ac3dec.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162
  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "dsputil.h"
  37. #include "random.h"
  38. /**
  39. * Table of bin locations for rematrixing bands
  40. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  41. */
  42. static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
  43. /**
  44. * table for exponent to scale_factor mapping
  45. * scale_factors[i] = 2 ^ -i
  46. */
  47. static float scale_factors[25];
  48. /** table for grouping exponents */
  49. static uint8_t exp_ungroup_tbl[128][3];
  50. /** tables for ungrouping mantissas */
  51. static float b1_mantissas[32][3];
  52. static float b2_mantissas[128][3];
  53. static float b3_mantissas[8];
  54. static float b4_mantissas[128][2];
  55. static float b5_mantissas[16];
  56. /**
  57. * Quantization table: levels for symmetric. bits for asymmetric.
  58. * reference: Table 7.18 Mapping of bap to Quantizer
  59. */
  60. static const uint8_t qntztab[16] = {
  61. 0, 3, 5, 7, 11, 15,
  62. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  63. };
  64. /** dynamic range table. converts codes to scale factors. */
  65. static float dynrng_tbl[256];
  66. /** dialogue normalization table */
  67. static float dialnorm_tbl[32];
  68. /** Adjustments in dB gain */
  69. #define LEVEL_MINUS_3DB 0.7071067811865476
  70. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  71. #define LEVEL_MINUS_6DB 0.5000000000000000
  72. #define LEVEL_MINUS_9DB 0.3535533905932738
  73. #define LEVEL_ZERO 0.0000000000000000
  74. #define LEVEL_ONE 1.0000000000000000
  75. static const float gain_levels[6] = {
  76. LEVEL_ZERO,
  77. LEVEL_ONE,
  78. LEVEL_MINUS_3DB,
  79. LEVEL_MINUS_4POINT5DB,
  80. LEVEL_MINUS_6DB,
  81. LEVEL_MINUS_9DB
  82. };
  83. /**
  84. * Table for center mix levels
  85. * reference: Section 5.4.2.4 cmixlev
  86. */
  87. static const uint8_t clevs[4] = { 2, 3, 4, 3 };
  88. /**
  89. * Table for surround mix levels
  90. * reference: Section 5.4.2.5 surmixlev
  91. */
  92. static const uint8_t slevs[4] = { 2, 4, 0, 4 };
  93. /**
  94. * Table for default stereo downmixing coefficients
  95. * reference: Section 7.8.2 Downmixing Into Two Channels
  96. */
  97. static const uint8_t ac3_default_coeffs[8][5][2] = {
  98. { { 1, 0 }, { 0, 1 }, },
  99. { { 2, 2 }, },
  100. { { 1, 0 }, { 0, 1 }, },
  101. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  102. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  103. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  104. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  105. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  106. };
  107. /* override ac3.h to include coupling channel */
  108. #undef AC3_MAX_CHANNELS
  109. #define AC3_MAX_CHANNELS 7
  110. #define CPL_CH 0
  111. #define AC3_OUTPUT_LFEON 8
  112. typedef struct {
  113. int acmod; ///< audio coding mode
  114. int dsurmod; ///< dolby surround mode
  115. int blksw[AC3_MAX_CHANNELS]; ///< block switch flags
  116. int dithflag[AC3_MAX_CHANNELS]; ///< dither flags
  117. int dither_all; ///< true if all channels are dithered
  118. int cplinu; ///< coupling in use
  119. int chincpl[AC3_MAX_CHANNELS]; ///< channel in coupling
  120. int phsflginu; ///< phase flags in use
  121. int cplbndstrc[18]; ///< coupling band structure
  122. int rematstr; ///< rematrixing strategy
  123. int nrematbnd; ///< number of rematrixing bands
  124. int rematflg[4]; ///< rematrixing flags
  125. int expstr[AC3_MAX_CHANNELS]; ///< exponent strategies
  126. int snroffst[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets
  127. int fgain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio)
  128. int deltbae[AC3_MAX_CHANNELS]; ///< delta bit allocation exists
  129. int deltnseg[AC3_MAX_CHANNELS]; ///< number of delta segments
  130. uint8_t deltoffst[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
  131. uint8_t deltlen[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
  132. uint8_t deltba[AC3_MAX_CHANNELS][8]; ///< delta values for each segment
  133. int sampling_rate; ///< sample frequency, in Hz
  134. int bit_rate; ///< stream bit rate, in bits-per-second
  135. int frame_size; ///< current frame size, in bytes
  136. int nchans; ///< number of total channels
  137. int nfchans; ///< number of full-bandwidth channels
  138. int lfeon; ///< lfe channel in use
  139. int lfe_ch; ///< index of LFE channel
  140. int output_mode; ///< output channel configuration
  141. int out_channels; ///< number of output channels
  142. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  143. float dialnorm[2]; ///< dialogue normalization
  144. float dynrng[2]; ///< dynamic range
  145. float cplco[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
  146. int ncplbnd; ///< number of coupling bands
  147. int ncplsubnd; ///< number of coupling sub bands
  148. int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin
  149. int endmant[AC3_MAX_CHANNELS]; ///< end frequency bin
  150. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  151. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  152. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  153. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  154. int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  155. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  156. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients
  157. /* For IMDCT. */
  158. MDCTContext imdct_512; ///< for 512 sample IMDCT
  159. MDCTContext imdct_256; ///< for 256 sample IMDCT
  160. DSPContext dsp; ///< for optimization
  161. float add_bias; ///< offset for float_to_int16 conversion
  162. float mul_bias; ///< scaling for float_to_int16 conversion
  163. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing
  164. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  165. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block
  166. DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform
  167. DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing
  168. DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients
  169. /* Miscellaneous. */
  170. GetBitContext gb; ///< bitstream reader
  171. AVRandomState dith_state; ///< for dither generation
  172. AVCodecContext *avctx; ///< parent context
  173. } AC3DecodeContext;
  174. /**
  175. * Generate a Kaiser-Bessel Derived Window.
  176. */
  177. static void ac3_window_init(float *window)
  178. {
  179. int i, j;
  180. double sum = 0.0, bessel, tmp;
  181. double local_window[256];
  182. double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
  183. for (i = 0; i < 256; i++) {
  184. tmp = i * (256 - i) * alpha2;
  185. bessel = 1.0;
  186. for (j = 100; j > 0; j--) /* default to 100 iterations */
  187. bessel = bessel * tmp / (j * j) + 1;
  188. sum += bessel;
  189. local_window[i] = sum;
  190. }
  191. sum++;
  192. for (i = 0; i < 256; i++)
  193. window[i] = sqrt(local_window[i] / sum);
  194. }
  195. /**
  196. * Symmetrical Dequantization
  197. * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
  198. * Tables 7.19 to 7.23
  199. */
  200. static inline float
  201. symmetric_dequant(int code, int levels)
  202. {
  203. return (code - (levels >> 1)) * (2.0f / levels);
  204. }
  205. /*
  206. * Initialize tables at runtime.
  207. */
  208. static void ac3_tables_init(void)
  209. {
  210. int i;
  211. /* generate grouped mantissa tables
  212. reference: Section 7.3.5 Ungrouping of Mantissas */
  213. for(i=0; i<32; i++) {
  214. /* bap=1 mantissas */
  215. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  216. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  217. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  218. }
  219. for(i=0; i<128; i++) {
  220. /* bap=2 mantissas */
  221. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  222. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  223. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  224. /* bap=4 mantissas */
  225. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  226. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  227. }
  228. /* generate ungrouped mantissa tables
  229. reference: Tables 7.21 and 7.23 */
  230. for(i=0; i<7; i++) {
  231. /* bap=3 mantissas */
  232. b3_mantissas[i] = symmetric_dequant(i, 7);
  233. }
  234. for(i=0; i<15; i++) {
  235. /* bap=5 mantissas */
  236. b5_mantissas[i] = symmetric_dequant(i, 15);
  237. }
  238. /* generate dynamic range table
  239. reference: Section 7.7.1 Dynamic Range Control */
  240. for(i=0; i<256; i++) {
  241. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  242. dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  243. }
  244. /* generate dialogue normalization table
  245. references: Section 5.4.2.8 dialnorm
  246. Section 7.6 Dialogue Normalization */
  247. for(i=1; i<32; i++) {
  248. dialnorm_tbl[i] = expf((i-31) * M_LN10 / 20.0f);
  249. }
  250. dialnorm_tbl[0] = dialnorm_tbl[31];
  251. /* generate scale factors for exponents and asymmetrical dequantization
  252. reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
  253. for (i = 0; i < 25; i++)
  254. scale_factors[i] = pow(2.0, -i);
  255. /* generate exponent tables
  256. reference: Section 7.1.3 Exponent Decoding */
  257. for(i=0; i<128; i++) {
  258. exp_ungroup_tbl[i][0] = i / 25;
  259. exp_ungroup_tbl[i][1] = (i % 25) / 5;
  260. exp_ungroup_tbl[i][2] = (i % 25) % 5;
  261. }
  262. }
  263. /**
  264. * AVCodec initialization
  265. */
  266. static int ac3_decode_init(AVCodecContext *avctx)
  267. {
  268. AC3DecodeContext *ctx = avctx->priv_data;
  269. ctx->avctx = avctx;
  270. ac3_common_init();
  271. ac3_tables_init();
  272. ff_mdct_init(&ctx->imdct_256, 8, 1);
  273. ff_mdct_init(&ctx->imdct_512, 9, 1);
  274. ac3_window_init(ctx->window);
  275. dsputil_init(&ctx->dsp, avctx);
  276. av_init_random(0, &ctx->dith_state);
  277. /* set bias values for float to int16 conversion */
  278. if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
  279. ctx->add_bias = 385.0f;
  280. ctx->mul_bias = 1.0f;
  281. } else {
  282. ctx->add_bias = 0.0f;
  283. ctx->mul_bias = 32767.0f;
  284. }
  285. return 0;
  286. }
  287. /**
  288. * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  289. * GetBitContext within AC3DecodeContext must point to
  290. * start of the synchronized ac3 bitstream.
  291. */
  292. static int ac3_parse_header(AC3DecodeContext *ctx)
  293. {
  294. AC3HeaderInfo hdr;
  295. GetBitContext *gb = &ctx->gb;
  296. float cmixlev, surmixlev;
  297. int err, i;
  298. err = ff_ac3_parse_header(gb->buffer, &hdr);
  299. if(err)
  300. return err;
  301. /* get decoding parameters from header info */
  302. ctx->bit_alloc_params.fscod = hdr.fscod;
  303. ctx->acmod = hdr.acmod;
  304. cmixlev = gain_levels[clevs[hdr.cmixlev]];
  305. surmixlev = gain_levels[slevs[hdr.surmixlev]];
  306. ctx->dsurmod = hdr.dsurmod;
  307. ctx->lfeon = hdr.lfeon;
  308. ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
  309. ctx->sampling_rate = hdr.sample_rate;
  310. ctx->bit_rate = hdr.bit_rate;
  311. ctx->nchans = hdr.channels;
  312. ctx->nfchans = ctx->nchans - ctx->lfeon;
  313. ctx->lfe_ch = ctx->nfchans + 1;
  314. ctx->frame_size = hdr.frame_size;
  315. /* set default output to all source channels */
  316. ctx->out_channels = ctx->nchans;
  317. ctx->output_mode = ctx->acmod;
  318. if(ctx->lfeon)
  319. ctx->output_mode |= AC3_OUTPUT_LFEON;
  320. /* skip over portion of header which has already been read */
  321. skip_bits(gb, 16); // skip the sync_word
  322. skip_bits(gb, 16); // skip crc1
  323. skip_bits(gb, 8); // skip fscod and frmsizecod
  324. skip_bits(gb, 11); // skip bsid, bsmod, and acmod
  325. if(ctx->acmod == AC3_ACMOD_STEREO) {
  326. skip_bits(gb, 2); // skip dsurmod
  327. } else {
  328. if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
  329. skip_bits(gb, 2); // skip cmixlev
  330. if(ctx->acmod & 4)
  331. skip_bits(gb, 2); // skip surmixlev
  332. }
  333. skip_bits1(gb); // skip lfeon
  334. /* read the rest of the bsi. read twice for dual mono mode. */
  335. i = !(ctx->acmod);
  336. do {
  337. ctx->dialnorm[i] = dialnorm_tbl[get_bits(gb, 5)]; // dialogue normalization
  338. if (get_bits1(gb))
  339. skip_bits(gb, 8); //skip compression
  340. if (get_bits1(gb))
  341. skip_bits(gb, 8); //skip language code
  342. if (get_bits1(gb))
  343. skip_bits(gb, 7); //skip audio production information
  344. } while (i--);
  345. skip_bits(gb, 2); //skip copyright bit and original bitstream bit
  346. /* skip the timecodes (or extra bitstream information for Alternate Syntax)
  347. TODO: read & use the xbsi1 downmix levels */
  348. if (get_bits1(gb))
  349. skip_bits(gb, 14); //skip timecode1 / xbsi1
  350. if (get_bits1(gb))
  351. skip_bits(gb, 14); //skip timecode2 / xbsi2
  352. /* skip additional bitstream info */
  353. if (get_bits1(gb)) {
  354. i = get_bits(gb, 6);
  355. do {
  356. skip_bits(gb, 8);
  357. } while(i--);
  358. }
  359. /* set stereo downmixing coefficients
  360. reference: Section 7.8.2 Downmixing Into Two Channels */
  361. for(i=0; i<ctx->nfchans; i++) {
  362. ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]];
  363. ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]];
  364. }
  365. if(ctx->acmod > 1 && ctx->acmod & 1) {
  366. ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev;
  367. }
  368. if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) {
  369. int nf = ctx->acmod - 2;
  370. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB;
  371. }
  372. if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) {
  373. int nf = ctx->acmod - 4;
  374. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev;
  375. }
  376. return 0;
  377. }
  378. /**
  379. * Decode the grouped exponents according to exponent strategy.
  380. * reference: Section 7.1.3 Exponent Decoding
  381. */
  382. static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
  383. uint8_t absexp, int8_t *dexps)
  384. {
  385. int i, j, grp, grpsize;
  386. int dexp[256];
  387. int expacc, prevexp;
  388. /* unpack groups */
  389. grpsize = expstr + (expstr == EXP_D45);
  390. for(grp=0,i=0; grp<ngrps; grp++) {
  391. expacc = get_bits(gb, 7);
  392. dexp[i++] = exp_ungroup_tbl[expacc][0];
  393. dexp[i++] = exp_ungroup_tbl[expacc][1];
  394. dexp[i++] = exp_ungroup_tbl[expacc][2];
  395. }
  396. /* convert to absolute exps and expand groups */
  397. prevexp = absexp;
  398. for(i=0; i<ngrps*3; i++) {
  399. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  400. for(j=0; j<grpsize; j++) {
  401. dexps[(i*grpsize)+j] = prevexp;
  402. }
  403. }
  404. }
  405. /**
  406. * Generate transform coefficients for each coupled channel in the coupling
  407. * range using the coupling coefficients and coupling coordinates.
  408. * reference: Section 7.4.3 Coupling Coordinate Format
  409. */
  410. static void uncouple_channels(AC3DecodeContext *ctx)
  411. {
  412. int i, j, ch, bnd, subbnd;
  413. subbnd = -1;
  414. i = ctx->startmant[CPL_CH];
  415. for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
  416. do {
  417. subbnd++;
  418. for(j=0; j<12; j++) {
  419. for(ch=1; ch<=ctx->nfchans; ch++) {
  420. if(ctx->chincpl[ch])
  421. ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
  422. }
  423. i++;
  424. }
  425. } while(ctx->cplbndstrc[subbnd]);
  426. }
  427. }
  428. /**
  429. * Grouped mantissas for 3-level 5-level and 11-level quantization
  430. */
  431. typedef struct {
  432. float b1_mant[3];
  433. float b2_mant[3];
  434. float b4_mant[2];
  435. int b1ptr;
  436. int b2ptr;
  437. int b4ptr;
  438. } mant_groups;
  439. /**
  440. * Get the transform coefficients for a particular channel
  441. * reference: Section 7.3 Quantization and Decoding of Mantissas
  442. */
  443. static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
  444. {
  445. GetBitContext *gb = &ctx->gb;
  446. int i, gcode, tbap, start, end;
  447. uint8_t *exps;
  448. uint8_t *bap;
  449. float *coeffs;
  450. exps = ctx->dexps[ch_index];
  451. bap = ctx->bap[ch_index];
  452. coeffs = ctx->transform_coeffs[ch_index];
  453. start = ctx->startmant[ch_index];
  454. end = ctx->endmant[ch_index];
  455. for (i = start; i < end; i++) {
  456. tbap = bap[i];
  457. switch (tbap) {
  458. case 0:
  459. coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
  460. break;
  461. case 1:
  462. if(m->b1ptr > 2) {
  463. gcode = get_bits(gb, 5);
  464. m->b1_mant[0] = b1_mantissas[gcode][0];
  465. m->b1_mant[1] = b1_mantissas[gcode][1];
  466. m->b1_mant[2] = b1_mantissas[gcode][2];
  467. m->b1ptr = 0;
  468. }
  469. coeffs[i] = m->b1_mant[m->b1ptr++];
  470. break;
  471. case 2:
  472. if(m->b2ptr > 2) {
  473. gcode = get_bits(gb, 7);
  474. m->b2_mant[0] = b2_mantissas[gcode][0];
  475. m->b2_mant[1] = b2_mantissas[gcode][1];
  476. m->b2_mant[2] = b2_mantissas[gcode][2];
  477. m->b2ptr = 0;
  478. }
  479. coeffs[i] = m->b2_mant[m->b2ptr++];
  480. break;
  481. case 3:
  482. coeffs[i] = b3_mantissas[get_bits(gb, 3)];
  483. break;
  484. case 4:
  485. if(m->b4ptr > 1) {
  486. gcode = get_bits(gb, 7);
  487. m->b4_mant[0] = b4_mantissas[gcode][0];
  488. m->b4_mant[1] = b4_mantissas[gcode][1];
  489. m->b4ptr = 0;
  490. }
  491. coeffs[i] = m->b4_mant[m->b4ptr++];
  492. break;
  493. case 5:
  494. coeffs[i] = b5_mantissas[get_bits(gb, 4)];
  495. break;
  496. default:
  497. /* asymmetric dequantization */
  498. coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
  499. break;
  500. }
  501. coeffs[i] *= scale_factors[exps[i]];
  502. }
  503. return 0;
  504. }
  505. /**
  506. * Remove random dithering from coefficients with zero-bit mantissas
  507. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  508. */
  509. static void remove_dithering(AC3DecodeContext *ctx) {
  510. int ch, i;
  511. int end=0;
  512. float *coeffs;
  513. uint8_t *bap;
  514. for(ch=1; ch<=ctx->nfchans; ch++) {
  515. if(!ctx->dithflag[ch]) {
  516. coeffs = ctx->transform_coeffs[ch];
  517. bap = ctx->bap[ch];
  518. if(ctx->chincpl[ch])
  519. end = ctx->startmant[CPL_CH];
  520. else
  521. end = ctx->endmant[ch];
  522. for(i=0; i<end; i++) {
  523. if(bap[i] == 0)
  524. coeffs[i] = 0.0f;
  525. }
  526. if(ctx->chincpl[ch]) {
  527. bap = ctx->bap[CPL_CH];
  528. for(; i<ctx->endmant[CPL_CH]; i++) {
  529. if(bap[i] == 0)
  530. coeffs[i] = 0.0f;
  531. }
  532. }
  533. }
  534. }
  535. }
  536. /**
  537. * Get the transform coefficients.
  538. */
  539. static int get_transform_coeffs(AC3DecodeContext * ctx)
  540. {
  541. int ch, end;
  542. int got_cplchan = 0;
  543. mant_groups m;
  544. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  545. for (ch = 1; ch <= ctx->nchans; ch++) {
  546. /* transform coefficients for full-bandwidth channel */
  547. if (get_transform_coeffs_ch(ctx, ch, &m))
  548. return -1;
  549. /* tranform coefficients for coupling channel come right after the
  550. coefficients for the first coupled channel*/
  551. if (ctx->chincpl[ch]) {
  552. if (!got_cplchan) {
  553. if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
  554. av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
  555. return -1;
  556. }
  557. uncouple_channels(ctx);
  558. got_cplchan = 1;
  559. }
  560. end = ctx->endmant[CPL_CH];
  561. } else {
  562. end = ctx->endmant[ch];
  563. }
  564. do
  565. ctx->transform_coeffs[ch][end] = 0;
  566. while(++end < 256);
  567. }
  568. /* if any channel doesn't use dithering, zero appropriate coefficients */
  569. if(!ctx->dither_all)
  570. remove_dithering(ctx);
  571. return 0;
  572. }
  573. /**
  574. * Stereo rematrixing.
  575. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  576. */
  577. static void do_rematrixing(AC3DecodeContext *ctx)
  578. {
  579. int bnd, i;
  580. int end, bndend;
  581. float tmp0, tmp1;
  582. end = FFMIN(ctx->endmant[1], ctx->endmant[2]);
  583. for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
  584. if(ctx->rematflg[bnd]) {
  585. bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
  586. for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
  587. tmp0 = ctx->transform_coeffs[1][i];
  588. tmp1 = ctx->transform_coeffs[2][i];
  589. ctx->transform_coeffs[1][i] = tmp0 + tmp1;
  590. ctx->transform_coeffs[2][i] = tmp0 - tmp1;
  591. }
  592. }
  593. }
  594. }
  595. /**
  596. * Perform the 256-point IMDCT
  597. */
  598. static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
  599. {
  600. int i, k;
  601. DECLARE_ALIGNED_16(float, x[128]);
  602. FFTComplex z[2][64];
  603. float *o_ptr = ctx->tmp_output;
  604. for(i=0; i<2; i++) {
  605. /* de-interleave coefficients */
  606. for(k=0; k<128; k++) {
  607. x[k] = ctx->transform_coeffs[chindex][2*k+i];
  608. }
  609. /* run standard IMDCT */
  610. ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
  611. /* reverse the post-rotation & reordering from standard IMDCT */
  612. for(k=0; k<32; k++) {
  613. z[i][32+k].re = -o_ptr[128+2*k];
  614. z[i][32+k].im = -o_ptr[2*k];
  615. z[i][31-k].re = o_ptr[2*k+1];
  616. z[i][31-k].im = o_ptr[128+2*k+1];
  617. }
  618. }
  619. /* apply AC-3 post-rotation & reordering */
  620. for(k=0; k<64; k++) {
  621. o_ptr[ 2*k ] = -z[0][ k].im;
  622. o_ptr[ 2*k+1] = z[0][63-k].re;
  623. o_ptr[128+2*k ] = -z[0][ k].re;
  624. o_ptr[128+2*k+1] = z[0][63-k].im;
  625. o_ptr[256+2*k ] = -z[1][ k].re;
  626. o_ptr[256+2*k+1] = z[1][63-k].im;
  627. o_ptr[384+2*k ] = z[1][ k].im;
  628. o_ptr[384+2*k+1] = -z[1][63-k].re;
  629. }
  630. }
  631. /**
  632. * Inverse MDCT Transform.
  633. * Convert frequency domain coefficients to time-domain audio samples.
  634. * reference: Section 7.9.4 Transformation Equations
  635. */
  636. static inline void do_imdct(AC3DecodeContext *ctx)
  637. {
  638. int ch;
  639. int nchans;
  640. /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
  641. nchans = ctx->nfchans;
  642. if(ctx->output_mode & AC3_OUTPUT_LFEON)
  643. nchans++;
  644. for (ch=1; ch<=nchans; ch++) {
  645. if (ctx->blksw[ch]) {
  646. do_imdct_256(ctx, ch);
  647. } else {
  648. ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
  649. ctx->transform_coeffs[ch],
  650. ctx->tmp_imdct);
  651. }
  652. /* For the first half of the block, apply the window, add the delay
  653. from the previous block, and send to output */
  654. ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
  655. ctx->window, ctx->delay[ch-1], 0, 256, 1);
  656. /* For the second half of the block, apply the window and store the
  657. samples to delay, to be combined with the next block */
  658. ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
  659. ctx->window, 256);
  660. }
  661. }
  662. /**
  663. * Downmix the output to mono or stereo.
  664. */
  665. static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans,
  666. int output_mode, float coef[AC3_MAX_CHANNELS][2])
  667. {
  668. int i, j;
  669. float v0, v1, s0, s1;
  670. for(i=0; i<256; i++) {
  671. v0 = v1 = s0 = s1 = 0.0f;
  672. for(j=0; j<nfchans; j++) {
  673. v0 += samples[j][i] * coef[j][0];
  674. v1 += samples[j][i] * coef[j][1];
  675. s0 += coef[j][0];
  676. s1 += coef[j][1];
  677. }
  678. v0 /= s0;
  679. v1 /= s1;
  680. if(output_mode == AC3_ACMOD_MONO) {
  681. samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  682. } else if(output_mode == AC3_ACMOD_STEREO) {
  683. samples[0][i] = v0;
  684. samples[1][i] = v1;
  685. }
  686. }
  687. }
  688. /**
  689. * Parse an audio block from AC-3 bitstream.
  690. */
  691. static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
  692. {
  693. int nfchans = ctx->nfchans;
  694. int acmod = ctx->acmod;
  695. int i, bnd, seg, ch;
  696. GetBitContext *gb = &ctx->gb;
  697. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  698. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  699. /* block switch flags */
  700. for (ch = 1; ch <= nfchans; ch++)
  701. ctx->blksw[ch] = get_bits1(gb);
  702. /* dithering flags */
  703. ctx->dither_all = 1;
  704. for (ch = 1; ch <= nfchans; ch++) {
  705. ctx->dithflag[ch] = get_bits1(gb);
  706. if(!ctx->dithflag[ch])
  707. ctx->dither_all = 0;
  708. }
  709. /* dynamic range */
  710. i = !(ctx->acmod);
  711. do {
  712. if(get_bits1(gb)) {
  713. ctx->dynrng[i] = dynrng_tbl[get_bits(gb, 8)];
  714. } else if(blk == 0) {
  715. ctx->dynrng[i] = 1.0f;
  716. }
  717. } while(i--);
  718. /* coupling strategy */
  719. if (get_bits1(gb)) {
  720. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  721. ctx->cplinu = get_bits1(gb);
  722. if (ctx->cplinu) {
  723. /* coupling in use */
  724. int cplbegf, cplendf;
  725. /* determine which channels are coupled */
  726. for (ch = 1; ch <= nfchans; ch++)
  727. ctx->chincpl[ch] = get_bits1(gb);
  728. /* phase flags in use */
  729. if (acmod == AC3_ACMOD_STEREO)
  730. ctx->phsflginu = get_bits1(gb);
  731. /* coupling frequency range and band structure */
  732. cplbegf = get_bits(gb, 4);
  733. cplendf = get_bits(gb, 4);
  734. if (3 + cplendf - cplbegf < 0) {
  735. av_log(ctx->avctx, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
  736. return -1;
  737. }
  738. ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
  739. ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
  740. ctx->endmant[CPL_CH] = cplendf * 12 + 73;
  741. for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) {
  742. if (get_bits1(gb)) {
  743. ctx->cplbndstrc[bnd] = 1;
  744. ctx->ncplbnd--;
  745. }
  746. }
  747. } else {
  748. /* coupling not in use */
  749. for (ch = 1; ch <= nfchans; ch++)
  750. ctx->chincpl[ch] = 0;
  751. }
  752. }
  753. /* coupling coordinates */
  754. if (ctx->cplinu) {
  755. int cplcoe = 0;
  756. for (ch = 1; ch <= nfchans; ch++) {
  757. if (ctx->chincpl[ch]) {
  758. if (get_bits1(gb)) {
  759. int mstrcplco, cplcoexp, cplcomant;
  760. cplcoe = 1;
  761. mstrcplco = 3 * get_bits(gb, 2);
  762. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  763. cplcoexp = get_bits(gb, 4);
  764. cplcomant = get_bits(gb, 4);
  765. if (cplcoexp == 15)
  766. ctx->cplco[ch][bnd] = cplcomant / 16.0f;
  767. else
  768. ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
  769. ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
  770. }
  771. }
  772. }
  773. }
  774. /* phase flags */
  775. if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
  776. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  777. if (get_bits1(gb))
  778. ctx->cplco[2][bnd] = -ctx->cplco[2][bnd];
  779. }
  780. }
  781. }
  782. /* stereo rematrixing strategy and band structure */
  783. if (acmod == AC3_ACMOD_STEREO) {
  784. ctx->rematstr = get_bits1(gb);
  785. if (ctx->rematstr) {
  786. ctx->nrematbnd = 4;
  787. if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
  788. ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
  789. for(bnd=0; bnd<ctx->nrematbnd; bnd++)
  790. ctx->rematflg[bnd] = get_bits1(gb);
  791. }
  792. }
  793. /* exponent strategies for each channel */
  794. ctx->expstr[CPL_CH] = EXP_REUSE;
  795. ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
  796. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  797. if(ch == ctx->lfe_ch)
  798. ctx->expstr[ch] = get_bits(gb, 1);
  799. else
  800. ctx->expstr[ch] = get_bits(gb, 2);
  801. if(ctx->expstr[ch] != EXP_REUSE)
  802. bit_alloc_stages[ch] = 3;
  803. }
  804. /* channel bandwidth */
  805. for (ch = 1; ch <= nfchans; ch++) {
  806. ctx->startmant[ch] = 0;
  807. if (ctx->expstr[ch] != EXP_REUSE) {
  808. int prev = ctx->endmant[ch];
  809. if (ctx->chincpl[ch])
  810. ctx->endmant[ch] = ctx->startmant[CPL_CH];
  811. else {
  812. int chbwcod = get_bits(gb, 6);
  813. if (chbwcod > 60) {
  814. av_log(ctx->avctx, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
  815. return -1;
  816. }
  817. ctx->endmant[ch] = chbwcod * 3 + 73;
  818. }
  819. if(blk > 0 && ctx->endmant[ch] != prev)
  820. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  821. }
  822. }
  823. ctx->startmant[ctx->lfe_ch] = 0;
  824. ctx->endmant[ctx->lfe_ch] = 7;
  825. /* decode exponents for each channel */
  826. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  827. if (ctx->expstr[ch] != EXP_REUSE) {
  828. int grpsize, ngrps;
  829. grpsize = 3 << (ctx->expstr[ch] - 1);
  830. if(ch == CPL_CH)
  831. ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
  832. else if(ch == ctx->lfe_ch)
  833. ngrps = 2;
  834. else
  835. ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
  836. ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
  837. decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
  838. &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
  839. if(ch != CPL_CH && ch != ctx->lfe_ch)
  840. skip_bits(gb, 2); /* skip gainrng */
  841. }
  842. }
  843. /* bit allocation information */
  844. if (get_bits1(gb)) {
  845. ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
  846. ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
  847. ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
  848. ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
  849. ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
  850. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  851. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  852. }
  853. }
  854. /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
  855. if (get_bits1(gb)) {
  856. int csnr;
  857. csnr = (get_bits(gb, 6) - 15) << 4;
  858. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
  859. ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
  860. ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
  861. }
  862. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  863. }
  864. /* coupling leak information */
  865. if (ctx->cplinu && get_bits1(gb)) {
  866. ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
  867. ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
  868. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  869. }
  870. /* delta bit allocation information */
  871. if (get_bits1(gb)) {
  872. /* delta bit allocation exists (strategy) */
  873. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  874. ctx->deltbae[ch] = get_bits(gb, 2);
  875. if (ctx->deltbae[ch] == DBA_RESERVED) {
  876. av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  877. return -1;
  878. }
  879. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  880. }
  881. /* channel delta offset, len and bit allocation */
  882. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  883. if (ctx->deltbae[ch] == DBA_NEW) {
  884. ctx->deltnseg[ch] = get_bits(gb, 3);
  885. for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
  886. ctx->deltoffst[ch][seg] = get_bits(gb, 5);
  887. ctx->deltlen[ch][seg] = get_bits(gb, 4);
  888. ctx->deltba[ch][seg] = get_bits(gb, 3);
  889. }
  890. }
  891. }
  892. } else if(blk == 0) {
  893. for(ch=0; ch<=ctx->nchans; ch++) {
  894. ctx->deltbae[ch] = DBA_NONE;
  895. }
  896. }
  897. /* Bit allocation */
  898. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  899. if(bit_alloc_stages[ch] > 2) {
  900. /* Exponent mapping into PSD and PSD integration */
  901. ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
  902. ctx->startmant[ch], ctx->endmant[ch],
  903. ctx->psd[ch], ctx->bndpsd[ch]);
  904. }
  905. if(bit_alloc_stages[ch] > 1) {
  906. /* Compute excitation function, Compute masking curve, and
  907. Apply delta bit allocation */
  908. ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
  909. ctx->startmant[ch], ctx->endmant[ch],
  910. ctx->fgain[ch], (ch == ctx->lfe_ch),
  911. ctx->deltbae[ch], ctx->deltnseg[ch],
  912. ctx->deltoffst[ch], ctx->deltlen[ch],
  913. ctx->deltba[ch], ctx->mask[ch]);
  914. }
  915. if(bit_alloc_stages[ch] > 0) {
  916. /* Compute bit allocation */
  917. ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
  918. ctx->startmant[ch], ctx->endmant[ch],
  919. ctx->snroffst[ch],
  920. ctx->bit_alloc_params.floor,
  921. ctx->bap[ch]);
  922. }
  923. }
  924. /* unused dummy data */
  925. if (get_bits1(gb)) {
  926. int skipl = get_bits(gb, 9);
  927. while(skipl--)
  928. skip_bits(gb, 8);
  929. }
  930. /* unpack the transform coefficients
  931. this also uncouples channels if coupling is in use. */
  932. if (get_transform_coeffs(ctx)) {
  933. av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  934. return -1;
  935. }
  936. /* recover coefficients if rematrixing is in use */
  937. if(ctx->acmod == AC3_ACMOD_STEREO)
  938. do_rematrixing(ctx);
  939. /* apply scaling to coefficients (headroom, dialnorm, dynrng) */
  940. for(ch=1; ch<=ctx->nchans; ch++) {
  941. float gain = 2.0f * ctx->mul_bias;
  942. if(ctx->acmod == AC3_ACMOD_DUALMONO) {
  943. gain *= ctx->dialnorm[ch-1] * ctx->dynrng[ch-1];
  944. } else {
  945. gain *= ctx->dialnorm[0] * ctx->dynrng[0];
  946. }
  947. for(i=0; i<ctx->endmant[ch]; i++) {
  948. ctx->transform_coeffs[ch][i] *= gain;
  949. }
  950. }
  951. do_imdct(ctx);
  952. /* downmix output if needed */
  953. if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
  954. ctx->nfchans == ctx->out_channels)) {
  955. ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode,
  956. ctx->downmix_coeffs);
  957. }
  958. /* convert float to 16-bit integer */
  959. for(ch=0; ch<ctx->out_channels; ch++) {
  960. for(i=0; i<256; i++) {
  961. ctx->output[ch][i] += ctx->add_bias;
  962. }
  963. ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
  964. }
  965. return 0;
  966. }
  967. /**
  968. * Decode a single AC-3 frame.
  969. */
  970. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  971. {
  972. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  973. int16_t *out_samples = (int16_t *)data;
  974. int i, blk, ch;
  975. /* initialize the GetBitContext with the start of valid AC-3 Frame */
  976. init_get_bits(&ctx->gb, buf, buf_size * 8);
  977. /* parse the syncinfo */
  978. if (ac3_parse_header(ctx)) {
  979. av_log(avctx, AV_LOG_ERROR, "\n");
  980. *data_size = 0;
  981. return buf_size;
  982. }
  983. avctx->sample_rate = ctx->sampling_rate;
  984. avctx->bit_rate = ctx->bit_rate;
  985. /* channel config */
  986. ctx->out_channels = ctx->nchans;
  987. if (avctx->channels == 0) {
  988. avctx->channels = ctx->out_channels;
  989. } else if(ctx->out_channels < avctx->channels) {
  990. av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n",
  991. ctx->out_channels, avctx->channels);
  992. return -1;
  993. }
  994. if(avctx->channels == 2) {
  995. ctx->output_mode = AC3_ACMOD_STEREO;
  996. } else if(avctx->channels == 1) {
  997. ctx->output_mode = AC3_ACMOD_MONO;
  998. } else if(avctx->channels != ctx->out_channels) {
  999. av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n",
  1000. ctx->out_channels, avctx->channels);
  1001. return -1;
  1002. }
  1003. ctx->out_channels = avctx->channels;
  1004. /* parse the audio blocks */
  1005. for (blk = 0; blk < NB_BLOCKS; blk++) {
  1006. if (ac3_parse_audio_block(ctx, blk)) {
  1007. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  1008. *data_size = 0;
  1009. return ctx->frame_size;
  1010. }
  1011. for (i = 0; i < 256; i++)
  1012. for (ch = 0; ch < ctx->out_channels; ch++)
  1013. *(out_samples++) = ctx->int_output[ch][i];
  1014. }
  1015. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  1016. return ctx->frame_size;
  1017. }
  1018. /**
  1019. * Uninitialize the AC-3 decoder.
  1020. */
  1021. static int ac3_decode_end(AVCodecContext *avctx)
  1022. {
  1023. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  1024. ff_mdct_end(&ctx->imdct_512);
  1025. ff_mdct_end(&ctx->imdct_256);
  1026. return 0;
  1027. }
  1028. AVCodec ac3_decoder = {
  1029. .name = "ac3",
  1030. .type = CODEC_TYPE_AUDIO,
  1031. .id = CODEC_ID_AC3,
  1032. .priv_data_size = sizeof (AC3DecodeContext),
  1033. .init = ac3_decode_init,
  1034. .close = ac3_decode_end,
  1035. .decode = ac3_decode_frame,
  1036. };