wmadec.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924
  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(ff_wma_init(avctx, flags2)<0)
  91. return -1;
  92. /* init MDCT */
  93. for(i = 0; i < s->nb_block_sizes; i++)
  94. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  95. if (s->use_noise_coding) {
  96. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  97. ff_wma_hgain_huffbits, 1, 1,
  98. ff_wma_hgain_huffcodes, 2, 2, 0);
  99. }
  100. if (s->use_exp_vlc) {
  101. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  102. ff_wma_scale_huffbits, 1, 1,
  103. ff_wma_scale_huffcodes, 4, 4, 0);
  104. } else {
  105. wma_lsp_to_curve_init(s, s->frame_len);
  106. }
  107. avctx->sample_fmt = SAMPLE_FMT_S16;
  108. return 0;
  109. }
  110. /**
  111. * compute x^-0.25 with an exponent and mantissa table. We use linear
  112. * interpolation to reduce the mantissa table size at a small speed
  113. * expense (linear interpolation approximately doubles the number of
  114. * bits of precision).
  115. */
  116. static inline float pow_m1_4(WMACodecContext *s, float x)
  117. {
  118. union {
  119. float f;
  120. unsigned int v;
  121. } u, t;
  122. unsigned int e, m;
  123. float a, b;
  124. u.f = x;
  125. e = u.v >> 23;
  126. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  127. /* build interpolation scale: 1 <= t < 2. */
  128. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  129. a = s->lsp_pow_m_table1[m];
  130. b = s->lsp_pow_m_table2[m];
  131. return s->lsp_pow_e_table[e] * (a + b * t.f);
  132. }
  133. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  134. {
  135. float wdel, a, b;
  136. int i, e, m;
  137. wdel = M_PI / frame_len;
  138. for(i=0;i<frame_len;i++)
  139. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  140. /* tables for x^-0.25 computation */
  141. for(i=0;i<256;i++) {
  142. e = i - 126;
  143. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  144. }
  145. /* NOTE: these two tables are needed to avoid two operations in
  146. pow_m1_4 */
  147. b = 1.0;
  148. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  149. m = (1 << LSP_POW_BITS) + i;
  150. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  151. a = pow(a, -0.25);
  152. s->lsp_pow_m_table1[i] = 2 * a - b;
  153. s->lsp_pow_m_table2[i] = b - a;
  154. b = a;
  155. }
  156. #if 0
  157. for(i=1;i<20;i++) {
  158. float v, r1, r2;
  159. v = 5.0 / i;
  160. r1 = pow_m1_4(s, v);
  161. r2 = pow(v,-0.25);
  162. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  163. }
  164. #endif
  165. }
  166. /**
  167. * NOTE: We use the same code as Vorbis here
  168. * @todo optimize it further with SSE/3Dnow
  169. */
  170. static void wma_lsp_to_curve(WMACodecContext *s,
  171. float *out, float *val_max_ptr,
  172. int n, float *lsp)
  173. {
  174. int i, j;
  175. float p, q, w, v, val_max;
  176. val_max = 0;
  177. for(i=0;i<n;i++) {
  178. p = 0.5f;
  179. q = 0.5f;
  180. w = s->lsp_cos_table[i];
  181. for(j=1;j<NB_LSP_COEFS;j+=2){
  182. q *= w - lsp[j - 1];
  183. p *= w - lsp[j];
  184. }
  185. p *= p * (2.0f - w);
  186. q *= q * (2.0f + w);
  187. v = p + q;
  188. v = pow_m1_4(s, v);
  189. if (v > val_max)
  190. val_max = v;
  191. out[i] = v;
  192. }
  193. *val_max_ptr = val_max;
  194. }
  195. /**
  196. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  197. */
  198. static void decode_exp_lsp(WMACodecContext *s, int ch)
  199. {
  200. float lsp_coefs[NB_LSP_COEFS];
  201. int val, i;
  202. for(i = 0; i < NB_LSP_COEFS; i++) {
  203. if (i == 0 || i >= 8)
  204. val = get_bits(&s->gb, 3);
  205. else
  206. val = get_bits(&s->gb, 4);
  207. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  208. }
  209. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  210. s->block_len, lsp_coefs);
  211. }
  212. /** pow(10, i / 16.0) for i in -60..75 */
  213. static const float pow_tab[] = {
  214. 1.7782794100389e-04, 2.0535250264571e-04,
  215. 2.3713737056617e-04, 2.7384196342644e-04,
  216. 3.1622776601684e-04, 3.6517412725484e-04,
  217. 4.2169650342858e-04, 4.8696752516586e-04,
  218. 5.6234132519035e-04, 6.4938163157621e-04,
  219. 7.4989420933246e-04, 8.6596432336006e-04,
  220. 1.0000000000000e-03, 1.1547819846895e-03,
  221. 1.3335214321633e-03, 1.5399265260595e-03,
  222. 1.7782794100389e-03, 2.0535250264571e-03,
  223. 2.3713737056617e-03, 2.7384196342644e-03,
  224. 3.1622776601684e-03, 3.6517412725484e-03,
  225. 4.2169650342858e-03, 4.8696752516586e-03,
  226. 5.6234132519035e-03, 6.4938163157621e-03,
  227. 7.4989420933246e-03, 8.6596432336006e-03,
  228. 1.0000000000000e-02, 1.1547819846895e-02,
  229. 1.3335214321633e-02, 1.5399265260595e-02,
  230. 1.7782794100389e-02, 2.0535250264571e-02,
  231. 2.3713737056617e-02, 2.7384196342644e-02,
  232. 3.1622776601684e-02, 3.6517412725484e-02,
  233. 4.2169650342858e-02, 4.8696752516586e-02,
  234. 5.6234132519035e-02, 6.4938163157621e-02,
  235. 7.4989420933246e-02, 8.6596432336007e-02,
  236. 1.0000000000000e-01, 1.1547819846895e-01,
  237. 1.3335214321633e-01, 1.5399265260595e-01,
  238. 1.7782794100389e-01, 2.0535250264571e-01,
  239. 2.3713737056617e-01, 2.7384196342644e-01,
  240. 3.1622776601684e-01, 3.6517412725484e-01,
  241. 4.2169650342858e-01, 4.8696752516586e-01,
  242. 5.6234132519035e-01, 6.4938163157621e-01,
  243. 7.4989420933246e-01, 8.6596432336007e-01,
  244. 1.0000000000000e+00, 1.1547819846895e+00,
  245. 1.3335214321633e+00, 1.5399265260595e+00,
  246. 1.7782794100389e+00, 2.0535250264571e+00,
  247. 2.3713737056617e+00, 2.7384196342644e+00,
  248. 3.1622776601684e+00, 3.6517412725484e+00,
  249. 4.2169650342858e+00, 4.8696752516586e+00,
  250. 5.6234132519035e+00, 6.4938163157621e+00,
  251. 7.4989420933246e+00, 8.6596432336007e+00,
  252. 1.0000000000000e+01, 1.1547819846895e+01,
  253. 1.3335214321633e+01, 1.5399265260595e+01,
  254. 1.7782794100389e+01, 2.0535250264571e+01,
  255. 2.3713737056617e+01, 2.7384196342644e+01,
  256. 3.1622776601684e+01, 3.6517412725484e+01,
  257. 4.2169650342858e+01, 4.8696752516586e+01,
  258. 5.6234132519035e+01, 6.4938163157621e+01,
  259. 7.4989420933246e+01, 8.6596432336007e+01,
  260. 1.0000000000000e+02, 1.1547819846895e+02,
  261. 1.3335214321633e+02, 1.5399265260595e+02,
  262. 1.7782794100389e+02, 2.0535250264571e+02,
  263. 2.3713737056617e+02, 2.7384196342644e+02,
  264. 3.1622776601684e+02, 3.6517412725484e+02,
  265. 4.2169650342858e+02, 4.8696752516586e+02,
  266. 5.6234132519035e+02, 6.4938163157621e+02,
  267. 7.4989420933246e+02, 8.6596432336007e+02,
  268. 1.0000000000000e+03, 1.1547819846895e+03,
  269. 1.3335214321633e+03, 1.5399265260595e+03,
  270. 1.7782794100389e+03, 2.0535250264571e+03,
  271. 2.3713737056617e+03, 2.7384196342644e+03,
  272. 3.1622776601684e+03, 3.6517412725484e+03,
  273. 4.2169650342858e+03, 4.8696752516586e+03,
  274. 5.6234132519035e+03, 6.4938163157621e+03,
  275. 7.4989420933246e+03, 8.6596432336007e+03,
  276. 1.0000000000000e+04, 1.1547819846895e+04,
  277. 1.3335214321633e+04, 1.5399265260595e+04,
  278. 1.7782794100389e+04, 2.0535250264571e+04,
  279. 2.3713737056617e+04, 2.7384196342644e+04,
  280. 3.1622776601684e+04, 3.6517412725484e+04,
  281. 4.2169650342858e+04, 4.8696752516586e+04,
  282. };
  283. /**
  284. * decode exponents coded with VLC codes
  285. */
  286. static int decode_exp_vlc(WMACodecContext *s, int ch)
  287. {
  288. int last_exp, n, code;
  289. const uint16_t *ptr;
  290. float v, max_scale;
  291. uint32_t *q, *q_end, iv;
  292. const float *ptab = pow_tab + 60;
  293. const uint32_t *iptab = (const uint32_t*)ptab;
  294. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  295. q = (uint32_t *)s->exponents[ch];
  296. q_end = q + s->block_len;
  297. max_scale = 0;
  298. if (s->version == 1) {
  299. last_exp = get_bits(&s->gb, 5) + 10;
  300. v = ptab[last_exp];
  301. iv = iptab[last_exp];
  302. max_scale = v;
  303. n = *ptr++;
  304. switch (n & 3) do {
  305. case 0: *q++ = iv;
  306. case 3: *q++ = iv;
  307. case 2: *q++ = iv;
  308. case 1: *q++ = iv;
  309. } while ((n -= 4) > 0);
  310. }else
  311. last_exp = 36;
  312. while (q < q_end) {
  313. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  314. if (code < 0)
  315. return -1;
  316. /* NOTE: this offset is the same as MPEG4 AAC ! */
  317. last_exp += code - 60;
  318. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  319. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  320. last_exp);
  321. return -1;
  322. }
  323. v = ptab[last_exp];
  324. iv = iptab[last_exp];
  325. if (v > max_scale)
  326. max_scale = v;
  327. n = *ptr++;
  328. switch (n & 3) do {
  329. case 0: *q++ = iv;
  330. case 3: *q++ = iv;
  331. case 2: *q++ = iv;
  332. case 1: *q++ = iv;
  333. } while ((n -= 4) > 0);
  334. }
  335. s->max_exponent[ch] = max_scale;
  336. return 0;
  337. }
  338. /**
  339. * Apply MDCT window and add into output.
  340. *
  341. * We ensure that when the windows overlap their squared sum
  342. * is always 1 (MDCT reconstruction rule).
  343. */
  344. static void wma_window(WMACodecContext *s, float *out)
  345. {
  346. float *in = s->output;
  347. int block_len, bsize, n;
  348. /* left part */
  349. if (s->block_len_bits <= s->prev_block_len_bits) {
  350. block_len = s->block_len;
  351. bsize = s->frame_len_bits - s->block_len_bits;
  352. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  353. out, block_len);
  354. } else {
  355. block_len = 1 << s->prev_block_len_bits;
  356. n = (s->block_len - block_len) / 2;
  357. bsize = s->frame_len_bits - s->prev_block_len_bits;
  358. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  359. out+n, block_len);
  360. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  361. }
  362. out += s->block_len;
  363. in += s->block_len;
  364. /* right part */
  365. if (s->block_len_bits <= s->next_block_len_bits) {
  366. block_len = s->block_len;
  367. bsize = s->frame_len_bits - s->block_len_bits;
  368. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  369. } else {
  370. block_len = 1 << s->next_block_len_bits;
  371. n = (s->block_len - block_len) / 2;
  372. bsize = s->frame_len_bits - s->next_block_len_bits;
  373. memcpy(out, in, n*sizeof(float));
  374. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  375. memset(out+n+block_len, 0, n*sizeof(float));
  376. }
  377. }
  378. /**
  379. * @return 0 if OK. 1 if last block of frame. return -1 if
  380. * unrecorrable error.
  381. */
  382. static int wma_decode_block(WMACodecContext *s)
  383. {
  384. int n, v, a, ch, bsize;
  385. int coef_nb_bits, total_gain;
  386. int nb_coefs[MAX_CHANNELS];
  387. float mdct_norm;
  388. #ifdef TRACE
  389. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  390. #endif
  391. /* compute current block length */
  392. if (s->use_variable_block_len) {
  393. n = av_log2(s->nb_block_sizes - 1) + 1;
  394. if (s->reset_block_lengths) {
  395. s->reset_block_lengths = 0;
  396. v = get_bits(&s->gb, n);
  397. if (v >= s->nb_block_sizes)
  398. return -1;
  399. s->prev_block_len_bits = s->frame_len_bits - v;
  400. v = get_bits(&s->gb, n);
  401. if (v >= s->nb_block_sizes)
  402. return -1;
  403. s->block_len_bits = s->frame_len_bits - v;
  404. } else {
  405. /* update block lengths */
  406. s->prev_block_len_bits = s->block_len_bits;
  407. s->block_len_bits = s->next_block_len_bits;
  408. }
  409. v = get_bits(&s->gb, n);
  410. if (v >= s->nb_block_sizes)
  411. return -1;
  412. s->next_block_len_bits = s->frame_len_bits - v;
  413. } else {
  414. /* fixed block len */
  415. s->next_block_len_bits = s->frame_len_bits;
  416. s->prev_block_len_bits = s->frame_len_bits;
  417. s->block_len_bits = s->frame_len_bits;
  418. }
  419. /* now check if the block length is coherent with the frame length */
  420. s->block_len = 1 << s->block_len_bits;
  421. if ((s->block_pos + s->block_len) > s->frame_len)
  422. return -1;
  423. if (s->nb_channels == 2) {
  424. s->ms_stereo = get_bits1(&s->gb);
  425. }
  426. v = 0;
  427. for(ch = 0; ch < s->nb_channels; ch++) {
  428. a = get_bits1(&s->gb);
  429. s->channel_coded[ch] = a;
  430. v |= a;
  431. }
  432. bsize = s->frame_len_bits - s->block_len_bits;
  433. /* if no channel coded, no need to go further */
  434. /* XXX: fix potential framing problems */
  435. if (!v)
  436. goto next;
  437. /* read total gain and extract corresponding number of bits for
  438. coef escape coding */
  439. total_gain = 1;
  440. for(;;) {
  441. a = get_bits(&s->gb, 7);
  442. total_gain += a;
  443. if (a != 127)
  444. break;
  445. }
  446. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  447. /* compute number of coefficients */
  448. n = s->coefs_end[bsize] - s->coefs_start;
  449. for(ch = 0; ch < s->nb_channels; ch++)
  450. nb_coefs[ch] = n;
  451. /* complex coding */
  452. if (s->use_noise_coding) {
  453. for(ch = 0; ch < s->nb_channels; ch++) {
  454. if (s->channel_coded[ch]) {
  455. int i, n, a;
  456. n = s->exponent_high_sizes[bsize];
  457. for(i=0;i<n;i++) {
  458. a = get_bits1(&s->gb);
  459. s->high_band_coded[ch][i] = a;
  460. /* if noise coding, the coefficients are not transmitted */
  461. if (a)
  462. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  463. }
  464. }
  465. }
  466. for(ch = 0; ch < s->nb_channels; ch++) {
  467. if (s->channel_coded[ch]) {
  468. int i, n, val, code;
  469. n = s->exponent_high_sizes[bsize];
  470. val = (int)0x80000000;
  471. for(i=0;i<n;i++) {
  472. if (s->high_band_coded[ch][i]) {
  473. if (val == (int)0x80000000) {
  474. val = get_bits(&s->gb, 7) - 19;
  475. } else {
  476. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  477. if (code < 0)
  478. return -1;
  479. val += code - 18;
  480. }
  481. s->high_band_values[ch][i] = val;
  482. }
  483. }
  484. }
  485. }
  486. }
  487. /* exponents can be reused in short blocks. */
  488. if ((s->block_len_bits == s->frame_len_bits) ||
  489. get_bits1(&s->gb)) {
  490. for(ch = 0; ch < s->nb_channels; ch++) {
  491. if (s->channel_coded[ch]) {
  492. if (s->use_exp_vlc) {
  493. if (decode_exp_vlc(s, ch) < 0)
  494. return -1;
  495. } else {
  496. decode_exp_lsp(s, ch);
  497. }
  498. s->exponents_bsize[ch] = bsize;
  499. }
  500. }
  501. }
  502. /* parse spectral coefficients : just RLE encoding */
  503. for(ch = 0; ch < s->nb_channels; ch++) {
  504. if (s->channel_coded[ch]) {
  505. int tindex;
  506. WMACoef* ptr = &s->coefs1[ch][0];
  507. /* special VLC tables are used for ms stereo because
  508. there is potentially less energy there */
  509. tindex = (ch == 1 && s->ms_stereo);
  510. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  511. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  512. s->level_table[tindex], s->run_table[tindex],
  513. 0, ptr, 0, nb_coefs[ch],
  514. s->block_len, s->frame_len_bits, coef_nb_bits);
  515. }
  516. if (s->version == 1 && s->nb_channels >= 2) {
  517. align_get_bits(&s->gb);
  518. }
  519. }
  520. /* normalize */
  521. {
  522. int n4 = s->block_len / 2;
  523. mdct_norm = 1.0 / (float)n4;
  524. if (s->version == 1) {
  525. mdct_norm *= sqrt(n4);
  526. }
  527. }
  528. /* finally compute the MDCT coefficients */
  529. for(ch = 0; ch < s->nb_channels; ch++) {
  530. if (s->channel_coded[ch]) {
  531. WMACoef *coefs1;
  532. float *coefs, *exponents, mult, mult1, noise;
  533. int i, j, n, n1, last_high_band, esize;
  534. float exp_power[HIGH_BAND_MAX_SIZE];
  535. coefs1 = s->coefs1[ch];
  536. exponents = s->exponents[ch];
  537. esize = s->exponents_bsize[ch];
  538. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  539. mult *= mdct_norm;
  540. coefs = s->coefs[ch];
  541. if (s->use_noise_coding) {
  542. mult1 = mult;
  543. /* very low freqs : noise */
  544. for(i = 0;i < s->coefs_start; i++) {
  545. *coefs++ = s->noise_table[s->noise_index] *
  546. exponents[i<<bsize>>esize] * mult1;
  547. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  548. }
  549. n1 = s->exponent_high_sizes[bsize];
  550. /* compute power of high bands */
  551. exponents = s->exponents[ch] +
  552. (s->high_band_start[bsize]<<bsize);
  553. last_high_band = 0; /* avoid warning */
  554. for(j=0;j<n1;j++) {
  555. n = s->exponent_high_bands[s->frame_len_bits -
  556. s->block_len_bits][j];
  557. if (s->high_band_coded[ch][j]) {
  558. float e2, v;
  559. e2 = 0;
  560. for(i = 0;i < n; i++) {
  561. v = exponents[i<<bsize>>esize];
  562. e2 += v * v;
  563. }
  564. exp_power[j] = e2 / n;
  565. last_high_band = j;
  566. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  567. }
  568. exponents += n<<bsize;
  569. }
  570. /* main freqs and high freqs */
  571. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  572. for(j=-1;j<n1;j++) {
  573. if (j < 0) {
  574. n = s->high_band_start[bsize] -
  575. s->coefs_start;
  576. } else {
  577. n = s->exponent_high_bands[s->frame_len_bits -
  578. s->block_len_bits][j];
  579. }
  580. if (j >= 0 && s->high_band_coded[ch][j]) {
  581. /* use noise with specified power */
  582. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  583. /* XXX: use a table */
  584. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  585. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  586. mult1 *= mdct_norm;
  587. for(i = 0;i < n; i++) {
  588. noise = s->noise_table[s->noise_index];
  589. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  590. *coefs++ = noise *
  591. exponents[i<<bsize>>esize] * mult1;
  592. }
  593. exponents += n<<bsize;
  594. } else {
  595. /* coded values + small noise */
  596. for(i = 0;i < n; i++) {
  597. noise = s->noise_table[s->noise_index];
  598. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  599. *coefs++ = ((*coefs1++) + noise) *
  600. exponents[i<<bsize>>esize] * mult;
  601. }
  602. exponents += n<<bsize;
  603. }
  604. }
  605. /* very high freqs : noise */
  606. n = s->block_len - s->coefs_end[bsize];
  607. mult1 = mult * exponents[((-1<<bsize))>>esize];
  608. for(i = 0; i < n; i++) {
  609. *coefs++ = s->noise_table[s->noise_index] * mult1;
  610. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  611. }
  612. } else {
  613. /* XXX: optimize more */
  614. for(i = 0;i < s->coefs_start; i++)
  615. *coefs++ = 0.0;
  616. n = nb_coefs[ch];
  617. for(i = 0;i < n; i++) {
  618. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  619. }
  620. n = s->block_len - s->coefs_end[bsize];
  621. for(i = 0;i < n; i++)
  622. *coefs++ = 0.0;
  623. }
  624. }
  625. }
  626. #ifdef TRACE
  627. for(ch = 0; ch < s->nb_channels; ch++) {
  628. if (s->channel_coded[ch]) {
  629. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  630. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  631. }
  632. }
  633. #endif
  634. if (s->ms_stereo && s->channel_coded[1]) {
  635. /* nominal case for ms stereo: we do it before mdct */
  636. /* no need to optimize this case because it should almost
  637. never happen */
  638. if (!s->channel_coded[0]) {
  639. tprintf(s->avctx, "rare ms-stereo case happened\n");
  640. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  641. s->channel_coded[0] = 1;
  642. }
  643. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  644. }
  645. next:
  646. for(ch = 0; ch < s->nb_channels; ch++) {
  647. int n4, index;
  648. n4 = s->block_len / 2;
  649. if(s->channel_coded[ch]){
  650. ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
  651. }else if(!(s->ms_stereo && ch==1))
  652. memset(s->output, 0, sizeof(s->output));
  653. /* multiply by the window and add in the frame */
  654. index = (s->frame_len / 2) + s->block_pos - n4;
  655. wma_window(s, &s->frame_out[ch][index]);
  656. }
  657. /* update block number */
  658. s->block_num++;
  659. s->block_pos += s->block_len;
  660. if (s->block_pos >= s->frame_len)
  661. return 1;
  662. else
  663. return 0;
  664. }
  665. /* decode a frame of frame_len samples */
  666. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  667. {
  668. int ret, i, n, ch, incr;
  669. int16_t *ptr;
  670. float *iptr;
  671. #ifdef TRACE
  672. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  673. #endif
  674. /* read each block */
  675. s->block_num = 0;
  676. s->block_pos = 0;
  677. for(;;) {
  678. ret = wma_decode_block(s);
  679. if (ret < 0)
  680. return -1;
  681. if (ret)
  682. break;
  683. }
  684. /* convert frame to integer */
  685. n = s->frame_len;
  686. incr = s->nb_channels;
  687. for(ch = 0; ch < s->nb_channels; ch++) {
  688. ptr = samples + ch;
  689. iptr = s->frame_out[ch];
  690. for(i=0;i<n;i++) {
  691. *ptr = av_clip_int16(lrintf(*iptr++));
  692. ptr += incr;
  693. }
  694. /* prepare for next block */
  695. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  696. s->frame_len * sizeof(float));
  697. }
  698. #ifdef TRACE
  699. dump_shorts(s, "samples", samples, n * s->nb_channels);
  700. #endif
  701. return 0;
  702. }
  703. static int wma_decode_superframe(AVCodecContext *avctx,
  704. void *data, int *data_size,
  705. AVPacket *avpkt)
  706. {
  707. const uint8_t *buf = avpkt->data;
  708. int buf_size = avpkt->size;
  709. WMACodecContext *s = avctx->priv_data;
  710. int nb_frames, bit_offset, i, pos, len;
  711. uint8_t *q;
  712. int16_t *samples;
  713. tprintf(avctx, "***decode_superframe:\n");
  714. if(buf_size==0){
  715. s->last_superframe_len = 0;
  716. return 0;
  717. }
  718. if (buf_size < s->block_align)
  719. return 0;
  720. buf_size = s->block_align;
  721. samples = data;
  722. init_get_bits(&s->gb, buf, buf_size*8);
  723. if (s->use_bit_reservoir) {
  724. /* read super frame header */
  725. skip_bits(&s->gb, 4); /* super frame index */
  726. nb_frames = get_bits(&s->gb, 4) - 1;
  727. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  728. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  729. goto fail;
  730. }
  731. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  732. if (s->last_superframe_len > 0) {
  733. // printf("skip=%d\n", s->last_bitoffset);
  734. /* add bit_offset bits to last frame */
  735. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  736. MAX_CODED_SUPERFRAME_SIZE)
  737. goto fail;
  738. q = s->last_superframe + s->last_superframe_len;
  739. len = bit_offset;
  740. while (len > 7) {
  741. *q++ = (get_bits)(&s->gb, 8);
  742. len -= 8;
  743. }
  744. if (len > 0) {
  745. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  746. }
  747. /* XXX: bit_offset bits into last frame */
  748. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  749. /* skip unused bits */
  750. if (s->last_bitoffset > 0)
  751. skip_bits(&s->gb, s->last_bitoffset);
  752. /* this frame is stored in the last superframe and in the
  753. current one */
  754. if (wma_decode_frame(s, samples) < 0)
  755. goto fail;
  756. samples += s->nb_channels * s->frame_len;
  757. }
  758. /* read each frame starting from bit_offset */
  759. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  760. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  761. len = pos & 7;
  762. if (len > 0)
  763. skip_bits(&s->gb, len);
  764. s->reset_block_lengths = 1;
  765. for(i=0;i<nb_frames;i++) {
  766. if (wma_decode_frame(s, samples) < 0)
  767. goto fail;
  768. samples += s->nb_channels * s->frame_len;
  769. }
  770. /* we copy the end of the frame in the last frame buffer */
  771. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  772. s->last_bitoffset = pos & 7;
  773. pos >>= 3;
  774. len = buf_size - pos;
  775. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  776. goto fail;
  777. }
  778. s->last_superframe_len = len;
  779. memcpy(s->last_superframe, buf + pos, len);
  780. } else {
  781. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  782. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  783. goto fail;
  784. }
  785. /* single frame decode */
  786. if (wma_decode_frame(s, samples) < 0)
  787. goto fail;
  788. samples += s->nb_channels * s->frame_len;
  789. }
  790. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  791. *data_size = (int8_t *)samples - (int8_t *)data;
  792. return s->block_align;
  793. fail:
  794. /* when error, we reset the bit reservoir */
  795. s->last_superframe_len = 0;
  796. return -1;
  797. }
  798. AVCodec wmav1_decoder =
  799. {
  800. "wmav1",
  801. CODEC_TYPE_AUDIO,
  802. CODEC_ID_WMAV1,
  803. sizeof(WMACodecContext),
  804. wma_decode_init,
  805. NULL,
  806. ff_wma_end,
  807. wma_decode_superframe,
  808. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  809. };
  810. AVCodec wmav2_decoder =
  811. {
  812. "wmav2",
  813. CODEC_TYPE_AUDIO,
  814. CODEC_ID_WMAV2,
  815. sizeof(WMACodecContext),
  816. wma_decode_init,
  817. NULL,
  818. ff_wma_end,
  819. wma_decode_superframe,
  820. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  821. };