/* * Copyright (C) 2024 Niklas Haas * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libavutil/attributes.h" #include "libavutil/avassert.h" #include "libavutil/mem.h" #include "cms.h" #include "csputils.h" #include "lut3d.h" SwsLut3D *ff_sws_lut3d_alloc(void) { SwsLut3D *lut3d = av_malloc(sizeof(*lut3d)); if (!lut3d) return NULL; lut3d->dynamic = false; return lut3d; } void ff_sws_lut3d_free(SwsLut3D **plut3d) { av_freep(plut3d); } bool ff_sws_lut3d_test_fmt(enum AVPixelFormat fmt, int output) { return fmt == AV_PIX_FMT_RGBA64; } enum AVPixelFormat ff_sws_lut3d_pick_pixfmt(SwsFormat fmt, int output) { return AV_PIX_FMT_RGBA64; } /** * v0 and v1 are 'black' and 'white' * v2 and v3 are closest RGB/CMY vertices * x >= y >= z are relative weights */ static av_always_inline v3u16_t barycentric(int shift, int x, int y, int z, v3u16_t v0, v3u16_t v1, v3u16_t v2, v3u16_t v3) { const int a = (1 << shift) - x; const int b = x - y; const int c = y - z; const int d = z; av_assert2(x >= y); av_assert2(y >= z); return (v3u16_t) { (a * v0.x + b * v1.x + c * v2.x + d * v3.x) >> shift, (a * v0.y + b * v1.y + c * v2.y + d * v3.y) >> shift, (a * v0.z + b * v1.z + c * v2.z + d * v3.z) >> shift, }; } static av_always_inline v3u16_t tetrahedral(const SwsLut3D *lut3d, int Rx, int Gx, int Bx, int Rf, int Gf, int Bf) { const int shift = 16 - INPUT_LUT_BITS; const int Rn = FFMIN(Rx + 1, INPUT_LUT_SIZE - 1); const int Gn = FFMIN(Gx + 1, INPUT_LUT_SIZE - 1); const int Bn = FFMIN(Bx + 1, INPUT_LUT_SIZE - 1); const v3u16_t c000 = lut3d->input[Bx][Gx][Rx]; const v3u16_t c111 = lut3d->input[Bn][Gn][Rn]; if (Rf > Gf) { if (Gf > Bf) { const v3u16_t c100 = lut3d->input[Bx][Gx][Rn]; const v3u16_t c110 = lut3d->input[Bx][Gn][Rn]; return barycentric(shift, Rf, Gf, Bf, c000, c100, c110, c111); } else if (Rf > Bf) { const v3u16_t c100 = lut3d->input[Bx][Gx][Rn]; const v3u16_t c101 = lut3d->input[Bn][Gx][Rn]; return barycentric(shift, Rf, Bf, Gf, c000, c100, c101, c111); } else { const v3u16_t c001 = lut3d->input[Bn][Gx][Rx]; const v3u16_t c101 = lut3d->input[Bn][Gx][Rn]; return barycentric(shift, Bf, Rf, Gf, c000, c001, c101, c111); } } else { if (Bf > Gf) { const v3u16_t c001 = lut3d->input[Bn][Gx][Rx]; const v3u16_t c011 = lut3d->input[Bn][Gn][Rx]; return barycentric(shift, Bf, Gf, Rf, c000, c001, c011, c111); } else if (Bf > Rf) { const v3u16_t c010 = lut3d->input[Bx][Gn][Rx]; const v3u16_t c011 = lut3d->input[Bn][Gn][Rx]; return barycentric(shift, Gf, Bf, Rf, c000, c010, c011, c111); } else { const v3u16_t c010 = lut3d->input[Bx][Gn][Rx]; const v3u16_t c110 = lut3d->input[Bx][Gn][Rn]; return barycentric(shift, Gf, Rf, Bf, c000, c010, c110, c111); } } } static av_always_inline v3u16_t lookup_input16(const SwsLut3D *lut3d, v3u16_t rgb) { const int shift = 16 - INPUT_LUT_BITS; const int Rx = rgb.x >> shift; const int Gx = rgb.y >> shift; const int Bx = rgb.z >> shift; const int Rf = rgb.x & ((1 << shift) - 1); const int Gf = rgb.y & ((1 << shift) - 1); const int Bf = rgb.z & ((1 << shift) - 1); return tetrahedral(lut3d, Rx, Gx, Bx, Rf, Gf, Bf); } static av_always_inline v3u16_t lookup_input8(const SwsLut3D *lut3d, v3u8_t rgb) { static_assert(INPUT_LUT_BITS <= 8, "INPUT_LUT_BITS must be <= 8"); const int shift = 8 - INPUT_LUT_BITS; const int Rx = rgb.x >> shift; const int Gx = rgb.y >> shift; const int Bx = rgb.z >> shift; const int Rf = rgb.x & ((1 << shift) - 1); const int Gf = rgb.y & ((1 << shift) - 1); const int Bf = rgb.z & ((1 << shift) - 1); return tetrahedral(lut3d, Rx, Gx, Bx, Rf, Gf, Bf); } /** * Note: These functions are scaled such that x == (1 << shift) corresponds to * a value of 1.0. This makes them suitable for use when interpolation LUT * entries with a fractional part that is just masked away from the index, * since a fractional coordinate of e.g. 0xFFFF corresponds to a mix weight of * just slightly *less* than 1.0. */ static av_always_inline v2u16_t lerp2u16(v2u16_t a, v2u16_t b, int x, int shift) { const int xi = (1 << shift) - x; return (v2u16_t) { (a.x * xi + b.x * x) >> shift, (a.y * xi + b.y * x) >> shift, }; } static av_always_inline v3u16_t lerp3u16(v3u16_t a, v3u16_t b, int x, int shift) { const int xi = (1 << shift) - x; return (v3u16_t) { (a.x * xi + b.x * x) >> shift, (a.y * xi + b.y * x) >> shift, (a.z * xi + b.z * x) >> shift, }; } static av_always_inline v3u16_t lookup_output(const SwsLut3D *lut3d, v3u16_t ipt) { const int Ishift = 16 - OUTPUT_LUT_BITS_I; const int Cshift = 16 - OUTPUT_LUT_BITS_PT; const int Ix = ipt.x >> Ishift; const int Px = ipt.y >> Cshift; const int Tx = ipt.z >> Cshift; const int If = ipt.x & ((1 << Ishift) - 1); const int Pf = ipt.y & ((1 << Cshift) - 1); const int Tf = ipt.z & ((1 << Cshift) - 1); const int In = FFMIN(Ix + 1, OUTPUT_LUT_SIZE_I - 1); const int Pn = FFMIN(Px + 1, OUTPUT_LUT_SIZE_PT - 1); const int Tn = FFMIN(Tx + 1, OUTPUT_LUT_SIZE_PT - 1); /* Trilinear interpolation */ const v3u16_t c000 = lut3d->output[Tx][Px][Ix]; const v3u16_t c001 = lut3d->output[Tx][Px][In]; const v3u16_t c010 = lut3d->output[Tx][Pn][Ix]; const v3u16_t c011 = lut3d->output[Tx][Pn][In]; const v3u16_t c100 = lut3d->output[Tn][Px][Ix]; const v3u16_t c101 = lut3d->output[Tn][Px][In]; const v3u16_t c110 = lut3d->output[Tn][Pn][Ix]; const v3u16_t c111 = lut3d->output[Tn][Pn][In]; const v3u16_t c00 = lerp3u16(c000, c100, Tf, Cshift); const v3u16_t c10 = lerp3u16(c010, c110, Tf, Cshift); const v3u16_t c01 = lerp3u16(c001, c101, Tf, Cshift); const v3u16_t c11 = lerp3u16(c011, c111, Tf, Cshift); const v3u16_t c0 = lerp3u16(c00, c10, Pf, Cshift); const v3u16_t c1 = lerp3u16(c01, c11, Pf, Cshift); const v3u16_t c = lerp3u16(c0, c1, If, Ishift); return c; } static av_always_inline v3u16_t apply_tone_map(const SwsLut3D *lut3d, v3u16_t ipt) { const int shift = 16 - TONE_LUT_BITS; const int Ix = ipt.x >> shift; const int If = ipt.x & ((1 << shift) - 1); const int In = FFMIN(Ix + 1, TONE_LUT_SIZE - 1); const v2u16_t w0 = lut3d->tone_map[Ix]; const v2u16_t w1 = lut3d->tone_map[In]; const v2u16_t w = lerp2u16(w0, w1, If, shift); const int base = (1 << 15) - w.y; ipt.x = w.x; ipt.y = base + (ipt.y * w.y >> 15); ipt.z = base + (ipt.z * w.y >> 15); return ipt; } int ff_sws_lut3d_generate(SwsLut3D *lut3d, enum AVPixelFormat fmt_in, enum AVPixelFormat fmt_out, const SwsColorMap *map) { int ret; if (!ff_sws_lut3d_test_fmt(fmt_in, 0) || !ff_sws_lut3d_test_fmt(fmt_out, 1)) return AVERROR(EINVAL); lut3d->dynamic = map->src.frame_peak.num > 0; lut3d->map = *map; if (lut3d->dynamic) { ret = ff_sws_color_map_generate_dynamic(&lut3d->input[0][0][0], &lut3d->output[0][0][0], INPUT_LUT_SIZE, OUTPUT_LUT_SIZE_I, OUTPUT_LUT_SIZE_PT, map); if (ret < 0) return ret; /* Make sure initial state is valid */ ff_sws_lut3d_update(lut3d, &map->src); return 0; } else { return ff_sws_color_map_generate_static(&lut3d->input[0][0][0], INPUT_LUT_SIZE, map); } } void ff_sws_lut3d_update(SwsLut3D *lut3d, const SwsColor *new_src) { if (!new_src || !lut3d->dynamic) return; lut3d->map.src.frame_peak = new_src->frame_peak; lut3d->map.src.frame_avg = new_src->frame_avg; ff_sws_tone_map_generate(lut3d->tone_map, TONE_LUT_SIZE, &lut3d->map); } void ff_sws_lut3d_apply(const SwsLut3D *lut3d, const uint8_t *in, int in_stride, uint8_t *out, int out_stride, int w, int h) { while (h--) { const uint16_t *in16 = (const uint16_t *) in; uint16_t *out16 = (uint16_t *) out; for (int x = 0; x < w; x++) { v3u16_t c = { in16[0], in16[1], in16[2] }; c = lookup_input16(lut3d, c); if (lut3d->dynamic) { c = apply_tone_map(lut3d, c); c = lookup_output(lut3d, c); } out16[0] = c.x; out16[1] = c.y; out16[2] = c.z; out16[3] = in16[3]; in16 += 4; out16 += 4; } in += in_stride; out += out_stride; } }