input.asm 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. ;******************************************************************************
  2. ;* x86-optimized input routines; does shuffling of packed
  3. ;* YUV formats into individual planes, and converts RGB
  4. ;* into YUV planes also.
  5. ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
  6. ;*
  7. ;* This file is part of Libav.
  8. ;*
  9. ;* Libav is free software; you can redistribute it and/or
  10. ;* modify it under the terms of the GNU Lesser General Public
  11. ;* License as published by the Free Software Foundation; either
  12. ;* version 2.1 of the License, or (at your option) any later version.
  13. ;*
  14. ;* Libav is distributed in the hope that it will be useful,
  15. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. ;* Lesser General Public License for more details.
  18. ;*
  19. ;* You should have received a copy of the GNU Lesser General Public
  20. ;* License along with Libav; if not, write to the Free Software
  21. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. ;******************************************************************************
  23. %include "libavutil/x86/x86util.asm"
  24. SECTION_RODATA
  25. %define RY 0x20DE
  26. %define GY 0x4087
  27. %define BY 0x0C88
  28. %define RU 0xECFF
  29. %define GU 0xDAC8
  30. %define BU 0x3838
  31. %define RV 0x3838
  32. %define GV 0xD0E3
  33. %define BV 0xF6E4
  34. rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15
  35. rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15
  36. bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
  37. bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
  38. rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
  39. rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
  40. bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
  41. bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
  42. rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
  43. rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
  44. bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
  45. bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
  46. rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
  47. rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
  48. rgba_Ycoeff_rb: times 4 dw RY, BY
  49. rgba_Ycoeff_br: times 4 dw BY, RY
  50. rgba_Ycoeff_ga: times 4 dw GY, 0
  51. rgba_Ycoeff_ag: times 4 dw 0, GY
  52. rgba_Ucoeff_rb: times 4 dw RU, BU
  53. rgba_Ucoeff_br: times 4 dw BU, RU
  54. rgba_Ucoeff_ga: times 4 dw GU, 0
  55. rgba_Ucoeff_ag: times 4 dw 0, GU
  56. rgba_Vcoeff_rb: times 4 dw RV, BV
  57. rgba_Vcoeff_br: times 4 dw BV, RV
  58. rgba_Vcoeff_ga: times 4 dw GV, 0
  59. rgba_Vcoeff_ag: times 4 dw 0, GV
  60. shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
  61. 6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
  62. shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
  63. 8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
  64. SECTION .text
  65. ;-----------------------------------------------------------------------------
  66. ; RGB to Y/UV.
  67. ;
  68. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  69. ; and
  70. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  71. ; const uint8_t *unused, int w);
  72. ;-----------------------------------------------------------------------------
  73. ; %1 = nr. of XMM registers
  74. ; %2 = rgb or bgr
  75. %macro RGB24_TO_Y_FN 2-3
  76. cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, u3
  77. %if mmsize == 8
  78. mova m5, [%2_Ycoeff_12x4]
  79. mova m6, [%2_Ycoeff_3x56]
  80. %define coeff1 m5
  81. %define coeff2 m6
  82. %elif ARCH_X86_64
  83. mova m8, [%2_Ycoeff_12x4]
  84. mova m9, [%2_Ycoeff_3x56]
  85. %define coeff1 m8
  86. %define coeff2 m9
  87. %else ; x86-32 && mmsize == 16
  88. %define coeff1 [%2_Ycoeff_12x4]
  89. %define coeff2 [%2_Ycoeff_3x56]
  90. %endif ; x86-32/64 && mmsize == 8/16
  91. %if (ARCH_X86_64 || mmsize == 8) && %0 == 3
  92. jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
  93. %else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  94. .body:
  95. %if cpuflag(ssse3)
  96. mova m7, [shuf_rgb_12x4]
  97. %define shuf_rgb1 m7
  98. %if ARCH_X86_64
  99. mova m10, [shuf_rgb_3x56]
  100. %define shuf_rgb2 m10
  101. %else ; x86-32
  102. %define shuf_rgb2 [shuf_rgb_3x56]
  103. %endif ; x86-32/64
  104. %endif ; cpuflag(ssse3)
  105. %if ARCH_X86_64
  106. movsxd wq, wd
  107. %endif
  108. add wq, wq
  109. add dstq, wq
  110. neg wq
  111. %if notcpuflag(ssse3)
  112. pxor m7, m7
  113. %endif ; !cpuflag(ssse3)
  114. mova m4, [rgb_Yrnd]
  115. .loop:
  116. %if cpuflag(ssse3)
  117. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  118. movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  119. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  120. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  121. pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  122. pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  123. %else ; !cpuflag(ssse3)
  124. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  125. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  126. movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  127. movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  128. %if mmsize == 16 ; i.e. sse2
  129. punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  130. punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  131. movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  132. movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  133. movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  134. movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  135. punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  136. punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  137. %endif ; mmsize == 16
  138. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  139. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  140. punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  141. punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  142. %endif ; cpuflag(ssse3)
  143. add srcq, 3 * mmsize / 2
  144. pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
  145. pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
  146. pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
  147. pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
  148. paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
  149. paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
  150. paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
  151. paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
  152. psrad m0, 9
  153. psrad m2, 9
  154. packssdw m0, m2 ; (word) { Y[0-7] }
  155. mova [dstq+wq], m0
  156. add wq, mmsize
  157. jl .loop
  158. REP_RET
  159. %endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  160. %endmacro
  161. ; %1 = nr. of XMM registers
  162. ; %2 = rgb or bgr
  163. %macro RGB24_TO_UV_FN 2-3
  164. cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, u3
  165. %if ARCH_X86_64
  166. mova m8, [%2_Ucoeff_12x4]
  167. mova m9, [%2_Ucoeff_3x56]
  168. mova m10, [%2_Vcoeff_12x4]
  169. mova m11, [%2_Vcoeff_3x56]
  170. %define coeffU1 m8
  171. %define coeffU2 m9
  172. %define coeffV1 m10
  173. %define coeffV2 m11
  174. %else ; x86-32
  175. %define coeffU1 [%2_Ucoeff_12x4]
  176. %define coeffU2 [%2_Ucoeff_3x56]
  177. %define coeffV1 [%2_Vcoeff_12x4]
  178. %define coeffV2 [%2_Vcoeff_3x56]
  179. %endif ; x86-32/64
  180. %if ARCH_X86_64 && %0 == 3
  181. jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
  182. %else ; ARCH_X86_64 && %0 == 3
  183. .body:
  184. %if cpuflag(ssse3)
  185. mova m7, [shuf_rgb_12x4]
  186. %define shuf_rgb1 m7
  187. %if ARCH_X86_64
  188. mova m12, [shuf_rgb_3x56]
  189. %define shuf_rgb2 m12
  190. %else ; x86-32
  191. %define shuf_rgb2 [shuf_rgb_3x56]
  192. %endif ; x86-32/64
  193. %endif ; cpuflag(ssse3)
  194. %if ARCH_X86_64
  195. movsxd wq, dword r5m
  196. %else ; x86-32
  197. mov wq, r5m
  198. %endif
  199. add wq, wq
  200. add dstUq, wq
  201. add dstVq, wq
  202. neg wq
  203. mova m6, [rgb_UVrnd]
  204. %if notcpuflag(ssse3)
  205. pxor m7, m7
  206. %endif
  207. .loop:
  208. %if cpuflag(ssse3)
  209. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  210. movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  211. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  212. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  213. %else ; !cpuflag(ssse3)
  214. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  215. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  216. movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  217. movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  218. %if mmsize == 16
  219. punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  220. punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  221. movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  222. movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  223. %endif ; mmsize == 16
  224. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  225. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  226. %endif ; cpuflag(ssse3)
  227. pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
  228. pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
  229. pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
  230. pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
  231. paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
  232. paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
  233. %if cpuflag(ssse3)
  234. pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  235. pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  236. %else ; !cpuflag(ssse3)
  237. %if mmsize == 16
  238. movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  239. movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  240. punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  241. punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  242. %endif ; mmsize == 16 && !cpuflag(ssse3)
  243. punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  244. punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  245. %endif ; cpuflag(ssse3)
  246. add srcq, 3 * mmsize / 2
  247. pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
  248. pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
  249. pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
  250. pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
  251. paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
  252. paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
  253. paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
  254. paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
  255. paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
  256. paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
  257. psrad m0, 9
  258. psrad m2, 9
  259. psrad m1, 9
  260. psrad m4, 9
  261. packssdw m0, m1 ; (word) { U[0-7] }
  262. packssdw m2, m4 ; (word) { V[0-7] }
  263. %if mmsize == 8
  264. mova [dstUq+wq], m0
  265. mova [dstVq+wq], m2
  266. %else ; mmsize == 16
  267. mova [dstUq+wq], m0
  268. mova [dstVq+wq], m2
  269. %endif ; mmsize == 8/16
  270. add wq, mmsize
  271. jl .loop
  272. REP_RET
  273. %endif ; ARCH_X86_64 && %0 == 3
  274. %endmacro
  275. ; %1 = nr. of XMM registers for rgb-to-Y func
  276. ; %2 = nr. of XMM registers for rgb-to-UV func
  277. %macro RGB24_FUNCS 2
  278. RGB24_TO_Y_FN %1, rgb
  279. RGB24_TO_Y_FN %1, bgr, rgb
  280. RGB24_TO_UV_FN %2, rgb
  281. RGB24_TO_UV_FN %2, bgr, rgb
  282. %endmacro
  283. %if ARCH_X86_32
  284. INIT_MMX mmx
  285. RGB24_FUNCS 0, 0
  286. %endif
  287. INIT_XMM sse2
  288. RGB24_FUNCS 10, 12
  289. INIT_XMM ssse3
  290. RGB24_FUNCS 11, 13
  291. %if HAVE_AVX_EXTERNAL
  292. INIT_XMM avx
  293. RGB24_FUNCS 11, 13
  294. %endif
  295. ; %1 = nr. of XMM registers
  296. ; %2-5 = rgba, bgra, argb or abgr (in individual characters)
  297. %macro RGB32_TO_Y_FN 5-6
  298. cglobal %2%3%4%5 %+ ToY, 6, 6, %1, dst, src, u1, u2, w, u3
  299. mova m5, [rgba_Ycoeff_%2%4]
  300. mova m6, [rgba_Ycoeff_%3%5]
  301. %if %0 == 6
  302. jmp mangle(private_prefix %+ _ %+ %6 %+ ToY %+ SUFFIX).body
  303. %else ; %0 == 6
  304. .body:
  305. %if ARCH_X86_64
  306. movsxd wq, wd
  307. %endif
  308. lea srcq, [srcq+wq*4]
  309. add wq, wq
  310. add dstq, wq
  311. neg wq
  312. mova m4, [rgb_Yrnd]
  313. pcmpeqb m7, m7
  314. psrlw m7, 8 ; (word) { 0x00ff } x4
  315. .loop:
  316. ; FIXME check alignment and use mova
  317. movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
  318. movu m2, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
  319. DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
  320. pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
  321. pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
  322. pmaddwd m3, m5 ; (dword) { Bx*BY + Rx*RY }[4-7]
  323. pmaddwd m2, m6 ; (dword) { Gx*GY }[4-7]
  324. paddd m0, m4 ; += rgb_Yrnd
  325. paddd m2, m4 ; += rgb_Yrnd
  326. paddd m0, m1 ; (dword) { Y[0-3] }
  327. paddd m2, m3 ; (dword) { Y[4-7] }
  328. psrad m0, 9
  329. psrad m2, 9
  330. packssdw m0, m2 ; (word) { Y[0-7] }
  331. mova [dstq+wq], m0
  332. add wq, mmsize
  333. jl .loop
  334. REP_RET
  335. %endif ; %0 == 3
  336. %endmacro
  337. ; %1 = nr. of XMM registers
  338. ; %2-5 = rgba, bgra, argb or abgr (in individual characters)
  339. %macro RGB32_TO_UV_FN 5-6
  340. cglobal %2%3%4%5 %+ ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, u3
  341. %if ARCH_X86_64
  342. mova m8, [rgba_Ucoeff_%2%4]
  343. mova m9, [rgba_Ucoeff_%3%5]
  344. mova m10, [rgba_Vcoeff_%2%4]
  345. mova m11, [rgba_Vcoeff_%3%5]
  346. %define coeffU1 m8
  347. %define coeffU2 m9
  348. %define coeffV1 m10
  349. %define coeffV2 m11
  350. %else ; x86-32
  351. %define coeffU1 [rgba_Ucoeff_%2%4]
  352. %define coeffU2 [rgba_Ucoeff_%3%5]
  353. %define coeffV1 [rgba_Vcoeff_%2%4]
  354. %define coeffV2 [rgba_Vcoeff_%3%5]
  355. %endif ; x86-64/32
  356. %if ARCH_X86_64 && %0 == 6
  357. jmp mangle(private_prefix %+ _ %+ %6 %+ ToUV %+ SUFFIX).body
  358. %else ; ARCH_X86_64 && %0 == 6
  359. .body:
  360. %if ARCH_X86_64
  361. movsxd wq, dword r5m
  362. %else ; x86-32
  363. mov wq, r5m
  364. %endif
  365. add wq, wq
  366. add dstUq, wq
  367. add dstVq, wq
  368. lea srcq, [srcq+wq*2]
  369. neg wq
  370. pcmpeqb m7, m7
  371. psrlw m7, 8 ; (word) { 0x00ff } x4
  372. mova m6, [rgb_UVrnd]
  373. .loop:
  374. ; FIXME check alignment and use mova
  375. movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
  376. movu m4, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
  377. DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
  378. pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
  379. pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
  380. pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
  381. pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
  382. paddd m3, m6 ; += rgb_UVrnd
  383. paddd m1, m6 ; += rgb_UVrnd
  384. paddd m2, m3 ; (dword) { V[0-3] }
  385. paddd m0, m1 ; (dword) { U[0-3] }
  386. pmaddwd m3, m5, coeffV1 ; (dword) { Bx*BV + Rx*RV }[4-7]
  387. pmaddwd m1, m4, coeffV2 ; (dword) { Gx*GV }[4-7]
  388. pmaddwd m5, coeffU1 ; (dword) { Bx*BU + Rx*RU }[4-7]
  389. pmaddwd m4, coeffU2 ; (dword) { Gx*GU }[4-7]
  390. paddd m3, m6 ; += rgb_UVrnd
  391. paddd m5, m6 ; += rgb_UVrnd
  392. psrad m0, 9
  393. paddd m1, m3 ; (dword) { V[4-7] }
  394. paddd m4, m5 ; (dword) { U[4-7] }
  395. psrad m2, 9
  396. psrad m4, 9
  397. psrad m1, 9
  398. packssdw m0, m4 ; (word) { U[0-7] }
  399. packssdw m2, m1 ; (word) { V[0-7] }
  400. %if mmsize == 8
  401. mova [dstUq+wq], m0
  402. mova [dstVq+wq], m2
  403. %else ; mmsize == 16
  404. mova [dstUq+wq], m0
  405. mova [dstVq+wq], m2
  406. %endif ; mmsize == 8/16
  407. add wq, mmsize
  408. jl .loop
  409. REP_RET
  410. %endif ; ARCH_X86_64 && %0 == 3
  411. %endmacro
  412. ; %1 = nr. of XMM registers for rgb-to-Y func
  413. ; %2 = nr. of XMM registers for rgb-to-UV func
  414. %macro RGB32_FUNCS 2
  415. RGB32_TO_Y_FN %1, r, g, b, a
  416. RGB32_TO_Y_FN %1, b, g, r, a, rgba
  417. RGB32_TO_Y_FN %1, a, r, g, b, rgba
  418. RGB32_TO_Y_FN %1, a, b, g, r, rgba
  419. RGB32_TO_UV_FN %2, r, g, b, a
  420. RGB32_TO_UV_FN %2, b, g, r, a, rgba
  421. RGB32_TO_UV_FN %2, a, r, g, b, rgba
  422. RGB32_TO_UV_FN %2, a, b, g, r, rgba
  423. %endmacro
  424. %if ARCH_X86_32
  425. INIT_MMX mmx
  426. RGB32_FUNCS 0, 0
  427. %endif
  428. INIT_XMM sse2
  429. RGB32_FUNCS 8, 12
  430. %if HAVE_AVX_EXTERNAL
  431. INIT_XMM avx
  432. RGB32_FUNCS 8, 12
  433. %endif
  434. ;-----------------------------------------------------------------------------
  435. ; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
  436. ;
  437. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  438. ; and
  439. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  440. ; const uint8_t *unused, int w);
  441. ;-----------------------------------------------------------------------------
  442. ; %1 = a (aligned) or u (unaligned)
  443. ; %2 = yuyv or uyvy
  444. %macro LOOP_YUYV_TO_Y 2
  445. .loop_%1:
  446. mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
  447. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  448. %ifidn %2, yuyv
  449. pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
  450. pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
  451. %else ; uyvy
  452. psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
  453. psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
  454. %endif ; yuyv/uyvy
  455. packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
  456. mova [dstq+wq], m0
  457. add wq, mmsize
  458. jl .loop_%1
  459. REP_RET
  460. %endmacro
  461. ; %1 = nr. of XMM registers
  462. ; %2 = yuyv or uyvy
  463. ; %3 = if specified, it means that unaligned and aligned code in loop
  464. ; will be the same (i.e. YUYV+AVX), and thus we don't need to
  465. ; split the loop in an aligned and unaligned case
  466. %macro YUYV_TO_Y_FN 2-3
  467. cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
  468. %if ARCH_X86_64
  469. movsxd wq, wd
  470. %endif
  471. add dstq, wq
  472. %if mmsize == 16
  473. test srcq, 15
  474. %endif
  475. lea srcq, [srcq+wq*2]
  476. %ifidn %2, yuyv
  477. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  478. psrlw m2, 8 ; (word) { 0x00ff } x 8
  479. %endif ; yuyv
  480. %if mmsize == 16
  481. jnz .loop_u_start
  482. neg wq
  483. LOOP_YUYV_TO_Y a, %2
  484. .loop_u_start:
  485. neg wq
  486. LOOP_YUYV_TO_Y u, %2
  487. %else ; mmsize == 8
  488. neg wq
  489. LOOP_YUYV_TO_Y a, %2
  490. %endif ; mmsize == 8/16
  491. %endmacro
  492. ; %1 = a (aligned) or u (unaligned)
  493. ; %2 = yuyv or uyvy
  494. %macro LOOP_YUYV_TO_UV 2
  495. .loop_%1:
  496. %ifidn %2, yuyv
  497. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  498. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  499. psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
  500. psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
  501. %else ; uyvy
  502. %if cpuflag(avx)
  503. vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
  504. vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
  505. %else
  506. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  507. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  508. pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
  509. pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
  510. %endif
  511. %endif ; yuyv/uyvy
  512. packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
  513. pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
  514. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  515. %if mmsize == 16
  516. packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
  517. movh [dstUq+wq], m1
  518. movhps [dstVq+wq], m1
  519. %else ; mmsize == 8
  520. packuswb m1, m1 ; (byte) { U0, ... U3 }
  521. packuswb m0, m0 ; (byte) { V0, ... V3 }
  522. movh [dstUq+wq], m1
  523. movh [dstVq+wq], m0
  524. %endif ; mmsize == 8/16
  525. add wq, mmsize / 2
  526. jl .loop_%1
  527. REP_RET
  528. %endmacro
  529. ; %1 = nr. of XMM registers
  530. ; %2 = yuyv or uyvy
  531. ; %3 = if specified, it means that unaligned and aligned code in loop
  532. ; will be the same (i.e. UYVY+AVX), and thus we don't need to
  533. ; split the loop in an aligned and unaligned case
  534. %macro YUYV_TO_UV_FN 2-3
  535. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  536. %if ARCH_X86_64
  537. movsxd wq, dword r5m
  538. %else ; x86-32
  539. mov wq, r5m
  540. %endif
  541. add dstUq, wq
  542. add dstVq, wq
  543. %if mmsize == 16 && %0 == 2
  544. test srcq, 15
  545. %endif
  546. lea srcq, [srcq+wq*4]
  547. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  548. psrlw m2, 8 ; (word) { 0x00ff } x 8
  549. ; NOTE: if uyvy+avx, u/a are identical
  550. %if mmsize == 16 && %0 == 2
  551. jnz .loop_u_start
  552. neg wq
  553. LOOP_YUYV_TO_UV a, %2
  554. .loop_u_start:
  555. neg wq
  556. LOOP_YUYV_TO_UV u, %2
  557. %else ; mmsize == 8
  558. neg wq
  559. LOOP_YUYV_TO_UV a, %2
  560. %endif ; mmsize == 8/16
  561. %endmacro
  562. ; %1 = a (aligned) or u (unaligned)
  563. ; %2 = nv12 or nv21
  564. %macro LOOP_NVXX_TO_UV 2
  565. .loop_%1:
  566. mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
  567. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
  568. pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
  569. pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
  570. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  571. psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
  572. packuswb m2, m3 ; (byte) { U0, ..., U15 }
  573. packuswb m0, m1 ; (byte) { V0, ..., V15 }
  574. %ifidn %2, nv12
  575. mova [dstUq+wq], m2
  576. mova [dstVq+wq], m0
  577. %else ; nv21
  578. mova [dstVq+wq], m2
  579. mova [dstUq+wq], m0
  580. %endif ; nv12/21
  581. add wq, mmsize
  582. jl .loop_%1
  583. REP_RET
  584. %endmacro
  585. ; %1 = nr. of XMM registers
  586. ; %2 = nv12 or nv21
  587. %macro NVXX_TO_UV_FN 2
  588. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  589. %if ARCH_X86_64
  590. movsxd wq, dword r5m
  591. %else ; x86-32
  592. mov wq, r5m
  593. %endif
  594. add dstUq, wq
  595. add dstVq, wq
  596. %if mmsize == 16
  597. test srcq, 15
  598. %endif
  599. lea srcq, [srcq+wq*2]
  600. pcmpeqb m5, m5 ; (byte) { 0xff } x 16
  601. psrlw m5, 8 ; (word) { 0x00ff } x 8
  602. %if mmsize == 16
  603. jnz .loop_u_start
  604. neg wq
  605. LOOP_NVXX_TO_UV a, %2
  606. .loop_u_start:
  607. neg wq
  608. LOOP_NVXX_TO_UV u, %2
  609. %else ; mmsize == 8
  610. neg wq
  611. LOOP_NVXX_TO_UV a, %2
  612. %endif ; mmsize == 8/16
  613. %endmacro
  614. %if ARCH_X86_32
  615. INIT_MMX mmx
  616. YUYV_TO_Y_FN 0, yuyv
  617. YUYV_TO_Y_FN 0, uyvy
  618. YUYV_TO_UV_FN 0, yuyv
  619. YUYV_TO_UV_FN 0, uyvy
  620. NVXX_TO_UV_FN 0, nv12
  621. NVXX_TO_UV_FN 0, nv21
  622. %endif
  623. INIT_XMM sse2
  624. YUYV_TO_Y_FN 3, yuyv
  625. YUYV_TO_Y_FN 2, uyvy
  626. YUYV_TO_UV_FN 3, yuyv
  627. YUYV_TO_UV_FN 3, uyvy
  628. NVXX_TO_UV_FN 5, nv12
  629. NVXX_TO_UV_FN 5, nv21
  630. %if HAVE_AVX_EXTERNAL
  631. INIT_XMM avx
  632. ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
  633. ; that's not faster in practice
  634. YUYV_TO_UV_FN 3, yuyv
  635. YUYV_TO_UV_FN 3, uyvy, 1
  636. NVXX_TO_UV_FN 5, nv12
  637. NVXX_TO_UV_FN 5, nv21
  638. %endif