  804. run = 1;
  805. break;
  806. default:
  807. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  808. run = 1;
  809. break;
  810. }
  811. if (joined_stereo) {
  812. float tmp[10][MPA_MAX_CHANNELS];
  813. for (k = 0; k < run; k++) {
  814. tmp[k][0] = samples[k];
  815. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  816. }
  817. for (chs = 0; chs < q->nb_channels; chs++)
  818. for (k = 0; k < run; k++)
  819. if ((j + k) < 128)
  820. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  821. } else {
  822. for (k = 0; k < run; k++)
  823. if ((j + k) < 128)
  824. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  825. }
  826. j += run;
  827. } // j loop
  828. } // channel loop
  829. } // subband loop
  830. }
  831. /**
  832. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  833. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  834. * same VLC tables as process_subpacket_9 are used.
  835. *
  836. * @param q context
  837. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  838. * @param gb bitreader context
  839. * @param length packet length in bits
  840. */
  841. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  842. {
  843. int i, k, run, level, diff;
  844. if (BITS_LEFT(length,gb) < 16)
  845. return;
  846. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  847. quantized_coeffs[0] = level;
  848. for (i = 0; i < 7; ) {
  849. if (BITS_LEFT(length,gb) < 16)
  850. break;
  851. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  852. if (BITS_LEFT(length,gb) < 16)
  853. break;
  854. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  855. for (k = 1; k <= run; k++)
  856. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  857. level += diff;
  858. i += run;
  859. }
  860. }
  861. /**
  862. * Related to synthesis filter, process data from packet 10
  863. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  864. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  865. *
  866. * @param q context
  867. * @param gb bitreader context
  868. * @param length packet length in bits
  869. */
  870. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  871. {
  872. int sb, j, k, n, ch;
  873. for (ch = 0; ch < q->nb_channels; ch++) {
  874. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  875. if (BITS_LEFT(length,gb) < 16) {
  876. memset(q->quantized_coeffs[ch][0], 0, 8);
  877. break;
  878. }
  879. }
  880. n = q->sub_sampling + 1;
  881. for (sb = 0; sb < n; sb++)
  882. for (ch = 0; ch < q->nb_channels; ch++)
  883. for (j = 0; j < 8; j++) {
  884. if (BITS_LEFT(length,gb) < 1)
  885. break;
  886. if (get_bits1(gb)) {
  887. for (k=0; k < 8; k++) {
  888. if (BITS_LEFT(length,gb) < 16)
  889. break;
  890. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  891. }
  892. } else {
  893. for (k=0; k < 8; k++)
  894. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  895. }
  896. }
  897. n = QDM2_SB_USED(q->sub_sampling) - 4;
  898. for (sb = 0; sb < n; sb++)
  899. for (ch = 0; ch < q->nb_channels; ch++) {
  900. if (BITS_LEFT(length,gb) < 16)
  901. break;
  902. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  903. if (sb > 19)
  904. q->tone_level_idx_hi2[ch][sb] -= 16;
  905. else
  906. for (j = 0; j < 8; j++)
  907. q->tone_level_idx_mid[ch][sb][j] = -16;
  908. }
  909. n = QDM2_SB_USED(q->sub_sampling) - 5;
  910. for (sb = 0; sb < n; sb++)
  911. for (ch = 0; ch < q->nb_channels; ch++)
  912. for (j = 0; j < 8; j++) {
  913. if (BITS_LEFT(length,gb) < 16)
  914. break;
  915. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  916. }
  917. }
  918. /**
  919. * Process subpacket 9, init quantized_coeffs with data from it
  920. *
  921. * @param q context
  922. * @param node pointer to node with packet
  923. */
  924. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  925. {
  926. GetBitContext gb;
  927. int i, j, k, n, ch, run, level, diff;
  928. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  929. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  930. for (i = 1; i < n; i++)
  931. for (ch=0; ch < q->nb_channels; ch++) {
  932. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  933. q->quantized_coeffs[ch][i][0] = level;
  934. for (j = 0; j < (8 - 1); ) {
  935. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  936. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  937. for (k = 1; k <= run; k++)
  938. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  939. level += diff;
  940. j += run;
  941. }
  942. }
  943. for (ch = 0; ch < q->nb_channels; ch++)
  944. for (i = 0; i < 8; i++)
  945. q->quantized_coeffs[ch][0][i] = 0;
  946. }
  947. /**
  948. * Process subpacket 10 if not null, else
  949. *
  950. * @param q context
  951. * @param node pointer to node with packet
  952. * @param length packet length in bits
  953. */
  954. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  955. {
  956. GetBitContext gb;
  957. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  958. if (length != 0) {
  959. init_tone_level_dequantization(q, &gb, length);
  960. fill_tone_level_array(q, 1);
  961. } else {
  962. fill_tone_level_array(q, 0);
  963. }
  964. }
  965. /**
  966. * Process subpacket 11
  967. *
  968. * @param q context
  969. * @param node pointer to node with packet
  970. * @param length packet length in bit
  971. */
  972. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  973. {
  974. GetBitContext gb;
  975. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  976. if (length >= 32) {
  977. int c = get_bits (&gb, 13);
  978. if (c > 3)
  979. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  980. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  981. }
  982. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  983. }
  984. /**
  985. * Process subpacket 12
  986. *
  987. * @param q context
  988. * @param node pointer to node with packet
  989. * @param length packet length in bits
  990. */
  991. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  992. {
  993. GetBitContext gb;
  994. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  995. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  996. }
  997. /*
  998. * Process new subpackets for synthesis filter
  999. *
  1000. * @param q context
  1001. * @param list list with synthesis filter packets (list D)
  1002. */
  1003. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  1004. {
  1005. QDM2SubPNode *nodes[4];
  1006. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1007. if (nodes[0] != NULL)
  1008. process_subpacket_9(q, nodes[0]);
  1009. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1010. if (nodes[1] != NULL)
  1011. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1012. else
  1013. process_subpacket_10(q, NULL, 0);
  1014. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1015. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1016. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1017. else
  1018. process_subpacket_11(q, NULL, 0);
  1019. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1020. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1021. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1022. else
  1023. process_subpacket_12(q, NULL, 0);
  1024. }
  1025. /*
  1026. * Decode superblock, fill packet lists.
  1027. *
  1028. * @param q context
  1029. */
  1030. static void qdm2_decode_super_block (QDM2Context *q)
  1031. {
  1032. GetBitContext gb;
  1033. QDM2SubPacket header, *packet;
  1034. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1035. unsigned int next_index = 0;
  1036. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1037. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1038. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1039. q->sub_packets_B = 0;
  1040. sub_packets_D = 0;
  1041. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1042. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1043. qdm2_decode_sub_packet_header(&gb, &header);
  1044. if (header.type < 2 || header.type >= 8) {
  1045. q->has_errors = 1;
  1046. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1047. return;
  1048. }
  1049. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1050. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1051. init_get_bits(&gb, header.data, header.size*8);
  1052. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1053. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1054. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1055. if (csum != 0) {
  1056. q->has_errors = 1;
  1057. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1058. return;
  1059. }
  1060. }
  1061. q->sub_packet_list_B[0].packet = NULL;
  1062. q->sub_packet_list_D[0].packet = NULL;
  1063. for (i = 0; i < 6; i++)
  1064. if (--q->fft_level_exp[i] < 0)
  1065. q->fft_level_exp[i] = 0;
  1066. for (i = 0; packet_bytes > 0; i++) {
  1067. int j;
  1068. q->sub_packet_list_A[i].next = NULL;
  1069. if (i > 0) {
  1070. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1071. /* seek to next block */
  1072. init_get_bits(&gb, header.data, header.size*8);
  1073. skip_bits(&gb, next_index*8);
  1074. if (next_index >= header.size)
  1075. break;
  1076. }
  1077. /* decode subpacket */
  1078. packet = &q->sub_packets[i];
  1079. qdm2_decode_sub_packet_header(&gb, packet);
  1080. next_index = packet->size + get_bits_count(&gb) / 8;
  1081. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1082. if (packet->type == 0)
  1083. break;
  1084. if (sub_packet_size > packet_bytes) {
  1085. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1086. break;
  1087. packet->size += packet_bytes - sub_packet_size;
  1088. }
  1089. packet_bytes -= sub_packet_size;
  1090. /* add subpacket to 'all subpackets' list */
  1091. q->sub_packet_list_A[i].packet = packet;
  1092. /* add subpacket to related list */
  1093. if (packet->type == 8) {
  1094. SAMPLES_NEEDED_2("packet type 8");
  1095. return;
  1096. } else if (packet->type >= 9 && packet->type <= 12) {
  1097. /* packets for MPEG Audio like Synthesis Filter */
  1098. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1099. } else if (packet->type == 13) {
  1100. for (j = 0; j < 6; j++)
  1101. q->fft_level_exp[j] = get_bits(&gb, 6);
  1102. } else if (packet->type == 14) {
  1103. for (j = 0; j < 6; j++)
  1104. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1105. } else if (packet->type == 15) {
  1106. SAMPLES_NEEDED_2("packet type 15")
  1107. return;
  1108. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1109. /* packets for FFT */
  1110. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1111. }
  1112. } // Packet bytes loop
  1113. /* **************************************************************** */
  1114. if (q->sub_packet_list_D[0].packet != NULL) {
  1115. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1116. q->do_synth_filter = 1;
  1117. } else if (q->do_synth_filter) {
  1118. process_subpacket_10(q, NULL, 0);
  1119. process_subpacket_11(q, NULL, 0);
  1120. process_subpacket_12(q, NULL, 0);
  1121. }
  1122. /* **************************************************************** */
  1123. }
  1124. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1125. int offset, int duration, int channel,
  1126. int exp, int phase)
  1127. {
  1128. if (q->fft_coefs_min_index[duration] < 0)
  1129. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1130. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1131. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1132. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1133. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1134. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1135. q->fft_coefs_index++;
  1136. }
  1137. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1138. {
  1139. int channel, stereo, phase, exp;
  1140. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1141. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1142. int n, offset;
  1143. local_int_4 = 0;
  1144. local_int_28 = 0;
  1145. local_int_20 = 2;
  1146. local_int_8 = (4 - duration);
  1147. local_int_10 = 1 << (q->group_order - duration - 1);
  1148. offset = 1;
  1149. while (1) {
  1150. if (q->superblocktype_2_3) {
  1151. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1152. offset = 1;
  1153. if (n == 0) {
  1154. local_int_4 += local_int_10;
  1155. local_int_28 += (1 << local_int_8);
  1156. } else {
  1157. local_int_4 += 8*local_int_10;
  1158. local_int_28 += (8 << local_int_8);
  1159. }
  1160. }
  1161. offset += (n - 2);
  1162. } else {
  1163. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1164. while (offset >= (local_int_10 - 1)) {
  1165. offset += (1 - (local_int_10 - 1));
  1166. local_int_4 += local_int_10;
  1167. local_int_28 += (1 << local_int_8);
  1168. }
  1169. }
  1170. if (local_int_4 >= q->group_size)
  1171. return;
  1172. local_int_14 = (offset >> local_int_8);
  1173. if (q->nb_channels > 1) {
  1174. channel = get_bits1(gb);
  1175. stereo = get_bits1(gb);
  1176. } else {
  1177. channel = 0;
  1178. stereo = 0;
  1179. }
  1180. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1181. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1182. exp = (exp < 0) ? 0 : exp;
  1183. phase = get_bits(gb, 3);
  1184. stereo_exp = 0;
  1185. stereo_phase = 0;
  1186. if (stereo) {
  1187. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1188. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1189. if (stereo_phase < 0)
  1190. stereo_phase += 8;
  1191. }
  1192. if (q->frequency_range > (local_int_14 + 1)) {
  1193. int sub_packet = (local_int_20 + local_int_28);
  1194. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1195. if (stereo)
  1196. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1197. }
  1198. offset++;
  1199. }
  1200. }
  1201. static void qdm2_decode_fft_packets (QDM2Context *q)
  1202. {
  1203. int i, j, min, max, value, type, unknown_flag;
  1204. GetBitContext gb;
  1205. if (q->sub_packet_list_B[0].packet == NULL)
  1206. return;
  1207. /* reset minimum indices for FFT coefficients */
  1208. q->fft_coefs_index = 0;
  1209. for (i=0; i < 5; i++)
  1210. q->fft_coefs_min_index[i] = -1;
  1211. /* process subpackets ordered by type, largest type first */
  1212. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1213. QDM2SubPacket *packet;
  1214. /* find subpacket with largest type less than max */
  1215. for (j = 0, min = 0, packet = NULL; j < q->sub_packets_B; j++) {
  1216. value = q->sub_packet_list_B[j].packet->type;
  1217. if (value > min && value < max) {
  1218. min = value;
  1219. packet = q->sub_packet_list_B[j].packet;
  1220. }
  1221. }
  1222. max = min;
  1223. /* check for errors (?) */
  1224. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1225. return;
  1226. /* decode FFT tones */
  1227. init_get_bits (&gb, packet->data, packet->size*8);
  1228. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1229. unknown_flag = 1;
  1230. else
  1231. unknown_flag = 0;
  1232. type = packet->type;
  1233. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1234. int duration = q->sub_sampling + 5 - (type & 15);
  1235. if (duration >= 0 && duration < 4)
  1236. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1237. } else if (type == 31) {
  1238. for (j=0; j < 4; j++)
  1239. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1240. } else if (type == 46) {
  1241. for (j=0; j < 6; j++)
  1242. q->fft_level_exp[j] = get_bits(&gb, 6);
  1243. for (j=0; j < 4; j++)
  1244. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1245. }
  1246. } // Loop on B packets
  1247. /* calculate maximum indices for FFT coefficients */
  1248. for (i = 0, j = -1; i < 5; i++)
  1249. if (q->fft_coefs_min_index[i] >= 0) {
  1250. if (j >= 0)
  1251. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1252. j = i;
  1253. }
  1254. if (j >= 0)
  1255. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1256. }
  1257. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1258. {
  1259. float level, f[6];
  1260. int i;
  1261. QDM2Complex c;
  1262. const double iscale = 2.0*M_PI / 512.0;
  1263. tone->phase += tone->phase_shift;
  1264. /* calculate current level (maximum amplitude) of tone */
  1265. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1266. c.im = level * sin(tone->phase*iscale);
  1267. c.re = level * cos(tone->phase*iscale);
  1268. /* generate FFT coefficients for tone */
  1269. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1270. tone->samples_im[0] += c.im;
  1271. tone->samples_re[0] += c.re;
  1272. tone->samples_im[1] -= c.im;
  1273. tone->samples_re[1] -= c.re;
  1274. } else {
  1275. f[1] = -tone->table[4];
  1276. f[0] = tone->table[3] - tone->table[0];
  1277. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1278. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1279. f[4] = tone->table[0] - tone->table[1];
  1280. f[5] = tone->table[2];
  1281. for (i = 0; i < 2; i++) {
  1282. tone->samples_re[fft_cutoff_index_table[tone->cutoff][i]] += c.re * f[i];
  1283. tone->samples_im[fft_cutoff_index_table[tone->cutoff][i]] += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1284. }
  1285. for (i = 0; i < 4; i++) {
  1286. tone->samples_re[i] += c.re * f[i+2];
  1287. tone->samples_im[i] += c.im * f[i+2];
  1288. }
  1289. }
  1290. /* copy the tone if it has not yet died out */
  1291. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1292. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1293. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1294. }
  1295. }
  1296. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1297. {
  1298. int i, j, ch;
  1299. const double iscale = 0.25 * M_PI;
  1300. for (ch = 0; ch < q->channels; ch++) {
  1301. memset(q->fft.samples_im[ch], 0, q->fft_size * sizeof(float));
  1302. memset(q->fft.samples_re[ch], 0, q->fft_size * sizeof(float));
  1303. }
  1304. /* apply FFT tones with duration 4 (1 FFT period) */
  1305. if (q->fft_coefs_min_index[4] >= 0)
  1306. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1307. float level;
  1308. QDM2Complex c;
  1309. if (q->fft_coefs[i].sub_packet != sub_packet)
  1310. break;
  1311. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1312. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1313. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1314. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1315. q->fft.samples_re[ch][q->fft_coefs[i].offset + 0] += c.re;
  1316. q->fft.samples_im[ch][q->fft_coefs[i].offset + 0] += c.im;
  1317. q->fft.samples_re[ch][q->fft_coefs[i].offset + 1] -= c.re;
  1318. q->fft.samples_im[ch][q->fft_coefs[i].offset + 1] -= c.im;
  1319. }
  1320. /* generate existing FFT tones */
  1321. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1322. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1323. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1324. }
  1325. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1326. for (i = 0; i < 4; i++)
  1327. if (q->fft_coefs_min_index[i] >= 0) {
  1328. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1329. int offset, four_i;
  1330. FFTTone tone;
  1331. if (q->fft_coefs[j].sub_packet != sub_packet)
  1332. break;
  1333. four_i = (4 - i);
  1334. offset = q->fft_coefs[j].offset >> four_i;
  1335. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1336. if (offset < q->frequency_range) {
  1337. if (offset < 2)
  1338. tone.cutoff = offset;
  1339. else
  1340. tone.cutoff = (offset >= 60) ? 3 : 2;
  1341. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1342. tone.samples_im = &q->fft.samples_im[ch][offset];
  1343. tone.samples_re = &q->fft.samples_re[ch][offset];
  1344. tone.table = (float*)fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1345. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1346. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1347. tone.duration = i;
  1348. tone.time_index = 0;
  1349. qdm2_fft_generate_tone(q, &tone);
  1350. }
  1351. }
  1352. q->fft_coefs_min_index[i] = j;
  1353. }
  1354. }
  1355. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1356. {
  1357. const int n = 1 << (q->fft_order - 1);
  1358. const int n2 = n >> 1;
  1359. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.25f : 0.50f;
  1360. float c, s, f0, f1, f2, f3;
  1361. int i, j;
  1362. /* prerotation (or something like that) */
  1363. for (i=1; i < n2; i++) {
  1364. j = (n - i);
  1365. c = q->exptab[i].re;
  1366. s = -q->exptab[i].im;
  1367. f0 = (q->fft.samples_re[channel][i] - q->fft.samples_re[channel][j]) * gain;
  1368. f1 = (q->fft.samples_im[channel][i] + q->fft.samples_im[channel][j]) * gain;
  1369. f2 = (q->fft.samples_re[channel][i] + q->fft.samples_re[channel][j]) * gain;
  1370. f3 = (q->fft.samples_im[channel][i] - q->fft.samples_im[channel][j]) * gain;
  1371. q->fft.complex[i].re = s * f0 - c * f1 + f2;
  1372. q->fft.complex[i].im = c * f0 + s * f1 + f3;
  1373. q->fft.complex[j].re = -s * f0 + c * f1 + f2;
  1374. q->fft.complex[j].im = c * f0 + s * f1 - f3;
  1375. }
  1376. q->fft.complex[ 0].re = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1377. q->fft.complex[ 0].im = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1378. q->fft.complex[n2].re = q->fft.samples_re[channel][n2] * gain * 2.0;
  1379. q->fft.complex[n2].im = -q->fft.samples_im[channel][n2] * gain * 2.0;
  1380. ff_fft_permute(&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1381. ff_fft_calc (&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1382. /* add samples to output buffer */
  1383. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1384. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex)[i];
  1385. }
  1386. /**
  1387. * @param q context
  1388. * @param index subpacket number
  1389. */
  1390. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1391. {
  1392. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1393. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1394. /* copy sb_samples */
  1395. sb_used = QDM2_SB_USED(q->sub_sampling);
  1396. for (ch = 0; ch < q->channels; ch++)
  1397. for (i = 0; i < 8; i++)
  1398. for (k=sb_used; k < SBLIMIT; k++)
  1399. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1400. for (ch = 0; ch < q->nb_channels; ch++) {
  1401. OUT_INT *samples_ptr = samples + ch;
  1402. for (i = 0; i < 8; i++) {
  1403. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1404. mpa_window, &dither_state,
  1405. samples_ptr, q->nb_channels,
  1406. q->sb_samples[ch][(8 * index) + i]);
  1407. samples_ptr += 32 * q->nb_channels;
  1408. }
  1409. }
  1410. /* add samples to output buffer */
  1411. sub_sampling = (4 >> q->sub_sampling);
  1412. for (ch = 0; ch < q->channels; ch++)
  1413. for (i = 0; i < q->frame_size; i++)
  1414. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1415. }
  1416. /**
  1417. * Init static data (does not depend on specific file)
  1418. *
  1419. * @param q context
  1420. */
  1421. static void qdm2_init(QDM2Context *q) {
  1422. static int inited = 0;
  1423. if (inited != 0)
  1424. return;
  1425. inited = 1;
  1426. qdm2_init_vlc();
  1427. ff_mpa_synth_init(mpa_window);
  1428. softclip_table_init();
  1429. rnd_table_init();
  1430. init_noise_samples();
  1431. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1432. }
  1433. #if 0
  1434. static void dump_context(QDM2Context *q)
  1435. {
  1436. int i;
  1437. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1438. PRINT("compressed_data",q->compressed_data);
  1439. PRINT("compressed_size",q->compressed_size);
  1440. PRINT("frame_size",q->frame_size);
  1441. PRINT("checksum_size",q->checksum_size);
  1442. PRINT("channels",q->channels);
  1443. PRINT("nb_channels",q->nb_channels);
  1444. PRINT("fft_frame_size",q->fft_frame_size);
  1445. PRINT("fft_size",q->fft_size);
  1446. PRINT("sub_sampling",q->sub_sampling);
  1447. PRINT("fft_order",q->fft_order);
  1448. PRINT("group_order",q->group_order);
  1449. PRINT("group_size",q->group_size);
  1450. PRINT("sub_packet",q->sub_packet);
  1451. PRINT("frequency_range",q->frequency_range);
  1452. PRINT("has_errors",q->has_errors);
  1453. PRINT("fft_tone_end",q->fft_tone_end);
  1454. PRINT("fft_tone_start",q->fft_tone_start);
  1455. PRINT("fft_coefs_index",q->fft_coefs_index);
  1456. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1457. PRINT("cm_table_select",q->cm_table_select);
  1458. PRINT("noise_idx",q->noise_idx);
  1459. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1460. {
  1461. FFTTone *t = &q->fft_tones[i];
  1462. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1463. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1464. // PRINT(" level", t->level);
  1465. PRINT(" phase", t->phase);
  1466. PRINT(" phase_shift", t->phase_shift);
  1467. PRINT(" duration", t->duration);
  1468. PRINT(" samples_im", t->samples_im);
  1469. PRINT(" samples_re", t->samples_re);
  1470. PRINT(" table", t->table);
  1471. }
  1472. }
  1473. #endif
  1474. /**
  1475. * Init parameters from codec extradata
  1476. */
  1477. static int qdm2_decode_init(AVCodecContext *avctx)
  1478. {
  1479. QDM2Context *s = avctx->priv_data;
  1480. uint8_t *extradata;
  1481. int extradata_size;
  1482. int tmp_val, tmp, size;
  1483. int i;
  1484. float alpha;
  1485. /* extradata parsing
  1486. Structure:
  1487. wave {
  1488. frma (QDM2)
  1489. QDCA
  1490. QDCP
  1491. }
  1492. 32 size (including this field)
  1493. 32 tag (=frma)
  1494. 32 type (=QDM2 or QDMC)
  1495. 32 size (including this field, in bytes)
  1496. 32 tag (=QDCA) // maybe mandatory parameters
  1497. 32 unknown (=1)
  1498. 32 channels (=2)
  1499. 32 samplerate (=44100)
  1500. 32 bitrate (=96000)
  1501. 32 block size (=4096)
  1502. 32 frame size (=256) (for one channel)
  1503. 32 packet size (=1300)
  1504. 32 size (including this field, in bytes)
  1505. 32 tag (=QDCP) // maybe some tuneable parameters
  1506. 32 float1 (=1.0)
  1507. 32 zero ?
  1508. 32 float2 (=1.0)
  1509. 32 float3 (=1.0)
  1510. 32 unknown (27)
  1511. 32 unknown (8)
  1512. 32 zero ?
  1513. */
  1514. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1515. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1516. return -1;
  1517. }
  1518. extradata = avctx->extradata;
  1519. extradata_size = avctx->extradata_size;
  1520. while (extradata_size > 7) {
  1521. if (!memcmp(extradata, "frmaQDM", 7))
  1522. break;
  1523. extradata++;
  1524. extradata_size--;
  1525. }
  1526. if (extradata_size < 12) {
  1527. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1528. extradata_size);
  1529. return -1;
  1530. }
  1531. if (memcmp(extradata, "frmaQDM", 7)) {
  1532. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1533. return -1;
  1534. }
  1535. if (extradata[7] == 'C') {
  1536. // s->is_qdmc = 1;
  1537. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1538. return -1;
  1539. }
  1540. extradata += 8;
  1541. extradata_size -= 8;
  1542. size = AV_RB32(extradata);
  1543. if(size > extradata_size){
  1544. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1545. extradata_size, size);
  1546. return -1;
  1547. }
  1548. extradata += 4;
  1549. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1550. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1551. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1552. return -1;
  1553. }
  1554. extradata += 8;
  1555. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1556. extradata += 4;
  1557. avctx->sample_rate = AV_RB32(extradata);
  1558. extradata += 4;
  1559. avctx->bit_rate = AV_RB32(extradata);
  1560. extradata += 4;
  1561. s->group_size = AV_RB32(extradata);
  1562. extradata += 4;
  1563. s->fft_size = AV_RB32(extradata);
  1564. extradata += 4;
  1565. s->checksum_size = AV_RB32(extradata);
  1566. extradata += 4;
  1567. s->fft_order = av_log2(s->fft_size) + 1;
  1568. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1569. // something like max decodable tones
  1570. s->group_order = av_log2(s->group_size) + 1;
  1571. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1572. s->sub_sampling = s->fft_order - 7;
  1573. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1574. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1575. case 0: tmp = 40; break;
  1576. case 1: tmp = 48; break;
  1577. case 2: tmp = 56; break;
  1578. case 3: tmp = 72; break;
  1579. case 4: tmp = 80; break;
  1580. case 5: tmp = 100;break;
  1581. default: tmp=s->sub_sampling; break;
  1582. }
  1583. tmp_val = 0;
  1584. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1585. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1586. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1587. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1588. s->cm_table_select = tmp_val;
  1589. if (s->sub_sampling == 0)
  1590. tmp = 7999;
  1591. else
  1592. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1593. /*
  1594. 0: 7999 -> 0
  1595. 1: 20000 -> 2
  1596. 2: 28000 -> 2
  1597. */
  1598. if (tmp < 8000)
  1599. s->coeff_per_sb_select = 0;
  1600. else if (tmp <= 16000)
  1601. s->coeff_per_sb_select = 1;
  1602. else
  1603. s->coeff_per_sb_select = 2;
  1604. // Fail on unknown fft order, if it's > 9 it can overflow s->exptab[]
  1605. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1606. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1607. return -1;
  1608. }
  1609. ff_fft_init(&s->fft_ctx, s->fft_order - 1, 1);
  1610. for (i = 1; i < (1 << (s->fft_order - 2)); i++) {
  1611. alpha = 2 * M_PI * (float)i / (float)(1 << (s->fft_order - 1));
  1612. s->exptab[i].re = cos(alpha);
  1613. s->exptab[i].im = sin(alpha);
  1614. }
  1615. qdm2_init(s);
  1616. // dump_context(s);
  1617. return 0;
  1618. }
  1619. static int qdm2_decode_close(AVCodecContext *avctx)
  1620. {
  1621. QDM2Context *s = avctx->priv_data;
  1622. ff_fft_end(&s->fft_ctx);
  1623. return 0;
  1624. }
  1625. static void qdm2_decode (QDM2Context *q, uint8_t *in, int16_t *out)
  1626. {
  1627. int ch, i;
  1628. const int frame_size = (q->frame_size * q->channels);
  1629. /* select input buffer */
  1630. q->compressed_data = in;
  1631. q->compressed_size = q->checksum_size;
  1632. // dump_context(q);
  1633. /* copy old block, clear new block of output samples */
  1634. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1635. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1636. /* decode block of QDM2 compressed data */
  1637. if (q->sub_packet == 0) {
  1638. q->has_errors = 0; // zero it for a new super block
  1639. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1640. qdm2_decode_super_block(q);
  1641. }
  1642. /* parse subpackets */
  1643. if (!q->has_errors) {
  1644. if (q->sub_packet == 2)
  1645. qdm2_decode_fft_packets(q);
  1646. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1647. }
  1648. /* sound synthesis stage 1 (FFT) */
  1649. for (ch = 0; ch < q->channels; ch++) {
  1650. qdm2_calculate_fft(q, ch, q->sub_packet);
  1651. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1652. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1653. return;
  1654. }
  1655. }
  1656. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1657. if (!q->has_errors && q->do_synth_filter)
  1658. qdm2_synthesis_filter(q, q->sub_packet);
  1659. q->sub_packet = (q->sub_packet + 1) % 16;
  1660. /* clip and convert output float[] to 16bit signed samples */
  1661. for (i = 0; i < frame_size; i++) {
  1662. int value = (int)q->output_buffer[i];
  1663. if (value > SOFTCLIP_THRESHOLD)
  1664. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1665. else if (value < -SOFTCLIP_THRESHOLD)
  1666. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1667. out[i] = value;
  1668. }
  1669. }
  1670. static int qdm2_decode_frame(AVCodecContext *avctx,
  1671. void *data, int *data_size,
  1672. uint8_t *buf, int buf_size)
  1673. {
  1674. QDM2Context *s = avctx->priv_data;
  1675. if(!buf)
  1676. return 0;
  1677. if(buf_size < s->checksum_size)
  1678. return -1;
  1679. *data_size = s->channels * s->frame_size * sizeof(int16_t);
  1680. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1681. buf_size, buf, s->checksum_size, data, *data_size);
  1682. qdm2_decode(s, buf, data);
  1683. // reading only when next superblock found
  1684. if (s->sub_packet == 0) {
  1685. return s->checksum_size;
  1686. }
  1687. return 0;
  1688. }
  1689. AVCodec qdm2_decoder =
  1690. {
  1691. .name = "qdm2",
  1692. .type = CODEC_TYPE_AUDIO,
  1693. .id = CODEC_ID_QDM2,
  1694. .priv_data_size = sizeof(QDM2Context),
  1695. .init = qdm2_decode_init,
  1696. .close = qdm2_decode_close,
  1697. .decode = qdm2_decode_frame,
  1698. };