vp9.c 172 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362
  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "thread.h"
  27. #include "videodsp.h"
  28. #include "vp56.h"
  29. #include "vp9.h"
  30. #include "vp9data.h"
  31. #include "vp9dsp.h"
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/pixdesc.h"
  34. #define VP9_SYNCCODE 0x498342
  35. enum CompPredMode {
  36. PRED_SINGLEREF,
  37. PRED_COMPREF,
  38. PRED_SWITCHABLE,
  39. };
  40. enum BlockLevel {
  41. BL_64X64,
  42. BL_32X32,
  43. BL_16X16,
  44. BL_8X8,
  45. };
  46. enum BlockSize {
  47. BS_64x64,
  48. BS_64x32,
  49. BS_32x64,
  50. BS_32x32,
  51. BS_32x16,
  52. BS_16x32,
  53. BS_16x16,
  54. BS_16x8,
  55. BS_8x16,
  56. BS_8x8,
  57. BS_8x4,
  58. BS_4x8,
  59. BS_4x4,
  60. N_BS_SIZES,
  61. };
  62. struct VP9mvrefPair {
  63. VP56mv mv[2];
  64. int8_t ref[2];
  65. };
  66. typedef struct VP9Frame {
  67. ThreadFrame tf;
  68. AVBufferRef *extradata;
  69. uint8_t *segmentation_map;
  70. struct VP9mvrefPair *mv;
  71. int uses_2pass;
  72. } VP9Frame;
  73. struct VP9Filter {
  74. uint8_t level[8 * 8];
  75. uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
  76. [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
  77. };
  78. typedef struct VP9Block {
  79. uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
  80. enum FilterMode filter;
  81. VP56mv mv[4 /* b_idx */][2 /* ref */];
  82. enum BlockSize bs;
  83. enum TxfmMode tx, uvtx;
  84. enum BlockLevel bl;
  85. enum BlockPartition bp;
  86. } VP9Block;
  87. typedef struct VP9Context {
  88. VP9DSPContext dsp;
  89. VideoDSPContext vdsp;
  90. GetBitContext gb;
  91. VP56RangeCoder c;
  92. VP56RangeCoder *c_b;
  93. unsigned c_b_size;
  94. VP9Block *b_base, *b;
  95. int pass;
  96. int row, row7, col, col7;
  97. uint8_t *dst[3];
  98. ptrdiff_t y_stride, uv_stride;
  99. // bitstream header
  100. uint8_t keyframe, last_keyframe;
  101. uint8_t last_bpp, bpp, bpp_index, bytesperpixel;
  102. uint8_t invisible;
  103. uint8_t use_last_frame_mvs;
  104. uint8_t errorres;
  105. uint8_t ss_h, ss_v;
  106. uint8_t intraonly;
  107. uint8_t resetctx;
  108. uint8_t refreshrefmask;
  109. uint8_t highprecisionmvs;
  110. enum FilterMode filtermode;
  111. uint8_t allowcompinter;
  112. uint8_t fixcompref;
  113. uint8_t refreshctx;
  114. uint8_t parallelmode;
  115. uint8_t framectxid;
  116. uint8_t refidx[3];
  117. uint8_t signbias[3];
  118. uint8_t varcompref[2];
  119. ThreadFrame refs[8], next_refs[8];
  120. #define CUR_FRAME 0
  121. #define REF_FRAME_MVPAIR 1
  122. #define REF_FRAME_SEGMAP 2
  123. VP9Frame frames[3];
  124. struct {
  125. uint8_t level;
  126. int8_t sharpness;
  127. uint8_t lim_lut[64];
  128. uint8_t mblim_lut[64];
  129. } filter;
  130. struct {
  131. uint8_t enabled;
  132. int8_t mode[2];
  133. int8_t ref[4];
  134. } lf_delta;
  135. uint8_t yac_qi;
  136. int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta;
  137. uint8_t lossless;
  138. #define MAX_SEGMENT 8
  139. struct {
  140. uint8_t enabled;
  141. uint8_t temporal;
  142. uint8_t absolute_vals;
  143. uint8_t update_map;
  144. uint8_t ignore_refmap;
  145. struct {
  146. uint8_t q_enabled;
  147. uint8_t lf_enabled;
  148. uint8_t ref_enabled;
  149. uint8_t skip_enabled;
  150. uint8_t ref_val;
  151. int16_t q_val;
  152. int8_t lf_val;
  153. int16_t qmul[2][2];
  154. uint8_t lflvl[4][2];
  155. } feat[MAX_SEGMENT];
  156. } segmentation;
  157. struct {
  158. unsigned log2_tile_cols, log2_tile_rows;
  159. unsigned tile_cols, tile_rows;
  160. unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
  161. } tiling;
  162. unsigned sb_cols, sb_rows, rows, cols;
  163. struct {
  164. prob_context p;
  165. uint8_t coef[4][2][2][6][6][3];
  166. } prob_ctx[4];
  167. struct {
  168. prob_context p;
  169. uint8_t coef[4][2][2][6][6][11];
  170. uint8_t seg[7];
  171. uint8_t segpred[3];
  172. } prob;
  173. struct {
  174. unsigned y_mode[4][10];
  175. unsigned uv_mode[10][10];
  176. unsigned filter[4][3];
  177. unsigned mv_mode[7][4];
  178. unsigned intra[4][2];
  179. unsigned comp[5][2];
  180. unsigned single_ref[5][2][2];
  181. unsigned comp_ref[5][2];
  182. unsigned tx32p[2][4];
  183. unsigned tx16p[2][3];
  184. unsigned tx8p[2][2];
  185. unsigned skip[3][2];
  186. unsigned mv_joint[4];
  187. struct {
  188. unsigned sign[2];
  189. unsigned classes[11];
  190. unsigned class0[2];
  191. unsigned bits[10][2];
  192. unsigned class0_fp[2][4];
  193. unsigned fp[4];
  194. unsigned class0_hp[2];
  195. unsigned hp[2];
  196. } mv_comp[2];
  197. unsigned partition[4][4][4];
  198. unsigned coef[4][2][2][6][6][3];
  199. unsigned eob[4][2][2][6][6][2];
  200. } counts;
  201. enum TxfmMode txfmmode;
  202. enum CompPredMode comppredmode;
  203. // contextual (left/above) cache
  204. DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
  205. DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
  206. DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
  207. DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16];
  208. DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
  209. DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
  210. DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
  211. DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
  212. DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
  213. DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
  214. DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
  215. DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
  216. uint8_t *above_partition_ctx;
  217. uint8_t *above_mode_ctx;
  218. // FIXME maybe merge some of the below in a flags field?
  219. uint8_t *above_y_nnz_ctx;
  220. uint8_t *above_uv_nnz_ctx[2];
  221. uint8_t *above_skip_ctx; // 1bit
  222. uint8_t *above_txfm_ctx; // 2bit
  223. uint8_t *above_segpred_ctx; // 1bit
  224. uint8_t *above_intra_ctx; // 1bit
  225. uint8_t *above_comp_ctx; // 1bit
  226. uint8_t *above_ref_ctx; // 2bit
  227. uint8_t *above_filter_ctx;
  228. VP56mv (*above_mv_ctx)[2];
  229. // whole-frame cache
  230. uint8_t *intra_pred_data[3];
  231. struct VP9Filter *lflvl;
  232. DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135 * 144 * 2];
  233. // block reconstruction intermediates
  234. int block_alloc_using_2pass;
  235. int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
  236. uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
  237. struct { int x, y; } min_mv, max_mv;
  238. DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64 * 2];
  239. DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64 * 2];
  240. uint16_t mvscale[3][2];
  241. uint8_t mvstep[3][2];
  242. } VP9Context;
  243. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  244. {
  245. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  246. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  247. }, {
  248. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  249. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  250. }
  251. };
  252. static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
  253. {
  254. VP9Context *s = ctx->priv_data;
  255. int ret, sz;
  256. if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
  257. return ret;
  258. sz = 64 * s->sb_cols * s->sb_rows;
  259. if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
  260. ff_thread_release_buffer(ctx, &f->tf);
  261. return AVERROR(ENOMEM);
  262. }
  263. f->segmentation_map = f->extradata->data;
  264. f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
  265. return 0;
  266. }
  267. static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
  268. {
  269. ff_thread_release_buffer(ctx, &f->tf);
  270. av_buffer_unref(&f->extradata);
  271. }
  272. static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
  273. {
  274. int res;
  275. if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
  276. return res;
  277. } else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
  278. vp9_unref_frame(ctx, dst);
  279. return AVERROR(ENOMEM);
  280. }
  281. dst->segmentation_map = src->segmentation_map;
  282. dst->mv = src->mv;
  283. dst->uses_2pass = src->uses_2pass;
  284. return 0;
  285. }
  286. static int update_size(AVCodecContext *ctx, int w, int h, enum AVPixelFormat fmt)
  287. {
  288. VP9Context *s = ctx->priv_data;
  289. uint8_t *p;
  290. int bytesperpixel = s->bytesperpixel;
  291. av_assert0(w > 0 && h > 0);
  292. if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height && ctx->pix_fmt == fmt)
  293. return 0;
  294. ctx->width = w;
  295. ctx->height = h;
  296. ctx->pix_fmt = fmt;
  297. s->sb_cols = (w + 63) >> 6;
  298. s->sb_rows = (h + 63) >> 6;
  299. s->cols = (w + 7) >> 3;
  300. s->rows = (h + 7) >> 3;
  301. #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
  302. av_freep(&s->intra_pred_data[0]);
  303. // FIXME we slightly over-allocate here for subsampled chroma, but a little
  304. // bit of padding shouldn't affect performance...
  305. p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
  306. sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
  307. if (!p)
  308. return AVERROR(ENOMEM);
  309. assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
  310. assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
  311. assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
  312. assign(s->above_y_nnz_ctx, uint8_t *, 16);
  313. assign(s->above_mode_ctx, uint8_t *, 16);
  314. assign(s->above_mv_ctx, VP56mv(*)[2], 16);
  315. assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
  316. assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
  317. assign(s->above_partition_ctx, uint8_t *, 8);
  318. assign(s->above_skip_ctx, uint8_t *, 8);
  319. assign(s->above_txfm_ctx, uint8_t *, 8);
  320. assign(s->above_segpred_ctx, uint8_t *, 8);
  321. assign(s->above_intra_ctx, uint8_t *, 8);
  322. assign(s->above_comp_ctx, uint8_t *, 8);
  323. assign(s->above_ref_ctx, uint8_t *, 8);
  324. assign(s->above_filter_ctx, uint8_t *, 8);
  325. assign(s->lflvl, struct VP9Filter *, 1);
  326. #undef assign
  327. // these will be re-allocated a little later
  328. av_freep(&s->b_base);
  329. av_freep(&s->block_base);
  330. if (s->bpp != s->last_bpp) {
  331. ff_vp9dsp_init(&s->dsp, s->bpp);
  332. ff_videodsp_init(&s->vdsp, s->bpp);
  333. s->last_bpp = s->bpp;
  334. }
  335. return 0;
  336. }
  337. static int update_block_buffers(AVCodecContext *ctx)
  338. {
  339. VP9Context *s = ctx->priv_data;
  340. int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
  341. if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->frames[CUR_FRAME].uses_2pass)
  342. return 0;
  343. av_free(s->b_base);
  344. av_free(s->block_base);
  345. chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
  346. chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
  347. if (s->frames[CUR_FRAME].uses_2pass) {
  348. int sbs = s->sb_cols * s->sb_rows;
  349. s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
  350. s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  351. 16 * 16 + 2 * chroma_eobs) * sbs);
  352. if (!s->b_base || !s->block_base)
  353. return AVERROR(ENOMEM);
  354. s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel;
  355. s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
  356. s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
  357. s->uveob_base[0] = s->eob_base + 16 * 16 * sbs;
  358. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs;
  359. } else {
  360. s->b_base = av_malloc(sizeof(VP9Block));
  361. s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  362. 16 * 16 + 2 * chroma_eobs);
  363. if (!s->b_base || !s->block_base)
  364. return AVERROR(ENOMEM);
  365. s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel;
  366. s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel;
  367. s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel);
  368. s->uveob_base[0] = s->eob_base + 16 * 16;
  369. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs;
  370. }
  371. s->block_alloc_using_2pass = s->frames[CUR_FRAME].uses_2pass;
  372. return 0;
  373. }
  374. // for some reason the sign bit is at the end, not the start, of a bit sequence
  375. static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
  376. {
  377. int v = get_bits(gb, n);
  378. return get_bits1(gb) ? -v : v;
  379. }
  380. static av_always_inline int inv_recenter_nonneg(int v, int m)
  381. {
  382. return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
  383. }
  384. // differential forward probability updates
  385. static int update_prob(VP56RangeCoder *c, int p)
  386. {
  387. static const int inv_map_table[254] = {
  388. 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
  389. 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
  390. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
  391. 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
  392. 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
  393. 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  394. 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
  395. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
  396. 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
  397. 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
  398. 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
  399. 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  400. 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  401. 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
  402. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
  403. 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
  404. 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
  405. 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  406. 252, 253,
  407. };
  408. int d;
  409. /* This code is trying to do a differential probability update. For a
  410. * current probability A in the range [1, 255], the difference to a new
  411. * probability of any value can be expressed differentially as 1-A,255-A
  412. * where some part of this (absolute range) exists both in positive as
  413. * well as the negative part, whereas another part only exists in one
  414. * half. We're trying to code this shared part differentially, i.e.
  415. * times two where the value of the lowest bit specifies the sign, and
  416. * the single part is then coded on top of this. This absolute difference
  417. * then again has a value of [0,254], but a bigger value in this range
  418. * indicates that we're further away from the original value A, so we
  419. * can code this as a VLC code, since higher values are increasingly
  420. * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
  421. * updates vs. the 'fine, exact' updates further down the range, which
  422. * adds one extra dimension to this differential update model. */
  423. if (!vp8_rac_get(c)) {
  424. d = vp8_rac_get_uint(c, 4) + 0;
  425. } else if (!vp8_rac_get(c)) {
  426. d = vp8_rac_get_uint(c, 4) + 16;
  427. } else if (!vp8_rac_get(c)) {
  428. d = vp8_rac_get_uint(c, 5) + 32;
  429. } else {
  430. d = vp8_rac_get_uint(c, 7);
  431. if (d >= 65)
  432. d = (d << 1) - 65 + vp8_rac_get(c);
  433. d += 64;
  434. }
  435. return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
  436. 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
  437. }
  438. static enum AVPixelFormat read_colorspace_details(AVCodecContext *ctx)
  439. {
  440. static const enum AVColorSpace colorspaces[8] = {
  441. AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
  442. AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
  443. };
  444. VP9Context *s = ctx->priv_data;
  445. enum AVPixelFormat res;
  446. int bits = ctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
  447. s->bpp_index = bits;
  448. s->bpp = 8 + bits * 2;
  449. s->bytesperpixel = (7 + s->bpp) >> 3;
  450. ctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
  451. if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
  452. static const enum AVPixelFormat pix_fmt_rgb[3] = {
  453. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
  454. };
  455. if (ctx->profile & 1) {
  456. s->ss_h = s->ss_v = 1;
  457. res = pix_fmt_rgb[bits];
  458. ctx->color_range = AVCOL_RANGE_JPEG;
  459. } else {
  460. av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
  461. ctx->profile);
  462. return AVERROR_INVALIDDATA;
  463. }
  464. } else {
  465. static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
  466. { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
  467. { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
  468. { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
  469. { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
  470. { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
  471. { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
  472. };
  473. ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  474. if (ctx->profile & 1) {
  475. s->ss_h = get_bits1(&s->gb);
  476. s->ss_v = get_bits1(&s->gb);
  477. if ((res = pix_fmt_for_ss[bits][s->ss_v][s->ss_h]) == AV_PIX_FMT_YUV420P) {
  478. av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
  479. ctx->profile);
  480. return AVERROR_INVALIDDATA;
  481. } else if (get_bits1(&s->gb)) {
  482. av_log(ctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
  483. ctx->profile);
  484. return AVERROR_INVALIDDATA;
  485. }
  486. } else {
  487. s->ss_h = s->ss_v = 1;
  488. res = pix_fmt_for_ss[bits][1][1];
  489. }
  490. }
  491. return res;
  492. }
  493. static int decode_frame_header(AVCodecContext *ctx,
  494. const uint8_t *data, int size, int *ref)
  495. {
  496. VP9Context *s = ctx->priv_data;
  497. int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
  498. enum AVPixelFormat fmt = ctx->pix_fmt;
  499. int last_invisible;
  500. const uint8_t *data2;
  501. /* general header */
  502. if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
  503. av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
  504. return res;
  505. }
  506. if (get_bits(&s->gb, 2) != 0x2) { // frame marker
  507. av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
  508. return AVERROR_INVALIDDATA;
  509. }
  510. ctx->profile = get_bits1(&s->gb);
  511. ctx->profile |= get_bits1(&s->gb) << 1;
  512. if (ctx->profile == 3) ctx->profile += get_bits1(&s->gb);
  513. if (ctx->profile > 3) {
  514. av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", ctx->profile);
  515. return AVERROR_INVALIDDATA;
  516. }
  517. if (get_bits1(&s->gb)) {
  518. *ref = get_bits(&s->gb, 3);
  519. return 0;
  520. }
  521. s->last_keyframe = s->keyframe;
  522. s->keyframe = !get_bits1(&s->gb);
  523. last_invisible = s->invisible;
  524. s->invisible = !get_bits1(&s->gb);
  525. s->errorres = get_bits1(&s->gb);
  526. s->use_last_frame_mvs = !s->errorres && !last_invisible;
  527. if (s->keyframe) {
  528. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  529. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  530. return AVERROR_INVALIDDATA;
  531. }
  532. if ((fmt = read_colorspace_details(ctx)) < 0)
  533. return fmt;
  534. // for profile 1, here follows the subsampling bits
  535. s->refreshrefmask = 0xff;
  536. w = get_bits(&s->gb, 16) + 1;
  537. h = get_bits(&s->gb, 16) + 1;
  538. if (get_bits1(&s->gb)) // display size
  539. skip_bits(&s->gb, 32);
  540. } else {
  541. s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
  542. s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
  543. if (s->intraonly) {
  544. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  545. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  546. return AVERROR_INVALIDDATA;
  547. }
  548. if (ctx->profile == 1) {
  549. if ((fmt = read_colorspace_details(ctx)) < 0)
  550. return fmt;
  551. } else {
  552. s->ss_h = s->ss_v = 1;
  553. s->bpp = 8;
  554. s->bpp_index = 0;
  555. s->bytesperpixel = 1;
  556. fmt = AV_PIX_FMT_YUV420P;
  557. ctx->colorspace = AVCOL_SPC_BT470BG;
  558. ctx->color_range = AVCOL_RANGE_JPEG;
  559. }
  560. s->refreshrefmask = get_bits(&s->gb, 8);
  561. w = get_bits(&s->gb, 16) + 1;
  562. h = get_bits(&s->gb, 16) + 1;
  563. if (get_bits1(&s->gb)) // display size
  564. skip_bits(&s->gb, 32);
  565. } else {
  566. s->refreshrefmask = get_bits(&s->gb, 8);
  567. s->refidx[0] = get_bits(&s->gb, 3);
  568. s->signbias[0] = get_bits1(&s->gb) && !s->errorres;
  569. s->refidx[1] = get_bits(&s->gb, 3);
  570. s->signbias[1] = get_bits1(&s->gb) && !s->errorres;
  571. s->refidx[2] = get_bits(&s->gb, 3);
  572. s->signbias[2] = get_bits1(&s->gb) && !s->errorres;
  573. if (!s->refs[s->refidx[0]].f->data[0] ||
  574. !s->refs[s->refidx[1]].f->data[0] ||
  575. !s->refs[s->refidx[2]].f->data[0]) {
  576. av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
  577. return AVERROR_INVALIDDATA;
  578. }
  579. if (get_bits1(&s->gb)) {
  580. w = s->refs[s->refidx[0]].f->width;
  581. h = s->refs[s->refidx[0]].f->height;
  582. } else if (get_bits1(&s->gb)) {
  583. w = s->refs[s->refidx[1]].f->width;
  584. h = s->refs[s->refidx[1]].f->height;
  585. } else if (get_bits1(&s->gb)) {
  586. w = s->refs[s->refidx[2]].f->width;
  587. h = s->refs[s->refidx[2]].f->height;
  588. } else {
  589. w = get_bits(&s->gb, 16) + 1;
  590. h = get_bits(&s->gb, 16) + 1;
  591. }
  592. // Note that in this code, "CUR_FRAME" is actually before we
  593. // have formally allocated a frame, and thus actually represents
  594. // the _last_ frame
  595. s->use_last_frame_mvs &= s->frames[CUR_FRAME].tf.f->width == w &&
  596. s->frames[CUR_FRAME].tf.f->height == h;
  597. if (get_bits1(&s->gb)) // display size
  598. skip_bits(&s->gb, 32);
  599. s->highprecisionmvs = get_bits1(&s->gb);
  600. s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
  601. get_bits(&s->gb, 2);
  602. s->allowcompinter = (s->signbias[0] != s->signbias[1] ||
  603. s->signbias[0] != s->signbias[2]);
  604. if (s->allowcompinter) {
  605. if (s->signbias[0] == s->signbias[1]) {
  606. s->fixcompref = 2;
  607. s->varcompref[0] = 0;
  608. s->varcompref[1] = 1;
  609. } else if (s->signbias[0] == s->signbias[2]) {
  610. s->fixcompref = 1;
  611. s->varcompref[0] = 0;
  612. s->varcompref[1] = 2;
  613. } else {
  614. s->fixcompref = 0;
  615. s->varcompref[0] = 1;
  616. s->varcompref[1] = 2;
  617. }
  618. }
  619. for (i = 0; i < 3; i++) {
  620. AVFrame *ref = s->refs[s->refidx[i]].f;
  621. int refw = ref->width, refh = ref->height;
  622. if (ref->format != fmt) {
  623. av_log(ctx, AV_LOG_ERROR,
  624. "Ref pixfmt (%s) did not match current frame (%s)",
  625. av_get_pix_fmt_name(ref->format),
  626. av_get_pix_fmt_name(fmt));
  627. return AVERROR_INVALIDDATA;
  628. } else if (refw == w && refh == h) {
  629. s->mvscale[i][0] = s->mvscale[i][1] = 0;
  630. } else {
  631. if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
  632. av_log(ctx, AV_LOG_ERROR,
  633. "Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
  634. refw, refh, w, h);
  635. return AVERROR_INVALIDDATA;
  636. }
  637. s->mvscale[i][0] = (refw << 14) / w;
  638. s->mvscale[i][1] = (refh << 14) / h;
  639. s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
  640. s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
  641. }
  642. }
  643. }
  644. }
  645. s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
  646. s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
  647. s->framectxid = c = get_bits(&s->gb, 2);
  648. /* loopfilter header data */
  649. if (s->keyframe || s->errorres || s->intraonly) {
  650. // reset loopfilter defaults
  651. s->lf_delta.ref[0] = 1;
  652. s->lf_delta.ref[1] = 0;
  653. s->lf_delta.ref[2] = -1;
  654. s->lf_delta.ref[3] = -1;
  655. s->lf_delta.mode[0] = 0;
  656. s->lf_delta.mode[1] = 0;
  657. }
  658. s->filter.level = get_bits(&s->gb, 6);
  659. sharp = get_bits(&s->gb, 3);
  660. // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
  661. // the old cache values since they are still valid
  662. if (s->filter.sharpness != sharp)
  663. memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
  664. s->filter.sharpness = sharp;
  665. if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
  666. if (get_bits1(&s->gb)) {
  667. for (i = 0; i < 4; i++)
  668. if (get_bits1(&s->gb))
  669. s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
  670. for (i = 0; i < 2; i++)
  671. if (get_bits1(&s->gb))
  672. s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
  673. }
  674. }
  675. /* quantization header data */
  676. s->yac_qi = get_bits(&s->gb, 8);
  677. s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  678. s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  679. s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  680. s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
  681. s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
  682. /* segmentation header info */
  683. s->segmentation.ignore_refmap = 0;
  684. if ((s->segmentation.enabled = get_bits1(&s->gb))) {
  685. if ((s->segmentation.update_map = get_bits1(&s->gb))) {
  686. for (i = 0; i < 7; i++)
  687. s->prob.seg[i] = get_bits1(&s->gb) ?
  688. get_bits(&s->gb, 8) : 255;
  689. if ((s->segmentation.temporal = get_bits1(&s->gb))) {
  690. for (i = 0; i < 3; i++)
  691. s->prob.segpred[i] = get_bits1(&s->gb) ?
  692. get_bits(&s->gb, 8) : 255;
  693. }
  694. }
  695. if ((!s->segmentation.update_map || s->segmentation.temporal) &&
  696. (w != s->frames[CUR_FRAME].tf.f->width ||
  697. h != s->frames[CUR_FRAME].tf.f->height)) {
  698. av_log(ctx, AV_LOG_WARNING,
  699. "Reference segmap (temp=%d,update=%d) enabled on size-change!\n",
  700. s->segmentation.temporal, s->segmentation.update_map);
  701. s->segmentation.ignore_refmap = 1;
  702. //return AVERROR_INVALIDDATA;
  703. }
  704. if (get_bits1(&s->gb)) {
  705. s->segmentation.absolute_vals = get_bits1(&s->gb);
  706. for (i = 0; i < 8; i++) {
  707. if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
  708. s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
  709. if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
  710. s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
  711. if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
  712. s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
  713. s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
  714. }
  715. }
  716. } else {
  717. s->segmentation.feat[0].q_enabled = 0;
  718. s->segmentation.feat[0].lf_enabled = 0;
  719. s->segmentation.feat[0].skip_enabled = 0;
  720. s->segmentation.feat[0].ref_enabled = 0;
  721. }
  722. // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
  723. for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
  724. int qyac, qydc, quvac, quvdc, lflvl, sh;
  725. if (s->segmentation.feat[i].q_enabled) {
  726. if (s->segmentation.absolute_vals)
  727. qyac = s->segmentation.feat[i].q_val;
  728. else
  729. qyac = s->yac_qi + s->segmentation.feat[i].q_val;
  730. } else {
  731. qyac = s->yac_qi;
  732. }
  733. qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
  734. quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
  735. quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
  736. qyac = av_clip_uintp2(qyac, 8);
  737. s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[s->bpp_index][qydc];
  738. s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[s->bpp_index][qyac];
  739. s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[s->bpp_index][quvdc];
  740. s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[s->bpp_index][quvac];
  741. sh = s->filter.level >= 32;
  742. if (s->segmentation.feat[i].lf_enabled) {
  743. if (s->segmentation.absolute_vals)
  744. lflvl = av_clip_uintp2(s->segmentation.feat[i].lf_val, 6);
  745. else
  746. lflvl = av_clip_uintp2(s->filter.level + s->segmentation.feat[i].lf_val, 6);
  747. } else {
  748. lflvl = s->filter.level;
  749. }
  750. if (s->lf_delta.enabled) {
  751. s->segmentation.feat[i].lflvl[0][0] =
  752. s->segmentation.feat[i].lflvl[0][1] =
  753. av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
  754. for (j = 1; j < 4; j++) {
  755. s->segmentation.feat[i].lflvl[j][0] =
  756. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  757. s->lf_delta.mode[0]) * (1 << sh)), 6);
  758. s->segmentation.feat[i].lflvl[j][1] =
  759. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  760. s->lf_delta.mode[1]) * (1 << sh)), 6);
  761. }
  762. } else {
  763. memset(s->segmentation.feat[i].lflvl, lflvl,
  764. sizeof(s->segmentation.feat[i].lflvl));
  765. }
  766. }
  767. /* tiling info */
  768. if ((res = update_size(ctx, w, h, fmt)) < 0) {
  769. av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n", w, h, fmt);
  770. return res;
  771. }
  772. for (s->tiling.log2_tile_cols = 0;
  773. (s->sb_cols >> s->tiling.log2_tile_cols) > 64;
  774. s->tiling.log2_tile_cols++) ;
  775. for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
  776. max = FFMAX(0, max - 1);
  777. while (max > s->tiling.log2_tile_cols) {
  778. if (get_bits1(&s->gb))
  779. s->tiling.log2_tile_cols++;
  780. else
  781. break;
  782. }
  783. s->tiling.log2_tile_rows = decode012(&s->gb);
  784. s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
  785. if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
  786. s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
  787. s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
  788. sizeof(VP56RangeCoder) * s->tiling.tile_cols);
  789. if (!s->c_b) {
  790. av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
  791. return AVERROR(ENOMEM);
  792. }
  793. }
  794. if (s->keyframe || s->errorres || s->intraonly) {
  795. s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
  796. s->prob_ctx[3].p = vp9_default_probs;
  797. memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
  798. sizeof(vp9_default_coef_probs));
  799. memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
  800. sizeof(vp9_default_coef_probs));
  801. memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
  802. sizeof(vp9_default_coef_probs));
  803. memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
  804. sizeof(vp9_default_coef_probs));
  805. }
  806. // next 16 bits is size of the rest of the header (arith-coded)
  807. size2 = get_bits(&s->gb, 16);
  808. data2 = align_get_bits(&s->gb);
  809. if (size2 > size - (data2 - data)) {
  810. av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
  811. return AVERROR_INVALIDDATA;
  812. }
  813. ff_vp56_init_range_decoder(&s->c, data2, size2);
  814. if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
  815. av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
  816. return AVERROR_INVALIDDATA;
  817. }
  818. if (s->keyframe || s->intraonly) {
  819. memset(s->counts.coef, 0, sizeof(s->counts.coef));
  820. memset(s->counts.eob, 0, sizeof(s->counts.eob));
  821. } else {
  822. memset(&s->counts, 0, sizeof(s->counts));
  823. }
  824. // FIXME is it faster to not copy here, but do it down in the fw updates
  825. // as explicit copies if the fw update is missing (and skip the copy upon
  826. // fw update)?
  827. s->prob.p = s->prob_ctx[c].p;
  828. // txfm updates
  829. if (s->lossless) {
  830. s->txfmmode = TX_4X4;
  831. } else {
  832. s->txfmmode = vp8_rac_get_uint(&s->c, 2);
  833. if (s->txfmmode == 3)
  834. s->txfmmode += vp8_rac_get(&s->c);
  835. if (s->txfmmode == TX_SWITCHABLE) {
  836. for (i = 0; i < 2; i++)
  837. if (vp56_rac_get_prob_branchy(&s->c, 252))
  838. s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
  839. for (i = 0; i < 2; i++)
  840. for (j = 0; j < 2; j++)
  841. if (vp56_rac_get_prob_branchy(&s->c, 252))
  842. s->prob.p.tx16p[i][j] =
  843. update_prob(&s->c, s->prob.p.tx16p[i][j]);
  844. for (i = 0; i < 2; i++)
  845. for (j = 0; j < 3; j++)
  846. if (vp56_rac_get_prob_branchy(&s->c, 252))
  847. s->prob.p.tx32p[i][j] =
  848. update_prob(&s->c, s->prob.p.tx32p[i][j]);
  849. }
  850. }
  851. // coef updates
  852. for (i = 0; i < 4; i++) {
  853. uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
  854. if (vp8_rac_get(&s->c)) {
  855. for (j = 0; j < 2; j++)
  856. for (k = 0; k < 2; k++)
  857. for (l = 0; l < 6; l++)
  858. for (m = 0; m < 6; m++) {
  859. uint8_t *p = s->prob.coef[i][j][k][l][m];
  860. uint8_t *r = ref[j][k][l][m];
  861. if (m >= 3 && l == 0) // dc only has 3 pt
  862. break;
  863. for (n = 0; n < 3; n++) {
  864. if (vp56_rac_get_prob_branchy(&s->c, 252)) {
  865. p[n] = update_prob(&s->c, r[n]);
  866. } else {
  867. p[n] = r[n];
  868. }
  869. }
  870. p[3] = 0;
  871. }
  872. } else {
  873. for (j = 0; j < 2; j++)
  874. for (k = 0; k < 2; k++)
  875. for (l = 0; l < 6; l++)
  876. for (m = 0; m < 6; m++) {
  877. uint8_t *p = s->prob.coef[i][j][k][l][m];
  878. uint8_t *r = ref[j][k][l][m];
  879. if (m > 3 && l == 0) // dc only has 3 pt
  880. break;
  881. memcpy(p, r, 3);
  882. p[3] = 0;
  883. }
  884. }
  885. if (s->txfmmode == i)
  886. break;
  887. }
  888. // mode updates
  889. for (i = 0; i < 3; i++)
  890. if (vp56_rac_get_prob_branchy(&s->c, 252))
  891. s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
  892. if (!s->keyframe && !s->intraonly) {
  893. for (i = 0; i < 7; i++)
  894. for (j = 0; j < 3; j++)
  895. if (vp56_rac_get_prob_branchy(&s->c, 252))
  896. s->prob.p.mv_mode[i][j] =
  897. update_prob(&s->c, s->prob.p.mv_mode[i][j]);
  898. if (s->filtermode == FILTER_SWITCHABLE)
  899. for (i = 0; i < 4; i++)
  900. for (j = 0; j < 2; j++)
  901. if (vp56_rac_get_prob_branchy(&s->c, 252))
  902. s->prob.p.filter[i][j] =
  903. update_prob(&s->c, s->prob.p.filter[i][j]);
  904. for (i = 0; i < 4; i++)
  905. if (vp56_rac_get_prob_branchy(&s->c, 252))
  906. s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
  907. if (s->allowcompinter) {
  908. s->comppredmode = vp8_rac_get(&s->c);
  909. if (s->comppredmode)
  910. s->comppredmode += vp8_rac_get(&s->c);
  911. if (s->comppredmode == PRED_SWITCHABLE)
  912. for (i = 0; i < 5; i++)
  913. if (vp56_rac_get_prob_branchy(&s->c, 252))
  914. s->prob.p.comp[i] =
  915. update_prob(&s->c, s->prob.p.comp[i]);
  916. } else {
  917. s->comppredmode = PRED_SINGLEREF;
  918. }
  919. if (s->comppredmode != PRED_COMPREF) {
  920. for (i = 0; i < 5; i++) {
  921. if (vp56_rac_get_prob_branchy(&s->c, 252))
  922. s->prob.p.single_ref[i][0] =
  923. update_prob(&s->c, s->prob.p.single_ref[i][0]);
  924. if (vp56_rac_get_prob_branchy(&s->c, 252))
  925. s->prob.p.single_ref[i][1] =
  926. update_prob(&s->c, s->prob.p.single_ref[i][1]);
  927. }
  928. }
  929. if (s->comppredmode != PRED_SINGLEREF) {
  930. for (i = 0; i < 5; i++)
  931. if (vp56_rac_get_prob_branchy(&s->c, 252))
  932. s->prob.p.comp_ref[i] =
  933. update_prob(&s->c, s->prob.p.comp_ref[i]);
  934. }
  935. for (i = 0; i < 4; i++)
  936. for (j = 0; j < 9; j++)
  937. if (vp56_rac_get_prob_branchy(&s->c, 252))
  938. s->prob.p.y_mode[i][j] =
  939. update_prob(&s->c, s->prob.p.y_mode[i][j]);
  940. for (i = 0; i < 4; i++)
  941. for (j = 0; j < 4; j++)
  942. for (k = 0; k < 3; k++)
  943. if (vp56_rac_get_prob_branchy(&s->c, 252))
  944. s->prob.p.partition[3 - i][j][k] =
  945. update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
  946. // mv fields don't use the update_prob subexp model for some reason
  947. for (i = 0; i < 3; i++)
  948. if (vp56_rac_get_prob_branchy(&s->c, 252))
  949. s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  950. for (i = 0; i < 2; i++) {
  951. if (vp56_rac_get_prob_branchy(&s->c, 252))
  952. s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  953. for (j = 0; j < 10; j++)
  954. if (vp56_rac_get_prob_branchy(&s->c, 252))
  955. s->prob.p.mv_comp[i].classes[j] =
  956. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  957. if (vp56_rac_get_prob_branchy(&s->c, 252))
  958. s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  959. for (j = 0; j < 10; j++)
  960. if (vp56_rac_get_prob_branchy(&s->c, 252))
  961. s->prob.p.mv_comp[i].bits[j] =
  962. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  963. }
  964. for (i = 0; i < 2; i++) {
  965. for (j = 0; j < 2; j++)
  966. for (k = 0; k < 3; k++)
  967. if (vp56_rac_get_prob_branchy(&s->c, 252))
  968. s->prob.p.mv_comp[i].class0_fp[j][k] =
  969. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  970. for (j = 0; j < 3; j++)
  971. if (vp56_rac_get_prob_branchy(&s->c, 252))
  972. s->prob.p.mv_comp[i].fp[j] =
  973. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  974. }
  975. if (s->highprecisionmvs) {
  976. for (i = 0; i < 2; i++) {
  977. if (vp56_rac_get_prob_branchy(&s->c, 252))
  978. s->prob.p.mv_comp[i].class0_hp =
  979. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  980. if (vp56_rac_get_prob_branchy(&s->c, 252))
  981. s->prob.p.mv_comp[i].hp =
  982. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  983. }
  984. }
  985. }
  986. return (data2 - data) + size2;
  987. }
  988. static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
  989. VP9Context *s)
  990. {
  991. dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
  992. dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
  993. }
  994. static void find_ref_mvs(VP9Context *s,
  995. VP56mv *pmv, int ref, int z, int idx, int sb)
  996. {
  997. static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
  998. [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
  999. { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
  1000. [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
  1001. { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
  1002. [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
  1003. { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
  1004. [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
  1005. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1006. [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
  1007. { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1008. [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
  1009. { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
  1010. [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
  1011. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1012. [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
  1013. { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
  1014. [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
  1015. { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
  1016. [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1017. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1018. [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1019. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1020. [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1021. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1022. [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1023. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1024. };
  1025. VP9Block *b = s->b;
  1026. int row = s->row, col = s->col, row7 = s->row7;
  1027. const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
  1028. #define INVALID_MV 0x80008000U
  1029. uint32_t mem = INVALID_MV, mem_sub8x8 = INVALID_MV;
  1030. int i;
  1031. #define RETURN_DIRECT_MV(mv) \
  1032. do { \
  1033. uint32_t m = AV_RN32A(&mv); \
  1034. if (!idx) { \
  1035. AV_WN32A(pmv, m); \
  1036. return; \
  1037. } else if (mem == INVALID_MV) { \
  1038. mem = m; \
  1039. } else if (m != mem) { \
  1040. AV_WN32A(pmv, m); \
  1041. return; \
  1042. } \
  1043. } while (0)
  1044. if (sb >= 0) {
  1045. if (sb == 2 || sb == 1) {
  1046. RETURN_DIRECT_MV(b->mv[0][z]);
  1047. } else if (sb == 3) {
  1048. RETURN_DIRECT_MV(b->mv[2][z]);
  1049. RETURN_DIRECT_MV(b->mv[1][z]);
  1050. RETURN_DIRECT_MV(b->mv[0][z]);
  1051. }
  1052. #define RETURN_MV(mv) \
  1053. do { \
  1054. if (sb > 0) { \
  1055. VP56mv tmp; \
  1056. uint32_t m; \
  1057. av_assert2(idx == 1); \
  1058. av_assert2(mem != INVALID_MV); \
  1059. if (mem_sub8x8 == INVALID_MV) { \
  1060. clamp_mv(&tmp, &mv, s); \
  1061. m = AV_RN32A(&tmp); \
  1062. if (m != mem) { \
  1063. AV_WN32A(pmv, m); \
  1064. return; \
  1065. } \
  1066. mem_sub8x8 = AV_RN32A(&mv); \
  1067. } else if (mem_sub8x8 != AV_RN32A(&mv)) { \
  1068. clamp_mv(&tmp, &mv, s); \
  1069. m = AV_RN32A(&tmp); \
  1070. if (m != mem) { \
  1071. AV_WN32A(pmv, m); \
  1072. } else { \
  1073. /* BUG I'm pretty sure this isn't the intention */ \
  1074. AV_WN32A(pmv, 0); \
  1075. } \
  1076. return; \
  1077. } \
  1078. } else { \
  1079. uint32_t m = AV_RN32A(&mv); \
  1080. if (!idx) { \
  1081. clamp_mv(pmv, &mv, s); \
  1082. return; \
  1083. } else if (mem == INVALID_MV) { \
  1084. mem = m; \
  1085. } else if (m != mem) { \
  1086. clamp_mv(pmv, &mv, s); \
  1087. return; \
  1088. } \
  1089. } \
  1090. } while (0)
  1091. if (row > 0) {
  1092. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
  1093. if (mv->ref[0] == ref) {
  1094. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
  1095. } else if (mv->ref[1] == ref) {
  1096. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
  1097. }
  1098. }
  1099. if (col > s->tiling.tile_col_start) {
  1100. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
  1101. if (mv->ref[0] == ref) {
  1102. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
  1103. } else if (mv->ref[1] == ref) {
  1104. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
  1105. }
  1106. }
  1107. i = 2;
  1108. } else {
  1109. i = 0;
  1110. }
  1111. // previously coded MVs in this neighbourhood, using same reference frame
  1112. for (; i < 8; i++) {
  1113. int c = p[i][0] + col, r = p[i][1] + row;
  1114. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1115. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1116. if (mv->ref[0] == ref) {
  1117. RETURN_MV(mv->mv[0]);
  1118. } else if (mv->ref[1] == ref) {
  1119. RETURN_MV(mv->mv[1]);
  1120. }
  1121. }
  1122. }
  1123. // MV at this position in previous frame, using same reference frame
  1124. if (s->use_last_frame_mvs) {
  1125. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1126. if (!s->frames[REF_FRAME_MVPAIR].uses_2pass)
  1127. ff_thread_await_progress(&s->frames[REF_FRAME_MVPAIR].tf, row >> 3, 0);
  1128. if (mv->ref[0] == ref) {
  1129. RETURN_MV(mv->mv[0]);
  1130. } else if (mv->ref[1] == ref) {
  1131. RETURN_MV(mv->mv[1]);
  1132. }
  1133. }
  1134. #define RETURN_SCALE_MV(mv, scale) \
  1135. do { \
  1136. if (scale) { \
  1137. VP56mv mv_temp = { -mv.x, -mv.y }; \
  1138. RETURN_MV(mv_temp); \
  1139. } else { \
  1140. RETURN_MV(mv); \
  1141. } \
  1142. } while (0)
  1143. // previously coded MVs in this neighbourhood, using different reference frame
  1144. for (i = 0; i < 8; i++) {
  1145. int c = p[i][0] + col, r = p[i][1] + row;
  1146. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1147. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1148. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1149. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1150. }
  1151. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1152. // BUG - libvpx has this condition regardless of whether
  1153. // we used the first ref MV and pre-scaling
  1154. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1155. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1156. }
  1157. }
  1158. }
  1159. // MV at this position in previous frame, using different reference frame
  1160. if (s->use_last_frame_mvs) {
  1161. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1162. // no need to await_progress, because we already did that above
  1163. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1164. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1165. }
  1166. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1167. // BUG - libvpx has this condition regardless of whether
  1168. // we used the first ref MV and pre-scaling
  1169. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1170. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1171. }
  1172. }
  1173. AV_ZERO32(pmv);
  1174. clamp_mv(pmv, pmv, s);
  1175. #undef INVALID_MV
  1176. #undef RETURN_MV
  1177. #undef RETURN_SCALE_MV
  1178. }
  1179. static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
  1180. {
  1181. int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
  1182. int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
  1183. s->prob.p.mv_comp[idx].classes);
  1184. s->counts.mv_comp[idx].sign[sign]++;
  1185. s->counts.mv_comp[idx].classes[c]++;
  1186. if (c) {
  1187. int m;
  1188. for (n = 0, m = 0; m < c; m++) {
  1189. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
  1190. n |= bit << m;
  1191. s->counts.mv_comp[idx].bits[m][bit]++;
  1192. }
  1193. n <<= 3;
  1194. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
  1195. n |= bit << 1;
  1196. s->counts.mv_comp[idx].fp[bit]++;
  1197. if (hp) {
  1198. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
  1199. s->counts.mv_comp[idx].hp[bit]++;
  1200. n |= bit;
  1201. } else {
  1202. n |= 1;
  1203. // bug in libvpx - we count for bw entropy purposes even if the
  1204. // bit wasn't coded
  1205. s->counts.mv_comp[idx].hp[1]++;
  1206. }
  1207. n += 8 << c;
  1208. } else {
  1209. n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
  1210. s->counts.mv_comp[idx].class0[n]++;
  1211. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
  1212. s->prob.p.mv_comp[idx].class0_fp[n]);
  1213. s->counts.mv_comp[idx].class0_fp[n][bit]++;
  1214. n = (n << 3) | (bit << 1);
  1215. if (hp) {
  1216. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
  1217. s->counts.mv_comp[idx].class0_hp[bit]++;
  1218. n |= bit;
  1219. } else {
  1220. n |= 1;
  1221. // bug in libvpx - we count for bw entropy purposes even if the
  1222. // bit wasn't coded
  1223. s->counts.mv_comp[idx].class0_hp[1]++;
  1224. }
  1225. }
  1226. return sign ? -(n + 1) : (n + 1);
  1227. }
  1228. static void fill_mv(VP9Context *s,
  1229. VP56mv *mv, int mode, int sb)
  1230. {
  1231. VP9Block *b = s->b;
  1232. if (mode == ZEROMV) {
  1233. AV_ZERO64(mv);
  1234. } else {
  1235. int hp;
  1236. // FIXME cache this value and reuse for other subblocks
  1237. find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
  1238. mode == NEWMV ? -1 : sb);
  1239. // FIXME maybe move this code into find_ref_mvs()
  1240. if ((mode == NEWMV || sb == -1) &&
  1241. !(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
  1242. if (mv[0].y & 1) {
  1243. if (mv[0].y < 0)
  1244. mv[0].y++;
  1245. else
  1246. mv[0].y--;
  1247. }
  1248. if (mv[0].x & 1) {
  1249. if (mv[0].x < 0)
  1250. mv[0].x++;
  1251. else
  1252. mv[0].x--;
  1253. }
  1254. }
  1255. if (mode == NEWMV) {
  1256. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1257. s->prob.p.mv_joint);
  1258. s->counts.mv_joint[j]++;
  1259. if (j >= MV_JOINT_V)
  1260. mv[0].y += read_mv_component(s, 0, hp);
  1261. if (j & 1)
  1262. mv[0].x += read_mv_component(s, 1, hp);
  1263. }
  1264. if (b->comp) {
  1265. // FIXME cache this value and reuse for other subblocks
  1266. find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
  1267. mode == NEWMV ? -1 : sb);
  1268. if ((mode == NEWMV || sb == -1) &&
  1269. !(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
  1270. if (mv[1].y & 1) {
  1271. if (mv[1].y < 0)
  1272. mv[1].y++;
  1273. else
  1274. mv[1].y--;
  1275. }
  1276. if (mv[1].x & 1) {
  1277. if (mv[1].x < 0)
  1278. mv[1].x++;
  1279. else
  1280. mv[1].x--;
  1281. }
  1282. }
  1283. if (mode == NEWMV) {
  1284. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1285. s->prob.p.mv_joint);
  1286. s->counts.mv_joint[j]++;
  1287. if (j >= MV_JOINT_V)
  1288. mv[1].y += read_mv_component(s, 0, hp);
  1289. if (j & 1)
  1290. mv[1].x += read_mv_component(s, 1, hp);
  1291. }
  1292. }
  1293. }
  1294. }
  1295. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  1296. ptrdiff_t stride, int v)
  1297. {
  1298. switch (w) {
  1299. case 1:
  1300. do {
  1301. *ptr = v;
  1302. ptr += stride;
  1303. } while (--h);
  1304. break;
  1305. case 2: {
  1306. int v16 = v * 0x0101;
  1307. do {
  1308. AV_WN16A(ptr, v16);
  1309. ptr += stride;
  1310. } while (--h);
  1311. break;
  1312. }
  1313. case 4: {
  1314. uint32_t v32 = v * 0x01010101;
  1315. do {
  1316. AV_WN32A(ptr, v32);
  1317. ptr += stride;
  1318. } while (--h);
  1319. break;
  1320. }
  1321. case 8: {
  1322. #if HAVE_FAST_64BIT
  1323. uint64_t v64 = v * 0x0101010101010101ULL;
  1324. do {
  1325. AV_WN64A(ptr, v64);
  1326. ptr += stride;
  1327. } while (--h);
  1328. #else
  1329. uint32_t v32 = v * 0x01010101;
  1330. do {
  1331. AV_WN32A(ptr, v32);
  1332. AV_WN32A(ptr + 4, v32);
  1333. ptr += stride;
  1334. } while (--h);
  1335. #endif
  1336. break;
  1337. }
  1338. }
  1339. }
  1340. static void decode_mode(AVCodecContext *ctx)
  1341. {
  1342. static const uint8_t left_ctx[N_BS_SIZES] = {
  1343. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  1344. };
  1345. static const uint8_t above_ctx[N_BS_SIZES] = {
  1346. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  1347. };
  1348. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  1349. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  1350. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  1351. };
  1352. VP9Context *s = ctx->priv_data;
  1353. VP9Block *b = s->b;
  1354. int row = s->row, col = s->col, row7 = s->row7;
  1355. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  1356. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  1357. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  1358. int have_a = row > 0, have_l = col > s->tiling.tile_col_start;
  1359. int vref, filter_id;
  1360. if (!s->segmentation.enabled) {
  1361. b->seg_id = 0;
  1362. } else if (s->keyframe || s->intraonly) {
  1363. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg);
  1364. } else if (!s->segmentation.update_map ||
  1365. (s->segmentation.temporal &&
  1366. vp56_rac_get_prob_branchy(&s->c,
  1367. s->prob.segpred[s->above_segpred_ctx[col] +
  1368. s->left_segpred_ctx[row7]]))) {
  1369. if (!s->errorres && !s->segmentation.ignore_refmap) {
  1370. int pred = 8, x;
  1371. uint8_t *refsegmap = s->frames[REF_FRAME_SEGMAP].segmentation_map;
  1372. if (!s->frames[REF_FRAME_SEGMAP].uses_2pass)
  1373. ff_thread_await_progress(&s->frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  1374. for (y = 0; y < h4; y++) {
  1375. int idx_base = (y + row) * 8 * s->sb_cols + col;
  1376. for (x = 0; x < w4; x++)
  1377. pred = FFMIN(pred, refsegmap[idx_base + x]);
  1378. }
  1379. av_assert1(pred < 8);
  1380. b->seg_id = pred;
  1381. } else {
  1382. b->seg_id = 0;
  1383. }
  1384. memset(&s->above_segpred_ctx[col], 1, w4);
  1385. memset(&s->left_segpred_ctx[row7], 1, h4);
  1386. } else {
  1387. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
  1388. s->prob.seg);
  1389. memset(&s->above_segpred_ctx[col], 0, w4);
  1390. memset(&s->left_segpred_ctx[row7], 0, h4);
  1391. }
  1392. if (s->segmentation.enabled &&
  1393. (s->segmentation.update_map || s->keyframe || s->intraonly)) {
  1394. setctx_2d(&s->frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  1395. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  1396. }
  1397. b->skip = s->segmentation.enabled &&
  1398. s->segmentation.feat[b->seg_id].skip_enabled;
  1399. if (!b->skip) {
  1400. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  1401. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  1402. s->counts.skip[c][b->skip]++;
  1403. }
  1404. if (s->keyframe || s->intraonly) {
  1405. b->intra = 1;
  1406. } else if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1407. b->intra = !s->segmentation.feat[b->seg_id].ref_val;
  1408. } else {
  1409. int c, bit;
  1410. if (have_a && have_l) {
  1411. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  1412. c += (c == 2);
  1413. } else {
  1414. c = have_a ? 2 * s->above_intra_ctx[col] :
  1415. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  1416. }
  1417. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  1418. s->counts.intra[c][bit]++;
  1419. b->intra = !bit;
  1420. }
  1421. if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) {
  1422. int c;
  1423. if (have_a) {
  1424. if (have_l) {
  1425. c = (s->above_skip_ctx[col] ? max_tx :
  1426. s->above_txfm_ctx[col]) +
  1427. (s->left_skip_ctx[row7] ? max_tx :
  1428. s->left_txfm_ctx[row7]) > max_tx;
  1429. } else {
  1430. c = s->above_skip_ctx[col] ? 1 :
  1431. (s->above_txfm_ctx[col] * 2 > max_tx);
  1432. }
  1433. } else if (have_l) {
  1434. c = s->left_skip_ctx[row7] ? 1 :
  1435. (s->left_txfm_ctx[row7] * 2 > max_tx);
  1436. } else {
  1437. c = 1;
  1438. }
  1439. switch (max_tx) {
  1440. case TX_32X32:
  1441. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  1442. if (b->tx) {
  1443. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  1444. if (b->tx == 2)
  1445. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  1446. }
  1447. s->counts.tx32p[c][b->tx]++;
  1448. break;
  1449. case TX_16X16:
  1450. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  1451. if (b->tx)
  1452. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  1453. s->counts.tx16p[c][b->tx]++;
  1454. break;
  1455. case TX_8X8:
  1456. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  1457. s->counts.tx8p[c][b->tx]++;
  1458. break;
  1459. case TX_4X4:
  1460. b->tx = TX_4X4;
  1461. break;
  1462. }
  1463. } else {
  1464. b->tx = FFMIN(max_tx, s->txfmmode);
  1465. }
  1466. if (s->keyframe || s->intraonly) {
  1467. uint8_t *a = &s->above_mode_ctx[col * 2];
  1468. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  1469. b->comp = 0;
  1470. if (b->bs > BS_8x8) {
  1471. // FIXME the memory storage intermediates here aren't really
  1472. // necessary, they're just there to make the code slightly
  1473. // simpler for now
  1474. b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1475. vp9_default_kf_ymode_probs[a[0]][l[0]]);
  1476. if (b->bs != BS_8x4) {
  1477. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1478. vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  1479. l[0] = a[1] = b->mode[1];
  1480. } else {
  1481. l[0] = a[1] = b->mode[1] = b->mode[0];
  1482. }
  1483. if (b->bs != BS_4x8) {
  1484. b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1485. vp9_default_kf_ymode_probs[a[0]][l[1]]);
  1486. if (b->bs != BS_8x4) {
  1487. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1488. vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  1489. l[1] = a[1] = b->mode[3];
  1490. } else {
  1491. l[1] = a[1] = b->mode[3] = b->mode[2];
  1492. }
  1493. } else {
  1494. b->mode[2] = b->mode[0];
  1495. l[1] = a[1] = b->mode[3] = b->mode[1];
  1496. }
  1497. } else {
  1498. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1499. vp9_default_kf_ymode_probs[*a][*l]);
  1500. b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
  1501. // FIXME this can probably be optimized
  1502. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  1503. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  1504. }
  1505. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1506. vp9_default_kf_uvmode_probs[b->mode[3]]);
  1507. } else if (b->intra) {
  1508. b->comp = 0;
  1509. if (b->bs > BS_8x8) {
  1510. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1511. s->prob.p.y_mode[0]);
  1512. s->counts.y_mode[0][b->mode[0]]++;
  1513. if (b->bs != BS_8x4) {
  1514. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1515. s->prob.p.y_mode[0]);
  1516. s->counts.y_mode[0][b->mode[1]]++;
  1517. } else {
  1518. b->mode[1] = b->mode[0];
  1519. }
  1520. if (b->bs != BS_4x8) {
  1521. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1522. s->prob.p.y_mode[0]);
  1523. s->counts.y_mode[0][b->mode[2]]++;
  1524. if (b->bs != BS_8x4) {
  1525. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1526. s->prob.p.y_mode[0]);
  1527. s->counts.y_mode[0][b->mode[3]]++;
  1528. } else {
  1529. b->mode[3] = b->mode[2];
  1530. }
  1531. } else {
  1532. b->mode[2] = b->mode[0];
  1533. b->mode[3] = b->mode[1];
  1534. }
  1535. } else {
  1536. static const uint8_t size_group[10] = {
  1537. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  1538. };
  1539. int sz = size_group[b->bs];
  1540. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1541. s->prob.p.y_mode[sz]);
  1542. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1543. s->counts.y_mode[sz][b->mode[3]]++;
  1544. }
  1545. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1546. s->prob.p.uv_mode[b->mode[3]]);
  1547. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  1548. } else {
  1549. static const uint8_t inter_mode_ctx_lut[14][14] = {
  1550. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1551. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1552. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1553. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1554. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1555. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1556. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1557. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1558. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1559. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1560. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1561. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1562. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  1563. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  1564. };
  1565. if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1566. av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0);
  1567. b->comp = 0;
  1568. b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1;
  1569. } else {
  1570. // read comp_pred flag
  1571. if (s->comppredmode != PRED_SWITCHABLE) {
  1572. b->comp = s->comppredmode == PRED_COMPREF;
  1573. } else {
  1574. int c;
  1575. // FIXME add intra as ref=0xff (or -1) to make these easier?
  1576. if (have_a) {
  1577. if (have_l) {
  1578. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  1579. c = 4;
  1580. } else if (s->above_comp_ctx[col]) {
  1581. c = 2 + (s->left_intra_ctx[row7] ||
  1582. s->left_ref_ctx[row7] == s->fixcompref);
  1583. } else if (s->left_comp_ctx[row7]) {
  1584. c = 2 + (s->above_intra_ctx[col] ||
  1585. s->above_ref_ctx[col] == s->fixcompref);
  1586. } else {
  1587. c = (!s->above_intra_ctx[col] &&
  1588. s->above_ref_ctx[col] == s->fixcompref) ^
  1589. (!s->left_intra_ctx[row7] &&
  1590. s->left_ref_ctx[row & 7] == s->fixcompref);
  1591. }
  1592. } else {
  1593. c = s->above_comp_ctx[col] ? 3 :
  1594. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref);
  1595. }
  1596. } else if (have_l) {
  1597. c = s->left_comp_ctx[row7] ? 3 :
  1598. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref);
  1599. } else {
  1600. c = 1;
  1601. }
  1602. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  1603. s->counts.comp[c][b->comp]++;
  1604. }
  1605. // read actual references
  1606. // FIXME probably cache a few variables here to prevent repetitive
  1607. // memory accesses below
  1608. if (b->comp) /* two references */ {
  1609. int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit;
  1610. b->ref[fix_idx] = s->fixcompref;
  1611. // FIXME can this codeblob be replaced by some sort of LUT?
  1612. if (have_a) {
  1613. if (have_l) {
  1614. if (s->above_intra_ctx[col]) {
  1615. if (s->left_intra_ctx[row7]) {
  1616. c = 2;
  1617. } else {
  1618. c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1619. }
  1620. } else if (s->left_intra_ctx[row7]) {
  1621. c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1622. } else {
  1623. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  1624. if (refl == refa && refa == s->varcompref[1]) {
  1625. c = 0;
  1626. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  1627. if ((refa == s->fixcompref && refl == s->varcompref[0]) ||
  1628. (refl == s->fixcompref && refa == s->varcompref[0])) {
  1629. c = 4;
  1630. } else {
  1631. c = (refa == refl) ? 3 : 1;
  1632. }
  1633. } else if (!s->left_comp_ctx[row7]) {
  1634. if (refa == s->varcompref[1] && refl != s->varcompref[1]) {
  1635. c = 1;
  1636. } else {
  1637. c = (refl == s->varcompref[1] &&
  1638. refa != s->varcompref[1]) ? 2 : 4;
  1639. }
  1640. } else if (!s->above_comp_ctx[col]) {
  1641. if (refl == s->varcompref[1] && refa != s->varcompref[1]) {
  1642. c = 1;
  1643. } else {
  1644. c = (refa == s->varcompref[1] &&
  1645. refl != s->varcompref[1]) ? 2 : 4;
  1646. }
  1647. } else {
  1648. c = (refl == refa) ? 4 : 2;
  1649. }
  1650. }
  1651. } else {
  1652. if (s->above_intra_ctx[col]) {
  1653. c = 2;
  1654. } else if (s->above_comp_ctx[col]) {
  1655. c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1656. } else {
  1657. c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1658. }
  1659. }
  1660. } else if (have_l) {
  1661. if (s->left_intra_ctx[row7]) {
  1662. c = 2;
  1663. } else if (s->left_comp_ctx[row7]) {
  1664. c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1665. } else {
  1666. c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1667. }
  1668. } else {
  1669. c = 2;
  1670. }
  1671. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  1672. b->ref[var_idx] = s->varcompref[bit];
  1673. s->counts.comp_ref[c][bit]++;
  1674. } else /* single reference */ {
  1675. int bit, c;
  1676. if (have_a && !s->above_intra_ctx[col]) {
  1677. if (have_l && !s->left_intra_ctx[row7]) {
  1678. if (s->left_comp_ctx[row7]) {
  1679. if (s->above_comp_ctx[col]) {
  1680. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] ||
  1681. !s->above_ref_ctx[col]);
  1682. } else {
  1683. c = (3 * !s->above_ref_ctx[col]) +
  1684. (!s->fixcompref || !s->left_ref_ctx[row7]);
  1685. }
  1686. } else if (s->above_comp_ctx[col]) {
  1687. c = (3 * !s->left_ref_ctx[row7]) +
  1688. (!s->fixcompref || !s->above_ref_ctx[col]);
  1689. } else {
  1690. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  1691. }
  1692. } else if (s->above_intra_ctx[col]) {
  1693. c = 2;
  1694. } else if (s->above_comp_ctx[col]) {
  1695. c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]);
  1696. } else {
  1697. c = 4 * (!s->above_ref_ctx[col]);
  1698. }
  1699. } else if (have_l && !s->left_intra_ctx[row7]) {
  1700. if (s->left_intra_ctx[row7]) {
  1701. c = 2;
  1702. } else if (s->left_comp_ctx[row7]) {
  1703. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]);
  1704. } else {
  1705. c = 4 * (!s->left_ref_ctx[row7]);
  1706. }
  1707. } else {
  1708. c = 2;
  1709. }
  1710. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  1711. s->counts.single_ref[c][0][bit]++;
  1712. if (!bit) {
  1713. b->ref[0] = 0;
  1714. } else {
  1715. // FIXME can this codeblob be replaced by some sort of LUT?
  1716. if (have_a) {
  1717. if (have_l) {
  1718. if (s->left_intra_ctx[row7]) {
  1719. if (s->above_intra_ctx[col]) {
  1720. c = 2;
  1721. } else if (s->above_comp_ctx[col]) {
  1722. c = 1 + 2 * (s->fixcompref == 1 ||
  1723. s->above_ref_ctx[col] == 1);
  1724. } else if (!s->above_ref_ctx[col]) {
  1725. c = 3;
  1726. } else {
  1727. c = 4 * (s->above_ref_ctx[col] == 1);
  1728. }
  1729. } else if (s->above_intra_ctx[col]) {
  1730. if (s->left_intra_ctx[row7]) {
  1731. c = 2;
  1732. } else if (s->left_comp_ctx[row7]) {
  1733. c = 1 + 2 * (s->fixcompref == 1 ||
  1734. s->left_ref_ctx[row7] == 1);
  1735. } else if (!s->left_ref_ctx[row7]) {
  1736. c = 3;
  1737. } else {
  1738. c = 4 * (s->left_ref_ctx[row7] == 1);
  1739. }
  1740. } else if (s->above_comp_ctx[col]) {
  1741. if (s->left_comp_ctx[row7]) {
  1742. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  1743. c = 3 * (s->fixcompref == 1 ||
  1744. s->left_ref_ctx[row7] == 1);
  1745. } else {
  1746. c = 2;
  1747. }
  1748. } else if (!s->left_ref_ctx[row7]) {
  1749. c = 1 + 2 * (s->fixcompref == 1 ||
  1750. s->above_ref_ctx[col] == 1);
  1751. } else {
  1752. c = 3 * (s->left_ref_ctx[row7] == 1) +
  1753. (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1754. }
  1755. } else if (s->left_comp_ctx[row7]) {
  1756. if (!s->above_ref_ctx[col]) {
  1757. c = 1 + 2 * (s->fixcompref == 1 ||
  1758. s->left_ref_ctx[row7] == 1);
  1759. } else {
  1760. c = 3 * (s->above_ref_ctx[col] == 1) +
  1761. (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1762. }
  1763. } else if (!s->above_ref_ctx[col]) {
  1764. if (!s->left_ref_ctx[row7]) {
  1765. c = 3;
  1766. } else {
  1767. c = 4 * (s->left_ref_ctx[row7] == 1);
  1768. }
  1769. } else if (!s->left_ref_ctx[row7]) {
  1770. c = 4 * (s->above_ref_ctx[col] == 1);
  1771. } else {
  1772. c = 2 * (s->left_ref_ctx[row7] == 1) +
  1773. 2 * (s->above_ref_ctx[col] == 1);
  1774. }
  1775. } else {
  1776. if (s->above_intra_ctx[col] ||
  1777. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  1778. c = 2;
  1779. } else if (s->above_comp_ctx[col]) {
  1780. c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1781. } else {
  1782. c = 4 * (s->above_ref_ctx[col] == 1);
  1783. }
  1784. }
  1785. } else if (have_l) {
  1786. if (s->left_intra_ctx[row7] ||
  1787. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  1788. c = 2;
  1789. } else if (s->left_comp_ctx[row7]) {
  1790. c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1791. } else {
  1792. c = 4 * (s->left_ref_ctx[row7] == 1);
  1793. }
  1794. } else {
  1795. c = 2;
  1796. }
  1797. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  1798. s->counts.single_ref[c][1][bit]++;
  1799. b->ref[0] = 1 + bit;
  1800. }
  1801. }
  1802. }
  1803. if (b->bs <= BS_8x8) {
  1804. if (s->segmentation.feat[b->seg_id].skip_enabled) {
  1805. b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
  1806. } else {
  1807. static const uint8_t off[10] = {
  1808. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  1809. };
  1810. // FIXME this needs to use the LUT tables from find_ref_mvs
  1811. // because not all are -1,0/0,-1
  1812. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  1813. [s->left_mode_ctx[row7 + off[b->bs]]];
  1814. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1815. s->prob.p.mv_mode[c]);
  1816. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1817. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1818. }
  1819. }
  1820. if (s->filtermode == FILTER_SWITCHABLE) {
  1821. int c;
  1822. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  1823. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1824. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  1825. s->left_filter_ctx[row7] : 3;
  1826. } else {
  1827. c = s->above_filter_ctx[col];
  1828. }
  1829. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1830. c = s->left_filter_ctx[row7];
  1831. } else {
  1832. c = 3;
  1833. }
  1834. filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
  1835. s->prob.p.filter[c]);
  1836. s->counts.filter[c][filter_id]++;
  1837. b->filter = vp9_filter_lut[filter_id];
  1838. } else {
  1839. b->filter = s->filtermode;
  1840. }
  1841. if (b->bs > BS_8x8) {
  1842. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  1843. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1844. s->prob.p.mv_mode[c]);
  1845. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1846. fill_mv(s, b->mv[0], b->mode[0], 0);
  1847. if (b->bs != BS_8x4) {
  1848. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1849. s->prob.p.mv_mode[c]);
  1850. s->counts.mv_mode[c][b->mode[1] - 10]++;
  1851. fill_mv(s, b->mv[1], b->mode[1], 1);
  1852. } else {
  1853. b->mode[1] = b->mode[0];
  1854. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1855. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1856. }
  1857. if (b->bs != BS_4x8) {
  1858. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1859. s->prob.p.mv_mode[c]);
  1860. s->counts.mv_mode[c][b->mode[2] - 10]++;
  1861. fill_mv(s, b->mv[2], b->mode[2], 2);
  1862. if (b->bs != BS_8x4) {
  1863. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1864. s->prob.p.mv_mode[c]);
  1865. s->counts.mv_mode[c][b->mode[3] - 10]++;
  1866. fill_mv(s, b->mv[3], b->mode[3], 3);
  1867. } else {
  1868. b->mode[3] = b->mode[2];
  1869. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  1870. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  1871. }
  1872. } else {
  1873. b->mode[2] = b->mode[0];
  1874. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1875. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1876. b->mode[3] = b->mode[1];
  1877. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  1878. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  1879. }
  1880. } else {
  1881. fill_mv(s, b->mv[0], b->mode[0], -1);
  1882. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1883. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1884. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  1885. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1886. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1887. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  1888. }
  1889. vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0];
  1890. }
  1891. #if HAVE_FAST_64BIT
  1892. #define SPLAT_CTX(var, val, n) \
  1893. switch (n) { \
  1894. case 1: var = val; break; \
  1895. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1896. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1897. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  1898. case 16: { \
  1899. uint64_t v64 = val * 0x0101010101010101ULL; \
  1900. AV_WN64A( &var, v64); \
  1901. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  1902. break; \
  1903. } \
  1904. }
  1905. #else
  1906. #define SPLAT_CTX(var, val, n) \
  1907. switch (n) { \
  1908. case 1: var = val; break; \
  1909. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1910. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1911. case 8: { \
  1912. uint32_t v32 = val * 0x01010101; \
  1913. AV_WN32A( &var, v32); \
  1914. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1915. break; \
  1916. } \
  1917. case 16: { \
  1918. uint32_t v32 = val * 0x01010101; \
  1919. AV_WN32A( &var, v32); \
  1920. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1921. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  1922. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  1923. break; \
  1924. } \
  1925. }
  1926. #endif
  1927. switch (bwh_tab[1][b->bs][0]) {
  1928. #define SET_CTXS(dir, off, n) \
  1929. do { \
  1930. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  1931. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  1932. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  1933. if (!s->keyframe && !s->intraonly) { \
  1934. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  1935. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  1936. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  1937. if (!b->intra) { \
  1938. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  1939. if (s->filtermode == FILTER_SWITCHABLE) { \
  1940. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  1941. } \
  1942. } \
  1943. } \
  1944. } while (0)
  1945. case 1: SET_CTXS(above, col, 1); break;
  1946. case 2: SET_CTXS(above, col, 2); break;
  1947. case 4: SET_CTXS(above, col, 4); break;
  1948. case 8: SET_CTXS(above, col, 8); break;
  1949. }
  1950. switch (bwh_tab[1][b->bs][1]) {
  1951. case 1: SET_CTXS(left, row7, 1); break;
  1952. case 2: SET_CTXS(left, row7, 2); break;
  1953. case 4: SET_CTXS(left, row7, 4); break;
  1954. case 8: SET_CTXS(left, row7, 8); break;
  1955. }
  1956. #undef SPLAT_CTX
  1957. #undef SET_CTXS
  1958. if (!s->keyframe && !s->intraonly) {
  1959. if (b->bs > BS_8x8) {
  1960. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1961. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  1962. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  1963. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  1964. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  1965. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  1966. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  1967. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  1968. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  1969. } else {
  1970. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1971. for (n = 0; n < w4 * 2; n++) {
  1972. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  1973. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  1974. }
  1975. for (n = 0; n < h4 * 2; n++) {
  1976. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  1977. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  1978. }
  1979. }
  1980. }
  1981. // FIXME kinda ugly
  1982. for (y = 0; y < h4; y++) {
  1983. int x, o = (row + y) * s->sb_cols * 8 + col;
  1984. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o];
  1985. if (b->intra) {
  1986. for (x = 0; x < w4; x++) {
  1987. mv[x].ref[0] =
  1988. mv[x].ref[1] = -1;
  1989. }
  1990. } else if (b->comp) {
  1991. for (x = 0; x < w4; x++) {
  1992. mv[x].ref[0] = b->ref[0];
  1993. mv[x].ref[1] = b->ref[1];
  1994. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1995. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  1996. }
  1997. } else {
  1998. for (x = 0; x < w4; x++) {
  1999. mv[x].ref[0] = b->ref[0];
  2000. mv[x].ref[1] = -1;
  2001. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  2002. }
  2003. }
  2004. }
  2005. }
  2006. // FIXME merge cnt/eob arguments?
  2007. static av_always_inline int
  2008. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  2009. int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
  2010. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  2011. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  2012. const int16_t *band_counts, const int16_t *qmul)
  2013. {
  2014. int i = 0, band = 0, band_left = band_counts[band];
  2015. uint8_t *tp = p[0][nnz];
  2016. uint8_t cache[1024];
  2017. do {
  2018. int val, rc;
  2019. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  2020. eob[band][nnz][val]++;
  2021. if (!val)
  2022. break;
  2023. skip_eob:
  2024. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  2025. cnt[band][nnz][0]++;
  2026. if (!--band_left)
  2027. band_left = band_counts[++band];
  2028. cache[scan[i]] = 0;
  2029. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2030. tp = p[band][nnz];
  2031. if (++i == n_coeffs)
  2032. break; //invalid input; blocks should end with EOB
  2033. goto skip_eob;
  2034. }
  2035. rc = scan[i];
  2036. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  2037. cnt[band][nnz][1]++;
  2038. val = 1;
  2039. cache[rc] = 1;
  2040. } else {
  2041. // fill in p[3-10] (model fill) - only once per frame for each pos
  2042. if (!tp[3])
  2043. memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
  2044. cnt[band][nnz][2]++;
  2045. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  2046. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  2047. cache[rc] = val = 2;
  2048. } else {
  2049. val = 3 + vp56_rac_get_prob(c, tp[5]);
  2050. cache[rc] = 3;
  2051. }
  2052. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  2053. cache[rc] = 4;
  2054. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  2055. val = 5 + vp56_rac_get_prob(c, 159);
  2056. } else {
  2057. val = 7 + (vp56_rac_get_prob(c, 165) << 1);
  2058. val += vp56_rac_get_prob(c, 145);
  2059. }
  2060. } else { // cat 3-6
  2061. cache[rc] = 5;
  2062. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  2063. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  2064. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  2065. val += (vp56_rac_get_prob(c, 148) << 1);
  2066. val += vp56_rac_get_prob(c, 140);
  2067. } else {
  2068. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  2069. val += (vp56_rac_get_prob(c, 155) << 2);
  2070. val += (vp56_rac_get_prob(c, 140) << 1);
  2071. val += vp56_rac_get_prob(c, 135);
  2072. }
  2073. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  2074. val = 35 + (vp56_rac_get_prob(c, 180) << 4);
  2075. val += (vp56_rac_get_prob(c, 157) << 3);
  2076. val += (vp56_rac_get_prob(c, 141) << 2);
  2077. val += (vp56_rac_get_prob(c, 134) << 1);
  2078. val += vp56_rac_get_prob(c, 130);
  2079. } else {
  2080. val = 67;
  2081. if (!is8bitsperpixel) {
  2082. if (bpp == 12) {
  2083. val += vp56_rac_get_prob(c, 255) << 17;
  2084. val += vp56_rac_get_prob(c, 255) << 16;
  2085. }
  2086. val += (vp56_rac_get_prob(c, 255) << 15);
  2087. val += (vp56_rac_get_prob(c, 255) << 14);
  2088. }
  2089. val += (vp56_rac_get_prob(c, 254) << 13);
  2090. val += (vp56_rac_get_prob(c, 254) << 12);
  2091. val += (vp56_rac_get_prob(c, 254) << 11);
  2092. val += (vp56_rac_get_prob(c, 252) << 10);
  2093. val += (vp56_rac_get_prob(c, 249) << 9);
  2094. val += (vp56_rac_get_prob(c, 243) << 8);
  2095. val += (vp56_rac_get_prob(c, 230) << 7);
  2096. val += (vp56_rac_get_prob(c, 196) << 6);
  2097. val += (vp56_rac_get_prob(c, 177) << 5);
  2098. val += (vp56_rac_get_prob(c, 153) << 4);
  2099. val += (vp56_rac_get_prob(c, 140) << 3);
  2100. val += (vp56_rac_get_prob(c, 133) << 2);
  2101. val += (vp56_rac_get_prob(c, 130) << 1);
  2102. val += vp56_rac_get_prob(c, 129);
  2103. }
  2104. }
  2105. }
  2106. #define STORE_COEF(c, i, v) do { \
  2107. if (is8bitsperpixel) { \
  2108. c[i] = v; \
  2109. } else { \
  2110. AV_WN32A(&c[i * 2], v); \
  2111. } \
  2112. } while (0)
  2113. if (!--band_left)
  2114. band_left = band_counts[++band];
  2115. if (is_tx32x32)
  2116. STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
  2117. else
  2118. STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
  2119. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2120. tp = p[band][nnz];
  2121. } while (++i < n_coeffs);
  2122. return i;
  2123. }
  2124. static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2125. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2126. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2127. const int16_t (*nb)[2], const int16_t *band_counts,
  2128. const int16_t *qmul)
  2129. {
  2130. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
  2131. nnz, scan, nb, band_counts, qmul);
  2132. }
  2133. static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2134. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2135. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2136. const int16_t (*nb)[2], const int16_t *band_counts,
  2137. const int16_t *qmul)
  2138. {
  2139. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
  2140. nnz, scan, nb, band_counts, qmul);
  2141. }
  2142. static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2143. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2144. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2145. const int16_t (*nb)[2], const int16_t *band_counts,
  2146. const int16_t *qmul)
  2147. {
  2148. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->bpp, cnt, eob, p,
  2149. nnz, scan, nb, band_counts, qmul);
  2150. }
  2151. static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2152. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2153. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2154. const int16_t (*nb)[2], const int16_t *band_counts,
  2155. const int16_t *qmul)
  2156. {
  2157. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->bpp, cnt, eob, p,
  2158. nnz, scan, nb, band_counts, qmul);
  2159. }
  2160. static av_always_inline int decode_coeffs(AVCodecContext *ctx, int is8bitsperpixel)
  2161. {
  2162. VP9Context *s = ctx->priv_data;
  2163. VP9Block *b = s->b;
  2164. int row = s->row, col = s->col;
  2165. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  2166. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  2167. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  2168. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  2169. int end_x = FFMIN(2 * (s->cols - col), w4);
  2170. int end_y = FFMIN(2 * (s->rows - row), h4);
  2171. int n, pl, x, y, res;
  2172. int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul;
  2173. int tx = 4 * s->lossless + b->tx;
  2174. const int16_t * const *yscans = vp9_scans[tx];
  2175. const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
  2176. const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
  2177. const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
  2178. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  2179. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  2180. static const int16_t band_counts[4][8] = {
  2181. { 1, 2, 3, 4, 3, 16 - 13 },
  2182. { 1, 2, 3, 4, 11, 64 - 21 },
  2183. { 1, 2, 3, 4, 11, 256 - 21 },
  2184. { 1, 2, 3, 4, 11, 1024 - 21 },
  2185. };
  2186. const int16_t *y_band_counts = band_counts[b->tx];
  2187. const int16_t *uv_band_counts = band_counts[b->uvtx];
  2188. int bytesperpixel = is8bitsperpixel ? 1 : 2;
  2189. int total_coeff = 0;
  2190. #define MERGE(la, end, step, rd) \
  2191. for (n = 0; n < end; n += step) \
  2192. la[n] = !!rd(&la[n])
  2193. #define MERGE_CTX(step, rd) \
  2194. do { \
  2195. MERGE(l, end_y, step, rd); \
  2196. MERGE(a, end_x, step, rd); \
  2197. } while (0)
  2198. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  2199. for (n = 0, y = 0; y < end_y; y += step) { \
  2200. for (x = 0; x < end_x; x += step, n += step * step) { \
  2201. enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
  2202. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2203. (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
  2204. c, e, p, a[x] + l[y], yscans[txtp], \
  2205. ynbs[txtp], y_band_counts, qmul[0]); \
  2206. a[x] = l[y] = !!res; \
  2207. total_coeff |= !!res; \
  2208. if (step >= 4) { \
  2209. AV_WN16A(&s->eob[n], res); \
  2210. } else { \
  2211. s->eob[n] = res; \
  2212. } \
  2213. } \
  2214. }
  2215. #define SPLAT(la, end, step, cond) \
  2216. if (step == 2) { \
  2217. for (n = 1; n < end; n += step) \
  2218. la[n] = la[n - 1]; \
  2219. } else if (step == 4) { \
  2220. if (cond) { \
  2221. for (n = 0; n < end; n += step) \
  2222. AV_WN32A(&la[n], la[n] * 0x01010101); \
  2223. } else { \
  2224. for (n = 0; n < end; n += step) \
  2225. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  2226. } \
  2227. } else /* step == 8 */ { \
  2228. if (cond) { \
  2229. if (HAVE_FAST_64BIT) { \
  2230. for (n = 0; n < end; n += step) \
  2231. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  2232. } else { \
  2233. for (n = 0; n < end; n += step) { \
  2234. uint32_t v32 = la[n] * 0x01010101; \
  2235. AV_WN32A(&la[n], v32); \
  2236. AV_WN32A(&la[n + 4], v32); \
  2237. } \
  2238. } \
  2239. } else { \
  2240. for (n = 0; n < end; n += step) \
  2241. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  2242. } \
  2243. }
  2244. #define SPLAT_CTX(step) \
  2245. do { \
  2246. SPLAT(a, end_x, step, end_x == w4); \
  2247. SPLAT(l, end_y, step, end_y == h4); \
  2248. } while (0)
  2249. /* y tokens */
  2250. switch (b->tx) {
  2251. case TX_4X4:
  2252. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  2253. break;
  2254. case TX_8X8:
  2255. MERGE_CTX(2, AV_RN16A);
  2256. DECODE_Y_COEF_LOOP(2, 0,);
  2257. SPLAT_CTX(2);
  2258. break;
  2259. case TX_16X16:
  2260. MERGE_CTX(4, AV_RN32A);
  2261. DECODE_Y_COEF_LOOP(4, 0,);
  2262. SPLAT_CTX(4);
  2263. break;
  2264. case TX_32X32:
  2265. MERGE_CTX(8, AV_RN64A);
  2266. DECODE_Y_COEF_LOOP(8, 0, 32);
  2267. SPLAT_CTX(8);
  2268. break;
  2269. }
  2270. #define DECODE_UV_COEF_LOOP(step, v) \
  2271. for (n = 0, y = 0; y < end_y; y += step) { \
  2272. for (x = 0; x < end_x; x += step, n += step * step) { \
  2273. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2274. (s, s->uvblock[pl] + 16 * n * bytesperpixel, \
  2275. 16 * step * step, c, e, p, a[x] + l[y], \
  2276. uvscan, uvnb, uv_band_counts, qmul[1]); \
  2277. a[x] = l[y] = !!res; \
  2278. total_coeff |= !!res; \
  2279. if (step >= 4) { \
  2280. AV_WN16A(&s->uveob[pl][n], res); \
  2281. } else { \
  2282. s->uveob[pl][n] = res; \
  2283. } \
  2284. } \
  2285. }
  2286. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  2287. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  2288. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  2289. w4 >>= s->ss_h;
  2290. end_x >>= s->ss_h;
  2291. h4 >>= s->ss_v;
  2292. end_y >>= s->ss_v;
  2293. for (pl = 0; pl < 2; pl++) {
  2294. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  2295. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  2296. switch (b->uvtx) {
  2297. case TX_4X4:
  2298. DECODE_UV_COEF_LOOP(1,);
  2299. break;
  2300. case TX_8X8:
  2301. MERGE_CTX(2, AV_RN16A);
  2302. DECODE_UV_COEF_LOOP(2,);
  2303. SPLAT_CTX(2);
  2304. break;
  2305. case TX_16X16:
  2306. MERGE_CTX(4, AV_RN32A);
  2307. DECODE_UV_COEF_LOOP(4,);
  2308. SPLAT_CTX(4);
  2309. break;
  2310. case TX_32X32:
  2311. MERGE_CTX(8, AV_RN64A);
  2312. DECODE_UV_COEF_LOOP(8, 32);
  2313. SPLAT_CTX(8);
  2314. break;
  2315. }
  2316. }
  2317. return total_coeff;
  2318. }
  2319. static int decode_coeffs_8bpp(AVCodecContext *ctx)
  2320. {
  2321. return decode_coeffs(ctx, 1);
  2322. }
  2323. static int decode_coeffs_16bpp(AVCodecContext *ctx)
  2324. {
  2325. return decode_coeffs(ctx, 0);
  2326. }
  2327. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  2328. uint8_t *dst_edge, ptrdiff_t stride_edge,
  2329. uint8_t *dst_inner, ptrdiff_t stride_inner,
  2330. uint8_t *l, int col, int x, int w,
  2331. int row, int y, enum TxfmMode tx,
  2332. int p, int ss_h, int ss_v, int bytesperpixel)
  2333. {
  2334. int have_top = row > 0 || y > 0;
  2335. int have_left = col > s->tiling.tile_col_start || x > 0;
  2336. int have_right = x < w - 1;
  2337. int bpp = s->bpp;
  2338. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  2339. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  2340. { DC_127_PRED, VERT_PRED } },
  2341. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  2342. { HOR_PRED, HOR_PRED } },
  2343. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  2344. { LEFT_DC_PRED, DC_PRED } },
  2345. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  2346. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  2347. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  2348. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  2349. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  2350. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  2351. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  2352. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  2353. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  2354. { DC_127_PRED, VERT_LEFT_PRED } },
  2355. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  2356. { HOR_UP_PRED, HOR_UP_PRED } },
  2357. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  2358. { HOR_PRED, TM_VP8_PRED } },
  2359. };
  2360. static const struct {
  2361. uint8_t needs_left:1;
  2362. uint8_t needs_top:1;
  2363. uint8_t needs_topleft:1;
  2364. uint8_t needs_topright:1;
  2365. uint8_t invert_left:1;
  2366. } edges[N_INTRA_PRED_MODES] = {
  2367. [VERT_PRED] = { .needs_top = 1 },
  2368. [HOR_PRED] = { .needs_left = 1 },
  2369. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  2370. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2371. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2372. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2373. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2374. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2375. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  2376. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2377. [LEFT_DC_PRED] = { .needs_left = 1 },
  2378. [TOP_DC_PRED] = { .needs_top = 1 },
  2379. [DC_128_PRED] = { 0 },
  2380. [DC_127_PRED] = { 0 },
  2381. [DC_129_PRED] = { 0 }
  2382. };
  2383. av_assert2(mode >= 0 && mode < 10);
  2384. mode = mode_conv[mode][have_left][have_top];
  2385. if (edges[mode].needs_top) {
  2386. uint8_t *top, *topleft;
  2387. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  2388. int n_px_need_tr = 0;
  2389. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  2390. n_px_need_tr = 4;
  2391. // if top of sb64-row, use s->intra_pred_data[] instead of
  2392. // dst[-stride] for intra prediction (it contains pre- instead of
  2393. // post-loopfilter data)
  2394. if (have_top) {
  2395. top = !(row & 7) && !y ?
  2396. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2397. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  2398. if (have_left)
  2399. topleft = !(row & 7) && !y ?
  2400. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2401. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  2402. &dst_inner[-stride_inner];
  2403. }
  2404. if (have_top &&
  2405. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  2406. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  2407. n_px_need + n_px_need_tr <= n_px_have) {
  2408. *a = top;
  2409. } else {
  2410. if (have_top) {
  2411. if (n_px_need <= n_px_have) {
  2412. memcpy(*a, top, n_px_need * bytesperpixel);
  2413. } else {
  2414. #define memset_bpp(c, i1, v, i2, num) do { \
  2415. if (bytesperpixel == 1) { \
  2416. memset(&(c)[(i1)], (v)[(i2)], (num)); \
  2417. } else { \
  2418. int n, val = AV_RN16A(&(v)[(i2) * 2]); \
  2419. for (n = 0; n < (num); n++) { \
  2420. AV_WN16A(&(c)[((i1) + n) * 2], val); \
  2421. } \
  2422. } \
  2423. } while (0)
  2424. memcpy(*a, top, n_px_have * bytesperpixel);
  2425. memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
  2426. }
  2427. } else {
  2428. #define memset_val(c, val, num) do { \
  2429. if (bytesperpixel == 1) { \
  2430. memset((c), (val), (num)); \
  2431. } else { \
  2432. int n; \
  2433. for (n = 0; n < (num); n++) { \
  2434. AV_WN16A(&(c)[n * 2], (val)); \
  2435. } \
  2436. } \
  2437. } while (0)
  2438. memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
  2439. }
  2440. if (edges[mode].needs_topleft) {
  2441. if (have_left && have_top) {
  2442. #define assign_bpp(c, i1, v, i2) do { \
  2443. if (bytesperpixel == 1) { \
  2444. (c)[(i1)] = (v)[(i2)]; \
  2445. } else { \
  2446. AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
  2447. } \
  2448. } while (0)
  2449. assign_bpp(*a, -1, topleft, -1);
  2450. } else {
  2451. #define assign_val(c, i, v) do { \
  2452. if (bytesperpixel == 1) { \
  2453. (c)[(i)] = (v); \
  2454. } else { \
  2455. AV_WN16A(&(c)[(i) * 2], (v)); \
  2456. } \
  2457. } while (0)
  2458. assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
  2459. }
  2460. }
  2461. if (tx == TX_4X4 && edges[mode].needs_topright) {
  2462. if (have_top && have_right &&
  2463. n_px_need + n_px_need_tr <= n_px_have) {
  2464. memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
  2465. } else {
  2466. memset_bpp(*a, 4, *a, 3, 4);
  2467. }
  2468. }
  2469. }
  2470. }
  2471. if (edges[mode].needs_left) {
  2472. if (have_left) {
  2473. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  2474. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  2475. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  2476. if (edges[mode].invert_left) {
  2477. if (n_px_need <= n_px_have) {
  2478. for (i = 0; i < n_px_need; i++)
  2479. assign_bpp(l, i, &dst[i * stride], -1);
  2480. } else {
  2481. for (i = 0; i < n_px_have; i++)
  2482. assign_bpp(l, i, &dst[i * stride], -1);
  2483. memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
  2484. }
  2485. } else {
  2486. if (n_px_need <= n_px_have) {
  2487. for (i = 0; i < n_px_need; i++)
  2488. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2489. } else {
  2490. for (i = 0; i < n_px_have; i++)
  2491. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2492. memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
  2493. }
  2494. }
  2495. } else {
  2496. memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
  2497. }
  2498. }
  2499. return mode;
  2500. }
  2501. static av_always_inline void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off,
  2502. ptrdiff_t uv_off, int bytesperpixel)
  2503. {
  2504. VP9Context *s = ctx->priv_data;
  2505. VP9Block *b = s->b;
  2506. int row = s->row, col = s->col;
  2507. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2508. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2509. int end_x = FFMIN(2 * (s->cols - col), w4);
  2510. int end_y = FFMIN(2 * (s->rows - row), h4);
  2511. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2512. int uvstep1d = 1 << b->uvtx, p;
  2513. uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off;
  2514. LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
  2515. LOCAL_ALIGNED_32(uint8_t, l, [64]);
  2516. for (n = 0, y = 0; y < end_y; y += step1d) {
  2517. uint8_t *ptr = dst, *ptr_r = dst_r;
  2518. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
  2519. ptr_r += 4 * step1d * bytesperpixel, n += step) {
  2520. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  2521. y * 2 + x : 0];
  2522. uint8_t *a = &a_buf[32];
  2523. enum TxfmType txtp = vp9_intra_txfm_type[mode];
  2524. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2525. mode = check_intra_mode(s, mode, &a, ptr_r,
  2526. s->frames[CUR_FRAME].tf.f->linesize[0],
  2527. ptr, s->y_stride, l,
  2528. col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
  2529. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  2530. if (eob)
  2531. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  2532. s->block + 16 * n * bytesperpixel, eob);
  2533. }
  2534. dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0];
  2535. dst += 4 * step1d * s->y_stride;
  2536. }
  2537. // U/V
  2538. w4 >>= s->ss_h;
  2539. end_x >>= s->ss_h;
  2540. end_y >>= s->ss_v;
  2541. step = 1 << (b->uvtx * 2);
  2542. for (p = 0; p < 2; p++) {
  2543. dst = s->dst[1 + p];
  2544. dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  2545. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2546. uint8_t *ptr = dst, *ptr_r = dst_r;
  2547. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
  2548. ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
  2549. int mode = b->uvmode;
  2550. uint8_t *a = &a_buf[32];
  2551. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2552. mode = check_intra_mode(s, mode, &a, ptr_r,
  2553. s->frames[CUR_FRAME].tf.f->linesize[1],
  2554. ptr, s->uv_stride, l, col, x, w4, row, y,
  2555. b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
  2556. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  2557. if (eob)
  2558. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2559. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2560. }
  2561. dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1];
  2562. dst += 4 * uvstep1d * s->uv_stride;
  2563. }
  2564. }
  2565. }
  2566. static void intra_recon_8bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2567. {
  2568. intra_recon(ctx, y_off, uv_off, 1);
  2569. }
  2570. static void intra_recon_16bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2571. {
  2572. intra_recon(ctx, y_off, uv_off, 2);
  2573. }
  2574. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2575. uint8_t *dst, ptrdiff_t dst_stride,
  2576. const uint8_t *ref, ptrdiff_t ref_stride,
  2577. ThreadFrame *ref_frame,
  2578. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2579. int px, int py, int pw, int ph,
  2580. int bw, int bh, int w, int h, int bytesperpixel,
  2581. const uint16_t *scale, const uint8_t *step)
  2582. {
  2583. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  2584. int mx, my;
  2585. int refbw_m1, refbh_m1;
  2586. int th;
  2587. VP56mv mv;
  2588. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 3, (s->cols * 8 - x + px + 3) << 3);
  2589. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 3, (s->rows * 8 - y + py + 3) << 3);
  2590. // BUG libvpx seems to scale the two components separately. This introduces
  2591. // rounding errors but we have to reproduce them to be exactly compatible
  2592. // with the output from libvpx...
  2593. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  2594. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  2595. y = my >> 4;
  2596. x = mx >> 4;
  2597. ref += y * ref_stride + x * bytesperpixel;
  2598. mx &= 15;
  2599. my &= 15;
  2600. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2601. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2602. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2603. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2604. // the longest loopfilter of the next sbrow
  2605. th = (y + refbh_m1 + 4 + 7) >> 6;
  2606. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2607. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2608. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2609. ref - 3 * ref_stride - 3 * bytesperpixel,
  2610. 288, ref_stride,
  2611. refbw_m1 + 8, refbh_m1 + 8,
  2612. x - 3, y - 3, w, h);
  2613. ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2614. ref_stride = 288;
  2615. }
  2616. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  2617. }
  2618. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2619. uint8_t *dst_u, uint8_t *dst_v,
  2620. ptrdiff_t dst_stride,
  2621. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2622. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2623. ThreadFrame *ref_frame,
  2624. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2625. int px, int py, int pw, int ph,
  2626. int bw, int bh, int w, int h, int bytesperpixel,
  2627. const uint16_t *scale, const uint8_t *step)
  2628. {
  2629. int mx, my;
  2630. int refbw_m1, refbh_m1;
  2631. int th;
  2632. VP56mv mv;
  2633. if (s->ss_h) {
  2634. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2635. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 4, (s->cols * 4 - x + px + 3) << 4);
  2636. mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  2637. } else {
  2638. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 3, (s->cols * 8 - x + px + 3) << 3);
  2639. mx = scale_mv(mv.x << 1, 0) + scale_mv(x * 16, 0);
  2640. }
  2641. if (s->ss_v) {
  2642. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2643. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 4, (s->rows * 4 - y + py + 3) << 4);
  2644. my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  2645. } else {
  2646. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 3, (s->rows * 8 - y + py + 3) << 3);
  2647. my = scale_mv(mv.y << 1, 1) + scale_mv(y * 16, 1);
  2648. }
  2649. #undef scale_mv
  2650. y = my >> 4;
  2651. x = mx >> 4;
  2652. ref_u += y * src_stride_u + x * bytesperpixel;
  2653. ref_v += y * src_stride_v + x * bytesperpixel;
  2654. mx &= 15;
  2655. my &= 15;
  2656. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2657. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2658. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2659. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2660. // the longest loopfilter of the next sbrow
  2661. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  2662. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2663. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2664. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2665. ref_u - 3 * src_stride_u - 3 * bytesperpixel,
  2666. 288, src_stride_u,
  2667. refbw_m1 + 8, refbh_m1 + 8,
  2668. x - 3, y - 3, w, h);
  2669. ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2670. smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
  2671. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2672. ref_v - 3 * src_stride_v - 3 * bytesperpixel,
  2673. 288, src_stride_v,
  2674. refbw_m1 + 8, refbh_m1 + 8,
  2675. x - 3, y - 3, w, h);
  2676. ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2677. smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
  2678. } else {
  2679. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  2680. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  2681. }
  2682. }
  2683. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2684. px, py, pw, ph, bw, bh, w, h, i) \
  2685. mc_luma_scaled(s, s->dsp.s##mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2686. mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2687. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2688. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2689. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2690. mc_chroma_scaled(s, s->dsp.s##mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2691. row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2692. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2693. #define SCALED 1
  2694. #define FN(x) x##_scaled_8bpp
  2695. #define BYTES_PER_PIXEL 1
  2696. #include "vp9_mc_template.c"
  2697. #undef FN
  2698. #undef BYTES_PER_PIXEL
  2699. #define FN(x) x##_scaled_16bpp
  2700. #define BYTES_PER_PIXEL 2
  2701. #include "vp9_mc_template.c"
  2702. #undef mc_luma_dir
  2703. #undef mc_chroma_dir
  2704. #undef FN
  2705. #undef BYTES_PER_PIXEL
  2706. #undef SCALED
  2707. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2708. uint8_t *dst, ptrdiff_t dst_stride,
  2709. const uint8_t *ref, ptrdiff_t ref_stride,
  2710. ThreadFrame *ref_frame,
  2711. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2712. int bw, int bh, int w, int h, int bytesperpixel)
  2713. {
  2714. int mx = mv->x, my = mv->y, th;
  2715. y += my >> 3;
  2716. x += mx >> 3;
  2717. ref += y * ref_stride + x * bytesperpixel;
  2718. mx &= 7;
  2719. my &= 7;
  2720. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2721. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2722. // the longest loopfilter of the next sbrow
  2723. th = (y + bh + 4 * !!my + 7) >> 6;
  2724. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2725. if (x < !!mx * 3 || y < !!my * 3 ||
  2726. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2727. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2728. ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
  2729. 160, ref_stride,
  2730. bw + !!mx * 7, bh + !!my * 7,
  2731. x - !!mx * 3, y - !!my * 3, w, h);
  2732. ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2733. ref_stride = 160;
  2734. }
  2735. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  2736. }
  2737. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2738. uint8_t *dst_u, uint8_t *dst_v,
  2739. ptrdiff_t dst_stride,
  2740. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2741. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2742. ThreadFrame *ref_frame,
  2743. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2744. int bw, int bh, int w, int h, int bytesperpixel)
  2745. {
  2746. int mx = mv->x << !s->ss_h, my = mv->y << !s->ss_v, th;
  2747. y += my >> 4;
  2748. x += mx >> 4;
  2749. ref_u += y * src_stride_u + x * bytesperpixel;
  2750. ref_v += y * src_stride_v + x * bytesperpixel;
  2751. mx &= 15;
  2752. my &= 15;
  2753. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2754. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2755. // the longest loopfilter of the next sbrow
  2756. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  2757. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2758. if (x < !!mx * 3 || y < !!my * 3 ||
  2759. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2760. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2761. ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
  2762. 160, src_stride_u,
  2763. bw + !!mx * 7, bh + !!my * 7,
  2764. x - !!mx * 3, y - !!my * 3, w, h);
  2765. ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2766. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
  2767. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2768. ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
  2769. 160, src_stride_v,
  2770. bw + !!mx * 7, bh + !!my * 7,
  2771. x - !!mx * 3, y - !!my * 3, w, h);
  2772. ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2773. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
  2774. } else {
  2775. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  2776. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  2777. }
  2778. }
  2779. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2780. px, py, pw, ph, bw, bh, w, h, i) \
  2781. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2782. mv, bw, bh, w, h, bytesperpixel)
  2783. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2784. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2785. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2786. row, col, mv, bw, bh, w, h, bytesperpixel)
  2787. #define SCALED 0
  2788. #define FN(x) x##_8bpp
  2789. #define BYTES_PER_PIXEL 1
  2790. #include "vp9_mc_template.c"
  2791. #undef FN
  2792. #undef BYTES_PER_PIXEL
  2793. #define FN(x) x##_16bpp
  2794. #define BYTES_PER_PIXEL 2
  2795. #include "vp9_mc_template.c"
  2796. #undef mc_luma_dir_dir
  2797. #undef mc_chroma_dir_dir
  2798. #undef FN
  2799. #undef BYTES_PER_PIXEL
  2800. #undef SCALED
  2801. static av_always_inline void inter_recon(AVCodecContext *ctx, int bytesperpixel)
  2802. {
  2803. VP9Context *s = ctx->priv_data;
  2804. VP9Block *b = s->b;
  2805. int row = s->row, col = s->col;
  2806. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  2807. if (bytesperpixel == 1) {
  2808. inter_pred_scaled_8bpp(ctx);
  2809. } else {
  2810. inter_pred_scaled_16bpp(ctx);
  2811. }
  2812. } else {
  2813. if (bytesperpixel == 1) {
  2814. inter_pred_8bpp(ctx);
  2815. } else {
  2816. inter_pred_16bpp(ctx);
  2817. }
  2818. }
  2819. if (!b->skip) {
  2820. /* mostly copied intra_recon() */
  2821. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2822. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2823. int end_x = FFMIN(2 * (s->cols - col), w4);
  2824. int end_y = FFMIN(2 * (s->rows - row), h4);
  2825. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2826. int uvstep1d = 1 << b->uvtx, p;
  2827. uint8_t *dst = s->dst[0];
  2828. // y itxfm add
  2829. for (n = 0, y = 0; y < end_y; y += step1d) {
  2830. uint8_t *ptr = dst;
  2831. for (x = 0; x < end_x; x += step1d,
  2832. ptr += 4 * step1d * bytesperpixel, n += step) {
  2833. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2834. if (eob)
  2835. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  2836. s->block + 16 * n * bytesperpixel, eob);
  2837. }
  2838. dst += 4 * s->y_stride * step1d;
  2839. }
  2840. // uv itxfm add
  2841. end_x >>= s->ss_h;
  2842. end_y >>= s->ss_v;
  2843. step = 1 << (b->uvtx * 2);
  2844. for (p = 0; p < 2; p++) {
  2845. dst = s->dst[p + 1];
  2846. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2847. uint8_t *ptr = dst;
  2848. for (x = 0; x < end_x; x += uvstep1d,
  2849. ptr += 4 * uvstep1d * bytesperpixel, n += step) {
  2850. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2851. if (eob)
  2852. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2853. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2854. }
  2855. dst += 4 * uvstep1d * s->uv_stride;
  2856. }
  2857. }
  2858. }
  2859. }
  2860. static void inter_recon_8bpp(AVCodecContext *ctx)
  2861. {
  2862. inter_recon(ctx, 1);
  2863. }
  2864. static void inter_recon_16bpp(AVCodecContext *ctx)
  2865. {
  2866. inter_recon(ctx, 2);
  2867. }
  2868. static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
  2869. int row_and_7, int col_and_7,
  2870. int w, int h, int col_end, int row_end,
  2871. enum TxfmMode tx, int skip_inter)
  2872. {
  2873. static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
  2874. static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
  2875. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  2876. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  2877. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  2878. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  2879. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  2880. // edges. This means that for UV, we work on two subsampled blocks at
  2881. // a time, and we only use the topleft block's mode information to set
  2882. // things like block strength. Thus, for any block size smaller than
  2883. // 16x16, ignore the odd portion of the block.
  2884. if (tx == TX_4X4 && (ss_v | ss_h)) {
  2885. if (h == ss_v) {
  2886. if (row_and_7 & 1)
  2887. return;
  2888. if (!row_end)
  2889. h += 1;
  2890. }
  2891. if (w == ss_h) {
  2892. if (col_and_7 & 1)
  2893. return;
  2894. if (!col_end)
  2895. w += 1;
  2896. }
  2897. }
  2898. if (tx == TX_4X4 && !skip_inter) {
  2899. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  2900. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  2901. int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
  2902. for (y = row_and_7; y < h + row_and_7; y++) {
  2903. int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
  2904. mask[0][y][1] |= m_row_8;
  2905. mask[0][y][2] |= m_row_4;
  2906. // for odd lines, if the odd col is not being filtered,
  2907. // skip odd row also:
  2908. // .---. <-- a
  2909. // | |
  2910. // |___| <-- b
  2911. // ^ ^
  2912. // c d
  2913. //
  2914. // if a/c are even row/col and b/d are odd, and d is skipped,
  2915. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  2916. if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
  2917. mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
  2918. } else {
  2919. mask[1][y][col_mask_id] |= m_col;
  2920. }
  2921. if (!ss_h)
  2922. mask[0][y][3] |= m_col;
  2923. if (!ss_v) {
  2924. if (ss_h && (col_end & 1))
  2925. mask[1][y][3] |= (t << (w - 1)) - t;
  2926. else
  2927. mask[1][y][3] |= m_col;
  2928. }
  2929. }
  2930. } else {
  2931. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  2932. if (!skip_inter) {
  2933. int mask_id = (tx == TX_8X8);
  2934. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  2935. int l2 = tx + ss_h - 1, step1d;
  2936. int m_row = m_col & masks[l2];
  2937. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  2938. // 8wd loopfilter to prevent going off the visible edge.
  2939. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  2940. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  2941. int m_row_8 = m_row - m_row_16;
  2942. for (y = row_and_7; y < h + row_and_7; y++) {
  2943. mask[0][y][0] |= m_row_16;
  2944. mask[0][y][1] |= m_row_8;
  2945. }
  2946. } else {
  2947. for (y = row_and_7; y < h + row_and_7; y++)
  2948. mask[0][y][mask_id] |= m_row;
  2949. }
  2950. l2 = tx + ss_v - 1;
  2951. step1d = 1 << l2;
  2952. if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  2953. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  2954. mask[1][y][0] |= m_col;
  2955. if (y - row_and_7 == h - 1)
  2956. mask[1][y][1] |= m_col;
  2957. } else {
  2958. for (y = row_and_7; y < h + row_and_7; y += step1d)
  2959. mask[1][y][mask_id] |= m_col;
  2960. }
  2961. } else if (tx != TX_4X4) {
  2962. int mask_id;
  2963. mask_id = (tx == TX_8X8) || (h == ss_v);
  2964. mask[1][row_and_7][mask_id] |= m_col;
  2965. mask_id = (tx == TX_8X8) || (w == ss_h);
  2966. for (y = row_and_7; y < h + row_and_7; y++)
  2967. mask[0][y][mask_id] |= t;
  2968. } else {
  2969. int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
  2970. for (y = row_and_7; y < h + row_and_7; y++) {
  2971. mask[0][y][2] |= t4;
  2972. mask[0][y][1] |= t8;
  2973. }
  2974. mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
  2975. }
  2976. }
  2977. }
  2978. static void decode_b(AVCodecContext *ctx, int row, int col,
  2979. struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  2980. enum BlockLevel bl, enum BlockPartition bp)
  2981. {
  2982. VP9Context *s = ctx->priv_data;
  2983. VP9Block *b = s->b;
  2984. enum BlockSize bs = bl * 3 + bp;
  2985. int bytesperpixel = s->bytesperpixel;
  2986. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  2987. int emu[2];
  2988. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  2989. s->row = row;
  2990. s->row7 = row & 7;
  2991. s->col = col;
  2992. s->col7 = col & 7;
  2993. s->min_mv.x = -(128 + col * 64);
  2994. s->min_mv.y = -(128 + row * 64);
  2995. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  2996. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  2997. if (s->pass < 2) {
  2998. b->bs = bs;
  2999. b->bl = bl;
  3000. b->bp = bp;
  3001. decode_mode(ctx);
  3002. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  3003. (s->ss_v && h4 * 2 == (1 << b->tx)));
  3004. if (!b->skip) {
  3005. int has_coeffs;
  3006. if (bytesperpixel == 1) {
  3007. has_coeffs = decode_coeffs_8bpp(ctx);
  3008. } else {
  3009. has_coeffs = decode_coeffs_16bpp(ctx);
  3010. }
  3011. if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) {
  3012. b->skip = 1;
  3013. memset(&s->above_skip_ctx[col], 1, w4);
  3014. memset(&s->left_skip_ctx[s->row7], 1, h4);
  3015. }
  3016. } else {
  3017. int row7 = s->row7;
  3018. #define SPLAT_ZERO_CTX(v, n) \
  3019. switch (n) { \
  3020. case 1: v = 0; break; \
  3021. case 2: AV_ZERO16(&v); break; \
  3022. case 4: AV_ZERO32(&v); break; \
  3023. case 8: AV_ZERO64(&v); break; \
  3024. case 16: AV_ZERO128(&v); break; \
  3025. }
  3026. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  3027. do { \
  3028. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  3029. if (s->ss_##dir2) { \
  3030. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  3031. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  3032. } else { \
  3033. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  3034. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  3035. } \
  3036. } while (0)
  3037. switch (w4) {
  3038. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  3039. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  3040. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  3041. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  3042. }
  3043. switch (h4) {
  3044. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  3045. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  3046. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  3047. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  3048. }
  3049. }
  3050. if (s->pass == 1) {
  3051. s->b++;
  3052. s->block += w4 * h4 * 64 * bytesperpixel;
  3053. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3054. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3055. s->eob += 4 * w4 * h4;
  3056. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3057. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3058. return;
  3059. }
  3060. }
  3061. // emulated overhangs if the stride of the target buffer can't hold. This
  3062. // makes it possible to support emu-edge and so on even if we have large block
  3063. // overhangs
  3064. emu[0] = (col + w4) * 8 > f->linesize[0] ||
  3065. (row + h4) > s->rows;
  3066. emu[1] = (col + w4) * 4 > f->linesize[1] ||
  3067. (row + h4) > s->rows;
  3068. if (emu[0]) {
  3069. s->dst[0] = s->tmp_y;
  3070. s->y_stride = 128;
  3071. } else {
  3072. s->dst[0] = f->data[0] + yoff;
  3073. s->y_stride = f->linesize[0];
  3074. }
  3075. if (emu[1]) {
  3076. s->dst[1] = s->tmp_uv[0];
  3077. s->dst[2] = s->tmp_uv[1];
  3078. s->uv_stride = 128;
  3079. } else {
  3080. s->dst[1] = f->data[1] + uvoff;
  3081. s->dst[2] = f->data[2] + uvoff;
  3082. s->uv_stride = f->linesize[1];
  3083. }
  3084. if (b->intra) {
  3085. if (s->bpp > 8) {
  3086. intra_recon_16bpp(ctx, yoff, uvoff);
  3087. } else {
  3088. intra_recon_8bpp(ctx, yoff, uvoff);
  3089. }
  3090. } else {
  3091. if (s->bpp > 8) {
  3092. inter_recon_16bpp(ctx);
  3093. } else {
  3094. inter_recon_8bpp(ctx);
  3095. }
  3096. }
  3097. if (emu[0]) {
  3098. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  3099. for (n = 0; o < w; n++) {
  3100. int bw = 64 >> n;
  3101. av_assert2(n <= 4);
  3102. if (w & bw) {
  3103. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0],
  3104. s->tmp_y + o, 128, h, 0, 0);
  3105. o += bw * bytesperpixel;
  3106. }
  3107. }
  3108. }
  3109. if (emu[1]) {
  3110. int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
  3111. int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
  3112. for (n = s->ss_h; o < w; n++) {
  3113. int bw = 64 >> n;
  3114. av_assert2(n <= 4);
  3115. if (w & bw) {
  3116. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1],
  3117. s->tmp_uv[0] + o, 128, h, 0, 0);
  3118. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2],
  3119. s->tmp_uv[1] + o, 128, h, 0, 0);
  3120. o += bw * bytesperpixel;
  3121. }
  3122. }
  3123. }
  3124. // pick filter level and find edges to apply filter to
  3125. if (s->filter.level &&
  3126. (lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  3127. [b->mode[3] != ZEROMV]) > 0) {
  3128. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  3129. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  3130. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  3131. mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  3132. if (s->ss_h || s->ss_v)
  3133. mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
  3134. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  3135. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  3136. b->uvtx, skip_inter);
  3137. if (!s->filter.lim_lut[lvl]) {
  3138. int sharp = s->filter.sharpness;
  3139. int limit = lvl;
  3140. if (sharp > 0) {
  3141. limit >>= (sharp + 3) >> 2;
  3142. limit = FFMIN(limit, 9 - sharp);
  3143. }
  3144. limit = FFMAX(limit, 1);
  3145. s->filter.lim_lut[lvl] = limit;
  3146. s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  3147. }
  3148. }
  3149. if (s->pass == 2) {
  3150. s->b++;
  3151. s->block += w4 * h4 * 64 * bytesperpixel;
  3152. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3153. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3154. s->eob += 4 * w4 * h4;
  3155. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3156. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3157. }
  3158. }
  3159. static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3160. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3161. {
  3162. VP9Context *s = ctx->priv_data;
  3163. int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
  3164. (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
  3165. const uint8_t *p = s->keyframe || s->intraonly ? vp9_default_kf_partition_probs[bl][c] :
  3166. s->prob.p.partition[bl][c];
  3167. enum BlockPartition bp;
  3168. ptrdiff_t hbs = 4 >> bl;
  3169. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3170. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3171. int bytesperpixel = s->bytesperpixel;
  3172. if (bl == BL_8X8) {
  3173. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3174. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3175. } else if (col + hbs < s->cols) { // FIXME why not <=?
  3176. if (row + hbs < s->rows) { // FIXME why not <=?
  3177. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3178. switch (bp) {
  3179. case PARTITION_NONE:
  3180. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3181. break;
  3182. case PARTITION_H:
  3183. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3184. yoff += hbs * 8 * y_stride;
  3185. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3186. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
  3187. break;
  3188. case PARTITION_V:
  3189. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3190. yoff += hbs * 8 * bytesperpixel;
  3191. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3192. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
  3193. break;
  3194. case PARTITION_SPLIT:
  3195. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3196. decode_sb(ctx, row, col + hbs, lflvl,
  3197. yoff + 8 * hbs * bytesperpixel,
  3198. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3199. yoff += hbs * 8 * y_stride;
  3200. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3201. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3202. decode_sb(ctx, row + hbs, col + hbs, lflvl,
  3203. yoff + 8 * hbs * bytesperpixel,
  3204. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3205. break;
  3206. default:
  3207. av_assert0(0);
  3208. }
  3209. } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
  3210. bp = PARTITION_SPLIT;
  3211. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3212. decode_sb(ctx, row, col + hbs, lflvl,
  3213. yoff + 8 * hbs * bytesperpixel,
  3214. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3215. } else {
  3216. bp = PARTITION_H;
  3217. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3218. }
  3219. } else if (row + hbs < s->rows) { // FIXME why not <=?
  3220. if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
  3221. bp = PARTITION_SPLIT;
  3222. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3223. yoff += hbs * 8 * y_stride;
  3224. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3225. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3226. } else {
  3227. bp = PARTITION_V;
  3228. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3229. }
  3230. } else {
  3231. bp = PARTITION_SPLIT;
  3232. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3233. }
  3234. s->counts.partition[bl][c][bp]++;
  3235. }
  3236. static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3237. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3238. {
  3239. VP9Context *s = ctx->priv_data;
  3240. VP9Block *b = s->b;
  3241. ptrdiff_t hbs = 4 >> bl;
  3242. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3243. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3244. int bytesperpixel = s->bytesperpixel;
  3245. if (bl == BL_8X8) {
  3246. av_assert2(b->bl == BL_8X8);
  3247. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3248. } else if (s->b->bl == bl) {
  3249. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3250. if (b->bp == PARTITION_H && row + hbs < s->rows) {
  3251. yoff += hbs * 8 * y_stride;
  3252. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3253. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3254. } else if (b->bp == PARTITION_V && col + hbs < s->cols) {
  3255. yoff += hbs * 8 * bytesperpixel;
  3256. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3257. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
  3258. }
  3259. } else {
  3260. decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3261. if (col + hbs < s->cols) { // FIXME why not <=?
  3262. if (row + hbs < s->rows) {
  3263. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
  3264. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3265. yoff += hbs * 8 * y_stride;
  3266. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3267. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3268. decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
  3269. yoff + 8 * hbs * bytesperpixel,
  3270. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3271. } else {
  3272. yoff += hbs * 8 * bytesperpixel;
  3273. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3274. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
  3275. }
  3276. } else if (row + hbs < s->rows) {
  3277. yoff += hbs * 8 * y_stride;
  3278. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3279. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3280. }
  3281. }
  3282. }
  3283. static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v,
  3284. uint8_t *lvl, uint8_t (*mask)[4],
  3285. uint8_t *dst, ptrdiff_t ls)
  3286. {
  3287. int y, x, bytesperpixel = s->bytesperpixel;
  3288. // filter edges between columns (e.g. block1 | block2)
  3289. for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) {
  3290. uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v];
  3291. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
  3292. unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
  3293. unsigned hm = hm1 | hm2 | hm13 | hm23;
  3294. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) {
  3295. if (col || x > 1) {
  3296. if (hm1 & x) {
  3297. int L = *l, H = L >> 4;
  3298. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3299. if (hmask1[0] & x) {
  3300. if (hmask2[0] & x) {
  3301. av_assert2(l[8 << ss_v] == L);
  3302. s->dsp.loop_filter_16[0](ptr, ls, E, I, H);
  3303. } else {
  3304. s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H);
  3305. }
  3306. } else if (hm2 & x) {
  3307. L = l[8 << ss_v];
  3308. H |= (L >> 4) << 8;
  3309. E |= s->filter.mblim_lut[L] << 8;
  3310. I |= s->filter.lim_lut[L] << 8;
  3311. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3312. [!!(hmask2[1] & x)]
  3313. [0](ptr, ls, E, I, H);
  3314. } else {
  3315. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3316. [0](ptr, ls, E, I, H);
  3317. }
  3318. } else if (hm2 & x) {
  3319. int L = l[8 << ss_v], H = L >> 4;
  3320. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3321. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3322. [0](ptr + 8 * ls, ls, E, I, H);
  3323. }
  3324. }
  3325. if (ss_h) {
  3326. if (x & 0xAA)
  3327. l += 2;
  3328. } else {
  3329. if (hm13 & x) {
  3330. int L = *l, H = L >> 4;
  3331. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3332. if (hm23 & x) {
  3333. L = l[8 << ss_v];
  3334. H |= (L >> 4) << 8;
  3335. E |= s->filter.mblim_lut[L] << 8;
  3336. I |= s->filter.lim_lut[L] << 8;
  3337. s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3338. } else {
  3339. s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3340. }
  3341. } else if (hm23 & x) {
  3342. int L = l[8 << ss_v], H = L >> 4;
  3343. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3344. s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H);
  3345. }
  3346. l++;
  3347. }
  3348. }
  3349. }
  3350. }
  3351. static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v,
  3352. uint8_t *lvl, uint8_t (*mask)[4],
  3353. uint8_t *dst, ptrdiff_t ls)
  3354. {
  3355. int y, x, bytesperpixel = s->bytesperpixel;
  3356. // block1
  3357. // filter edges between rows (e.g. ------)
  3358. // block2
  3359. for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) {
  3360. uint8_t *ptr = dst, *l = lvl, *vmask = mask[y];
  3361. unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
  3362. for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) {
  3363. if (row || y) {
  3364. if (vm & x) {
  3365. int L = *l, H = L >> 4;
  3366. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3367. if (vmask[0] & x) {
  3368. if (vmask[0] & (x << (1 + ss_h))) {
  3369. av_assert2(l[1 + ss_h] == L);
  3370. s->dsp.loop_filter_16[1](ptr, ls, E, I, H);
  3371. } else {
  3372. s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H);
  3373. }
  3374. } else if (vm & (x << (1 + ss_h))) {
  3375. L = l[1 + ss_h];
  3376. H |= (L >> 4) << 8;
  3377. E |= s->filter.mblim_lut[L] << 8;
  3378. I |= s->filter.lim_lut[L] << 8;
  3379. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3380. [!!(vmask[1] & (x << (1 + ss_h)))]
  3381. [1](ptr, ls, E, I, H);
  3382. } else {
  3383. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3384. [1](ptr, ls, E, I, H);
  3385. }
  3386. } else if (vm & (x << (1 + ss_h))) {
  3387. int L = l[1 + ss_h], H = L >> 4;
  3388. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3389. s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))]
  3390. [1](ptr + 8 * bytesperpixel, ls, E, I, H);
  3391. }
  3392. }
  3393. if (!ss_v) {
  3394. if (vm3 & x) {
  3395. int L = *l, H = L >> 4;
  3396. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3397. if (vm3 & (x << (1 + ss_h))) {
  3398. L = l[1 + ss_h];
  3399. H |= (L >> 4) << 8;
  3400. E |= s->filter.mblim_lut[L] << 8;
  3401. I |= s->filter.lim_lut[L] << 8;
  3402. s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H);
  3403. } else {
  3404. s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H);
  3405. }
  3406. } else if (vm3 & (x << (1 + ss_h))) {
  3407. int L = l[1 + ss_h], H = L >> 4;
  3408. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3409. s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H);
  3410. }
  3411. }
  3412. }
  3413. if (ss_v) {
  3414. if (y & 1)
  3415. lvl += 16;
  3416. } else {
  3417. lvl += 8;
  3418. }
  3419. }
  3420. }
  3421. static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
  3422. int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
  3423. {
  3424. VP9Context *s = ctx->priv_data;
  3425. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3426. uint8_t *dst = f->data[0] + yoff;
  3427. ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
  3428. uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v];
  3429. int p;
  3430. // FIXME in how far can we interleave the v/h loopfilter calls? E.g.
  3431. // if you think of them as acting on a 8x8 block max, we can interleave
  3432. // each v/h within the single x loop, but that only works if we work on
  3433. // 8 pixel blocks, and we won't always do that (we want at least 16px
  3434. // to use SSE2 optimizations, perhaps 32 for AVX2)
  3435. filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y);
  3436. filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y);
  3437. for (p = 0; p < 2; p++) {
  3438. dst = f->data[1 + p] + uvoff;
  3439. filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv);
  3440. filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv);
  3441. }
  3442. }
  3443. static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
  3444. {
  3445. int sb_start = ( idx * n) >> log2_n;
  3446. int sb_end = ((idx + 1) * n) >> log2_n;
  3447. *start = FFMIN(sb_start, n) << 3;
  3448. *end = FFMIN(sb_end, n) << 3;
  3449. }
  3450. static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
  3451. int max_count, int update_factor)
  3452. {
  3453. unsigned ct = ct0 + ct1, p2, p1;
  3454. if (!ct)
  3455. return;
  3456. p1 = *p;
  3457. p2 = ((ct0 << 8) + (ct >> 1)) / ct;
  3458. p2 = av_clip(p2, 1, 255);
  3459. ct = FFMIN(ct, max_count);
  3460. update_factor = FASTDIV(update_factor * ct, max_count);
  3461. // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
  3462. *p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
  3463. }
  3464. static void adapt_probs(VP9Context *s)
  3465. {
  3466. int i, j, k, l, m;
  3467. prob_context *p = &s->prob_ctx[s->framectxid].p;
  3468. int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128;
  3469. // coefficients
  3470. for (i = 0; i < 4; i++)
  3471. for (j = 0; j < 2; j++)
  3472. for (k = 0; k < 2; k++)
  3473. for (l = 0; l < 6; l++)
  3474. for (m = 0; m < 6; m++) {
  3475. uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m];
  3476. unsigned *e = s->counts.eob[i][j][k][l][m];
  3477. unsigned *c = s->counts.coef[i][j][k][l][m];
  3478. if (l == 0 && m >= 3) // dc only has 3 pt
  3479. break;
  3480. adapt_prob(&pp[0], e[0], e[1], 24, uf);
  3481. adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
  3482. adapt_prob(&pp[2], c[1], c[2], 24, uf);
  3483. }
  3484. if (s->keyframe || s->intraonly) {
  3485. memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
  3486. memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
  3487. memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
  3488. memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
  3489. return;
  3490. }
  3491. // skip flag
  3492. for (i = 0; i < 3; i++)
  3493. adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
  3494. // intra/inter flag
  3495. for (i = 0; i < 4; i++)
  3496. adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
  3497. // comppred flag
  3498. if (s->comppredmode == PRED_SWITCHABLE) {
  3499. for (i = 0; i < 5; i++)
  3500. adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
  3501. }
  3502. // reference frames
  3503. if (s->comppredmode != PRED_SINGLEREF) {
  3504. for (i = 0; i < 5; i++)
  3505. adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
  3506. s->counts.comp_ref[i][1], 20, 128);
  3507. }
  3508. if (s->comppredmode != PRED_COMPREF) {
  3509. for (i = 0; i < 5; i++) {
  3510. uint8_t *pp = p->single_ref[i];
  3511. unsigned (*c)[2] = s->counts.single_ref[i];
  3512. adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
  3513. adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
  3514. }
  3515. }
  3516. // block partitioning
  3517. for (i = 0; i < 4; i++)
  3518. for (j = 0; j < 4; j++) {
  3519. uint8_t *pp = p->partition[i][j];
  3520. unsigned *c = s->counts.partition[i][j];
  3521. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3522. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3523. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3524. }
  3525. // tx size
  3526. if (s->txfmmode == TX_SWITCHABLE) {
  3527. for (i = 0; i < 2; i++) {
  3528. unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
  3529. adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
  3530. adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
  3531. adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
  3532. adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
  3533. adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
  3534. adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
  3535. }
  3536. }
  3537. // interpolation filter
  3538. if (s->filtermode == FILTER_SWITCHABLE) {
  3539. for (i = 0; i < 4; i++) {
  3540. uint8_t *pp = p->filter[i];
  3541. unsigned *c = s->counts.filter[i];
  3542. adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
  3543. adapt_prob(&pp[1], c[1], c[2], 20, 128);
  3544. }
  3545. }
  3546. // inter modes
  3547. for (i = 0; i < 7; i++) {
  3548. uint8_t *pp = p->mv_mode[i];
  3549. unsigned *c = s->counts.mv_mode[i];
  3550. adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
  3551. adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
  3552. adapt_prob(&pp[2], c[1], c[3], 20, 128);
  3553. }
  3554. // mv joints
  3555. {
  3556. uint8_t *pp = p->mv_joint;
  3557. unsigned *c = s->counts.mv_joint;
  3558. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3559. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3560. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3561. }
  3562. // mv components
  3563. for (i = 0; i < 2; i++) {
  3564. uint8_t *pp;
  3565. unsigned *c, (*c2)[2], sum;
  3566. adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
  3567. s->counts.mv_comp[i].sign[1], 20, 128);
  3568. pp = p->mv_comp[i].classes;
  3569. c = s->counts.mv_comp[i].classes;
  3570. sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
  3571. adapt_prob(&pp[0], c[0], sum, 20, 128);
  3572. sum -= c[1];
  3573. adapt_prob(&pp[1], c[1], sum, 20, 128);
  3574. sum -= c[2] + c[3];
  3575. adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
  3576. adapt_prob(&pp[3], c[2], c[3], 20, 128);
  3577. sum -= c[4] + c[5];
  3578. adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
  3579. adapt_prob(&pp[5], c[4], c[5], 20, 128);
  3580. sum -= c[6];
  3581. adapt_prob(&pp[6], c[6], sum, 20, 128);
  3582. adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
  3583. adapt_prob(&pp[8], c[7], c[8], 20, 128);
  3584. adapt_prob(&pp[9], c[9], c[10], 20, 128);
  3585. adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
  3586. s->counts.mv_comp[i].class0[1], 20, 128);
  3587. pp = p->mv_comp[i].bits;
  3588. c2 = s->counts.mv_comp[i].bits;
  3589. for (j = 0; j < 10; j++)
  3590. adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
  3591. for (j = 0; j < 2; j++) {
  3592. pp = p->mv_comp[i].class0_fp[j];
  3593. c = s->counts.mv_comp[i].class0_fp[j];
  3594. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3595. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3596. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3597. }
  3598. pp = p->mv_comp[i].fp;
  3599. c = s->counts.mv_comp[i].fp;
  3600. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3601. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3602. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3603. if (s->highprecisionmvs) {
  3604. adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
  3605. s->counts.mv_comp[i].class0_hp[1], 20, 128);
  3606. adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
  3607. s->counts.mv_comp[i].hp[1], 20, 128);
  3608. }
  3609. }
  3610. // y intra modes
  3611. for (i = 0; i < 4; i++) {
  3612. uint8_t *pp = p->y_mode[i];
  3613. unsigned *c = s->counts.y_mode[i], sum, s2;
  3614. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3615. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3616. sum -= c[TM_VP8_PRED];
  3617. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3618. sum -= c[VERT_PRED];
  3619. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3620. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3621. sum -= s2;
  3622. adapt_prob(&pp[3], s2, sum, 20, 128);
  3623. s2 -= c[HOR_PRED];
  3624. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3625. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3626. sum -= c[DIAG_DOWN_LEFT_PRED];
  3627. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3628. sum -= c[VERT_LEFT_PRED];
  3629. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3630. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3631. }
  3632. // uv intra modes
  3633. for (i = 0; i < 10; i++) {
  3634. uint8_t *pp = p->uv_mode[i];
  3635. unsigned *c = s->counts.uv_mode[i], sum, s2;
  3636. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3637. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3638. sum -= c[TM_VP8_PRED];
  3639. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3640. sum -= c[VERT_PRED];
  3641. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3642. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3643. sum -= s2;
  3644. adapt_prob(&pp[3], s2, sum, 20, 128);
  3645. s2 -= c[HOR_PRED];
  3646. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3647. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3648. sum -= c[DIAG_DOWN_LEFT_PRED];
  3649. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3650. sum -= c[VERT_LEFT_PRED];
  3651. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3652. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3653. }
  3654. }
  3655. static void free_buffers(VP9Context *s)
  3656. {
  3657. av_freep(&s->intra_pred_data[0]);
  3658. av_freep(&s->b_base);
  3659. av_freep(&s->block_base);
  3660. }
  3661. static av_cold int vp9_decode_free(AVCodecContext *ctx)
  3662. {
  3663. VP9Context *s = ctx->priv_data;
  3664. int i;
  3665. for (i = 0; i < 3; i++) {
  3666. if (s->frames[i].tf.f->data[0])
  3667. vp9_unref_frame(ctx, &s->frames[i]);
  3668. av_frame_free(&s->frames[i].tf.f);
  3669. }
  3670. for (i = 0; i < 8; i++) {
  3671. if (s->refs[i].f->data[0])
  3672. ff_thread_release_buffer(ctx, &s->refs[i]);
  3673. av_frame_free(&s->refs[i].f);
  3674. if (s->next_refs[i].f->data[0])
  3675. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3676. av_frame_free(&s->next_refs[i].f);
  3677. }
  3678. free_buffers(s);
  3679. av_freep(&s->c_b);
  3680. s->c_b_size = 0;
  3681. return 0;
  3682. }
  3683. static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
  3684. int *got_frame, AVPacket *pkt)
  3685. {
  3686. const uint8_t *data = pkt->data;
  3687. int size = pkt->size;
  3688. VP9Context *s = ctx->priv_data;
  3689. int res, tile_row, tile_col, i, ref, row, col;
  3690. int retain_segmap_ref = s->segmentation.enabled && !s->segmentation.update_map;
  3691. ptrdiff_t yoff, uvoff, ls_y, ls_uv;
  3692. AVFrame *f;
  3693. int bytesperpixel;
  3694. if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
  3695. return res;
  3696. } else if (res == 0) {
  3697. if (!s->refs[ref].f->data[0]) {
  3698. av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
  3699. return AVERROR_INVALIDDATA;
  3700. }
  3701. if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0)
  3702. return res;
  3703. ((AVFrame *)frame)->pkt_pts = pkt->pts;
  3704. ((AVFrame *)frame)->pkt_dts = pkt->dts;
  3705. for (i = 0; i < 8; i++) {
  3706. if (s->next_refs[i].f->data[0])
  3707. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3708. if (s->refs[i].f->data[0] &&
  3709. (res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i])) < 0)
  3710. return res;
  3711. }
  3712. *got_frame = 1;
  3713. return pkt->size;
  3714. }
  3715. data += res;
  3716. size -= res;
  3717. if (!retain_segmap_ref) {
  3718. if (s->frames[REF_FRAME_SEGMAP].tf.f->data[0])
  3719. vp9_unref_frame(ctx, &s->frames[REF_FRAME_SEGMAP]);
  3720. if (!s->keyframe && !s->intraonly && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3721. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_SEGMAP], &s->frames[CUR_FRAME])) < 0)
  3722. return res;
  3723. }
  3724. if (s->frames[REF_FRAME_MVPAIR].tf.f->data[0])
  3725. vp9_unref_frame(ctx, &s->frames[REF_FRAME_MVPAIR]);
  3726. if (!s->intraonly && !s->keyframe && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3727. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_MVPAIR], &s->frames[CUR_FRAME])) < 0)
  3728. return res;
  3729. if (s->frames[CUR_FRAME].tf.f->data[0])
  3730. vp9_unref_frame(ctx, &s->frames[CUR_FRAME]);
  3731. if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0)
  3732. return res;
  3733. f = s->frames[CUR_FRAME].tf.f;
  3734. f->key_frame = s->keyframe;
  3735. f->pict_type = (s->keyframe || s->intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  3736. ls_y = f->linesize[0];
  3737. ls_uv =f->linesize[1];
  3738. // ref frame setup
  3739. for (i = 0; i < 8; i++) {
  3740. if (s->next_refs[i].f->data[0])
  3741. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3742. if (s->refreshrefmask & (1 << i)) {
  3743. res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf);
  3744. } else if (s->refs[i].f->data[0]) {
  3745. res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]);
  3746. }
  3747. if (res < 0)
  3748. return res;
  3749. }
  3750. // main tile decode loop
  3751. bytesperpixel = s->bytesperpixel;
  3752. memset(s->above_partition_ctx, 0, s->cols);
  3753. memset(s->above_skip_ctx, 0, s->cols);
  3754. if (s->keyframe || s->intraonly) {
  3755. memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
  3756. } else {
  3757. memset(s->above_mode_ctx, NEARESTMV, s->cols);
  3758. }
  3759. memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
  3760. memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
  3761. memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
  3762. memset(s->above_segpred_ctx, 0, s->cols);
  3763. s->pass = s->frames[CUR_FRAME].uses_2pass =
  3764. ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode;
  3765. if ((res = update_block_buffers(ctx)) < 0) {
  3766. av_log(ctx, AV_LOG_ERROR,
  3767. "Failed to allocate block buffers\n");
  3768. return res;
  3769. }
  3770. if (s->refreshctx && s->parallelmode) {
  3771. int j, k, l, m;
  3772. for (i = 0; i < 4; i++) {
  3773. for (j = 0; j < 2; j++)
  3774. for (k = 0; k < 2; k++)
  3775. for (l = 0; l < 6; l++)
  3776. for (m = 0; m < 6; m++)
  3777. memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
  3778. s->prob.coef[i][j][k][l][m], 3);
  3779. if (s->txfmmode == i)
  3780. break;
  3781. }
  3782. s->prob_ctx[s->framectxid].p = s->prob.p;
  3783. ff_thread_finish_setup(ctx);
  3784. } else if (!s->refreshctx) {
  3785. ff_thread_finish_setup(ctx);
  3786. }
  3787. do {
  3788. yoff = uvoff = 0;
  3789. s->b = s->b_base;
  3790. s->block = s->block_base;
  3791. s->uvblock[0] = s->uvblock_base[0];
  3792. s->uvblock[1] = s->uvblock_base[1];
  3793. s->eob = s->eob_base;
  3794. s->uveob[0] = s->uveob_base[0];
  3795. s->uveob[1] = s->uveob_base[1];
  3796. for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
  3797. set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
  3798. tile_row, s->tiling.log2_tile_rows, s->sb_rows);
  3799. if (s->pass != 2) {
  3800. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3801. int64_t tile_size;
  3802. if (tile_col == s->tiling.tile_cols - 1 &&
  3803. tile_row == s->tiling.tile_rows - 1) {
  3804. tile_size = size;
  3805. } else {
  3806. tile_size = AV_RB32(data);
  3807. data += 4;
  3808. size -= 4;
  3809. }
  3810. if (tile_size > size) {
  3811. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3812. return AVERROR_INVALIDDATA;
  3813. }
  3814. ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
  3815. if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
  3816. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3817. return AVERROR_INVALIDDATA;
  3818. }
  3819. data += tile_size;
  3820. size -= tile_size;
  3821. }
  3822. }
  3823. for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end;
  3824. row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
  3825. struct VP9Filter *lflvl_ptr = s->lflvl;
  3826. ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
  3827. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3828. set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end,
  3829. tile_col, s->tiling.log2_tile_cols, s->sb_cols);
  3830. if (s->pass != 2) {
  3831. memset(s->left_partition_ctx, 0, 8);
  3832. memset(s->left_skip_ctx, 0, 8);
  3833. if (s->keyframe || s->intraonly) {
  3834. memset(s->left_mode_ctx, DC_PRED, 16);
  3835. } else {
  3836. memset(s->left_mode_ctx, NEARESTMV, 8);
  3837. }
  3838. memset(s->left_y_nnz_ctx, 0, 16);
  3839. memset(s->left_uv_nnz_ctx, 0, 32);
  3840. memset(s->left_segpred_ctx, 0, 8);
  3841. memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
  3842. }
  3843. for (col = s->tiling.tile_col_start;
  3844. col < s->tiling.tile_col_end;
  3845. col += 8, yoff2 += 64 * bytesperpixel,
  3846. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3847. // FIXME integrate with lf code (i.e. zero after each
  3848. // use, similar to invtxfm coefficients, or similar)
  3849. if (s->pass != 1) {
  3850. memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
  3851. }
  3852. if (s->pass == 2) {
  3853. decode_sb_mem(ctx, row, col, lflvl_ptr,
  3854. yoff2, uvoff2, BL_64X64);
  3855. } else {
  3856. decode_sb(ctx, row, col, lflvl_ptr,
  3857. yoff2, uvoff2, BL_64X64);
  3858. }
  3859. }
  3860. if (s->pass != 2) {
  3861. memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
  3862. }
  3863. }
  3864. if (s->pass == 1) {
  3865. continue;
  3866. }
  3867. // backup pre-loopfilter reconstruction data for intra
  3868. // prediction of next row of sb64s
  3869. if (row + 8 < s->rows) {
  3870. memcpy(s->intra_pred_data[0],
  3871. f->data[0] + yoff + 63 * ls_y,
  3872. 8 * s->cols * bytesperpixel);
  3873. memcpy(s->intra_pred_data[1],
  3874. f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3875. 8 * s->cols * bytesperpixel >> s->ss_h);
  3876. memcpy(s->intra_pred_data[2],
  3877. f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3878. 8 * s->cols * bytesperpixel >> s->ss_h);
  3879. }
  3880. // loopfilter one row
  3881. if (s->filter.level) {
  3882. yoff2 = yoff;
  3883. uvoff2 = uvoff;
  3884. lflvl_ptr = s->lflvl;
  3885. for (col = 0; col < s->cols;
  3886. col += 8, yoff2 += 64 * bytesperpixel,
  3887. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3888. loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
  3889. }
  3890. }
  3891. // FIXME maybe we can make this more finegrained by running the
  3892. // loopfilter per-block instead of after each sbrow
  3893. // In fact that would also make intra pred left preparation easier?
  3894. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0);
  3895. }
  3896. }
  3897. if (s->pass < 2 && s->refreshctx && !s->parallelmode) {
  3898. adapt_probs(s);
  3899. ff_thread_finish_setup(ctx);
  3900. }
  3901. } while (s->pass++ == 1);
  3902. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3903. // ref frame setup
  3904. for (i = 0; i < 8; i++) {
  3905. if (s->refs[i].f->data[0])
  3906. ff_thread_release_buffer(ctx, &s->refs[i]);
  3907. ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]);
  3908. }
  3909. if (!s->invisible) {
  3910. if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0)
  3911. return res;
  3912. *got_frame = 1;
  3913. }
  3914. return pkt->size;
  3915. }
  3916. static void vp9_decode_flush(AVCodecContext *ctx)
  3917. {
  3918. VP9Context *s = ctx->priv_data;
  3919. int i;
  3920. for (i = 0; i < 3; i++)
  3921. vp9_unref_frame(ctx, &s->frames[i]);
  3922. for (i = 0; i < 8; i++)
  3923. ff_thread_release_buffer(ctx, &s->refs[i]);
  3924. }
  3925. static int init_frames(AVCodecContext *ctx)
  3926. {
  3927. VP9Context *s = ctx->priv_data;
  3928. int i;
  3929. for (i = 0; i < 3; i++) {
  3930. s->frames[i].tf.f = av_frame_alloc();
  3931. if (!s->frames[i].tf.f) {
  3932. vp9_decode_free(ctx);
  3933. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3934. return AVERROR(ENOMEM);
  3935. }
  3936. }
  3937. for (i = 0; i < 8; i++) {
  3938. s->refs[i].f = av_frame_alloc();
  3939. s->next_refs[i].f = av_frame_alloc();
  3940. if (!s->refs[i].f || !s->next_refs[i].f) {
  3941. vp9_decode_free(ctx);
  3942. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3943. return AVERROR(ENOMEM);
  3944. }
  3945. }
  3946. return 0;
  3947. }
  3948. static av_cold int vp9_decode_init(AVCodecContext *ctx)
  3949. {
  3950. VP9Context *s = ctx->priv_data;
  3951. ctx->internal->allocate_progress = 1;
  3952. s->last_bpp = 0;
  3953. s->filter.sharpness = -1;
  3954. return init_frames(ctx);
  3955. }
  3956. static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
  3957. {
  3958. return init_frames(avctx);
  3959. }
  3960. static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  3961. {
  3962. int i, res;
  3963. VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
  3964. // detect size changes in other threads
  3965. if (s->intra_pred_data[0] &&
  3966. (!ssrc->intra_pred_data[0] || s->cols != ssrc->cols || s->rows != ssrc->rows)) {
  3967. free_buffers(s);
  3968. }
  3969. for (i = 0; i < 3; i++) {
  3970. if (s->frames[i].tf.f->data[0])
  3971. vp9_unref_frame(dst, &s->frames[i]);
  3972. if (ssrc->frames[i].tf.f->data[0]) {
  3973. if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0)
  3974. return res;
  3975. }
  3976. }
  3977. for (i = 0; i < 8; i++) {
  3978. if (s->refs[i].f->data[0])
  3979. ff_thread_release_buffer(dst, &s->refs[i]);
  3980. if (ssrc->next_refs[i].f->data[0]) {
  3981. if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0)
  3982. return res;
  3983. }
  3984. }
  3985. s->invisible = ssrc->invisible;
  3986. s->keyframe = ssrc->keyframe;
  3987. s->ss_v = ssrc->ss_v;
  3988. s->ss_h = ssrc->ss_h;
  3989. s->segmentation.enabled = ssrc->segmentation.enabled;
  3990. s->segmentation.update_map = ssrc->segmentation.update_map;
  3991. s->bytesperpixel = ssrc->bytesperpixel;
  3992. s->bpp = ssrc->bpp;
  3993. s->bpp_index = ssrc->bpp_index;
  3994. memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
  3995. memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta));
  3996. if (ssrc->segmentation.enabled) {
  3997. memcpy(&s->segmentation.feat, &ssrc->segmentation.feat,
  3998. sizeof(s->segmentation.feat));
  3999. }
  4000. return 0;
  4001. }
  4002. static const AVProfile profiles[] = {
  4003. { FF_PROFILE_VP9_0, "Profile 0" },
  4004. { FF_PROFILE_VP9_1, "Profile 1" },
  4005. { FF_PROFILE_VP9_2, "Profile 2" },
  4006. { FF_PROFILE_VP9_3, "Profile 3" },
  4007. { FF_PROFILE_UNKNOWN },
  4008. };
  4009. AVCodec ff_vp9_decoder = {
  4010. .name = "vp9",
  4011. .long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
  4012. .type = AVMEDIA_TYPE_VIDEO,
  4013. .id = AV_CODEC_ID_VP9,
  4014. .priv_data_size = sizeof(VP9Context),
  4015. .init = vp9_decode_init,
  4016. .close = vp9_decode_free,
  4017. .decode = vp9_decode_frame,
  4018. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  4019. .flush = vp9_decode_flush,
  4020. .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
  4021. .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
  4022. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  4023. };