/* * Copyright (C) 2024 Niklas Haas * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libavutil/attributes.h" #include "libavutil/avassert.h" #include "libavutil/csp.h" #include "libavutil/slicethread.h" #include "cms.h" #include "csputils.h" #include "libswscale/swscale.h" #include "utils.h" bool ff_sws_color_map_noop(const SwsColorMap *map) { /* If the encoding space is different, we must go through a conversion */ if (map->src.prim != map->dst.prim || map->src.trc != map->dst.trc) return false; /* If the black point changes, we have to perform black point compensation */ if (av_cmp_q(map->src.min_luma, map->dst.min_luma)) return false; switch (map->intent) { case SWS_INTENT_ABSOLUTE_COLORIMETRIC: case SWS_INTENT_RELATIVE_COLORIMETRIC: return ff_prim_superset(&map->dst.gamut, &map->src.gamut) && av_cmp_q(map->src.max_luma, map->dst.max_luma) <= 0; case SWS_INTENT_PERCEPTUAL: case SWS_INTENT_SATURATION: return ff_prim_equal(&map->dst.gamut, &map->src.gamut) && !av_cmp_q(map->src.max_luma, map->dst.max_luma); default: av_assert0(!"Invalid gamut mapping intent?"); return true; } } /* Approximation of gamut hull at a given intensity level */ static const float hull(float I) { return ((I - 6.0f) * I + 9.0f) * I; } /* For some minimal type safety, and code cleanliness */ typedef struct RGB { float R, G, B; /* nits */ } RGB; typedef struct IPT { float I, P, T; } IPT; typedef struct ICh { float I, C, h; } ICh; static av_always_inline ICh ipt2ich(IPT c) { return (ICh) { .I = c.I, .C = sqrtf(c.P * c.P + c.T * c.T), .h = atan2f(c.T, c.P), }; } static av_always_inline IPT ich2ipt(ICh c) { return (IPT) { .I = c.I, .P = c.C * cosf(c.h), .T = c.C * sinf(c.h), }; } /* Helper struct containing pre-computed cached values describing a gamut */ typedef struct Gamut { SwsMatrix3x3 encoding2lms; SwsMatrix3x3 lms2encoding; SwsMatrix3x3 lms2content; SwsMatrix3x3 content2lms; av_csp_eotf_function eotf; av_csp_eotf_function eotf_inv; float Iavg_frame; float Imax_frame; float Imin, Imax; float Lb, Lw; AVCIExy wp; ICh peak; /* updated as needed in loop body when hue changes */ } Gamut; static Gamut gamut_from_colorspace(SwsColor fmt) { const AVColorPrimariesDesc *encoding = av_csp_primaries_desc_from_id(fmt.prim); const AVColorPrimariesDesc content = { .prim = fmt.gamut, .wp = encoding->wp, }; const float Lw = av_q2d(fmt.max_luma), Lb = av_q2d(fmt.min_luma); const float Imax = pq_oetf(Lw); return (Gamut) { .encoding2lms = ff_sws_ipt_rgb2lms(encoding), .lms2encoding = ff_sws_ipt_lms2rgb(encoding), .lms2content = ff_sws_ipt_lms2rgb(&content), .content2lms = ff_sws_ipt_rgb2lms(&content), .eotf = av_csp_itu_eotf(fmt.trc), .eotf_inv = av_csp_itu_eotf_inv(fmt.trc), .wp = encoding->wp, .Imin = pq_oetf(Lb), .Imax = Imax, .Imax_frame = fmt.frame_peak.den ? pq_oetf(av_q2d(fmt.frame_peak)) : Imax, .Iavg_frame = fmt.frame_avg.den ? pq_oetf(av_q2d(fmt.frame_avg)) : 0.0f, .Lb = Lb, .Lw = Lw, }; } static av_always_inline IPT rgb2ipt(RGB c, const SwsMatrix3x3 rgb2lms) { const float L = rgb2lms.m[0][0] * c.R + rgb2lms.m[0][1] * c.G + rgb2lms.m[0][2] * c.B; const float M = rgb2lms.m[1][0] * c.R + rgb2lms.m[1][1] * c.G + rgb2lms.m[1][2] * c.B; const float S = rgb2lms.m[2][0] * c.R + rgb2lms.m[2][1] * c.G + rgb2lms.m[2][2] * c.B; const float Lp = pq_oetf(L); const float Mp = pq_oetf(M); const float Sp = pq_oetf(S); return (IPT) { .I = 0.4000f * Lp + 0.4000f * Mp + 0.2000f * Sp, .P = 4.4550f * Lp - 4.8510f * Mp + 0.3960f * Sp, .T = 0.8056f * Lp + 0.3572f * Mp - 1.1628f * Sp, }; } static av_always_inline RGB ipt2rgb(IPT c, const SwsMatrix3x3 lms2rgb) { const float Lp = c.I + 0.0975689f * c.P + 0.205226f * c.T; const float Mp = c.I - 0.1138760f * c.P + 0.133217f * c.T; const float Sp = c.I + 0.0326151f * c.P - 0.676887f * c.T; const float L = pq_eotf(Lp); const float M = pq_eotf(Mp); const float S = pq_eotf(Sp); return (RGB) { .R = lms2rgb.m[0][0] * L + lms2rgb.m[0][1] * M + lms2rgb.m[0][2] * S, .G = lms2rgb.m[1][0] * L + lms2rgb.m[1][1] * M + lms2rgb.m[1][2] * S, .B = lms2rgb.m[2][0] * L + lms2rgb.m[2][1] * M + lms2rgb.m[2][2] * S, }; } static inline bool ingamut(IPT c, Gamut gamut) { const float min_rgb = gamut.Lb - 1e-4f; const float max_rgb = gamut.Lw + 1e-2f; const float Lp = c.I + 0.0975689f * c.P + 0.205226f * c.T; const float Mp = c.I - 0.1138760f * c.P + 0.133217f * c.T; const float Sp = c.I + 0.0326151f * c.P - 0.676887f * c.T; if (Lp < gamut.Imin || Lp > gamut.Imax || Mp < gamut.Imin || Mp > gamut.Imax || Sp < gamut.Imin || Sp > gamut.Imax) { /* Values outside legal LMS range */ return false; } else { const float L = pq_eotf(Lp); const float M = pq_eotf(Mp); const float S = pq_eotf(Sp); RGB rgb = { .R = gamut.lms2content.m[0][0] * L + gamut.lms2content.m[0][1] * M + gamut.lms2content.m[0][2] * S, .G = gamut.lms2content.m[1][0] * L + gamut.lms2content.m[1][1] * M + gamut.lms2content.m[1][2] * S, .B = gamut.lms2content.m[2][0] * L + gamut.lms2content.m[2][1] * M + gamut.lms2content.m[2][2] * S, }; return rgb.R >= min_rgb && rgb.R <= max_rgb && rgb.G >= min_rgb && rgb.G <= max_rgb && rgb.B >= min_rgb && rgb.B <= max_rgb; } } static const float maxDelta = 5e-5f; // Find gamut intersection using specified bounds static inline ICh desat_bounded(float I, float h, float Cmin, float Cmax, Gamut gamut) { if (I <= gamut.Imin) return (ICh) { .I = gamut.Imin, .C = 0, .h = h }; else if (I >= gamut.Imax) return (ICh) { .I = gamut.Imax, .C = 0, .h = h }; else { const float maxDI = I * maxDelta; ICh res = { .I = I, .C = (Cmin + Cmax) / 2, .h = h }; do { if (ingamut(ich2ipt(res), gamut)) { Cmin = res.C; } else { Cmax = res.C; } res.C = (Cmin + Cmax) / 2; } while (Cmax - Cmin > maxDI); return res; } } // Finds maximally saturated in-gamut color (for given hue) static inline ICh saturate(float hue, Gamut gamut) { static const float invphi = 0.6180339887498948f; static const float invphi2 = 0.38196601125010515f; ICh lo = { .I = gamut.Imin, .h = hue }; ICh hi = { .I = gamut.Imax, .h = hue }; float de = hi.I - lo.I; ICh a = { .I = lo.I + invphi2 * de }; ICh b = { .I = lo.I + invphi * de }; a = desat_bounded(a.I, hue, 0.0f, 0.5f, gamut); b = desat_bounded(b.I, hue, 0.0f, 0.5f, gamut); while (de > maxDelta) { de *= invphi; if (a.C > b.C) { hi = b; b = a; a.I = lo.I + invphi2 * de; a = desat_bounded(a.I, hue, lo.C - maxDelta, 0.5f, gamut); } else { lo = a; a = b; b.I = lo.I + invphi * de; b = desat_bounded(b.I, hue, hi.C - maxDelta, 0.5f, gamut); } } return a.C > b.C ? a : b; } static float softclip(float value, float source, float target) { const float j = SOFTCLIP_KNEE; float peak, x, a, b, scale; if (!target) return 0.0f; peak = source / target; x = fminf(value / target, peak); if (x <= j || peak <= 1.0) return value; /* Apply simple mobius function */ a = -j*j * (peak - 1.0f) / (j*j - 2.0f * j + peak); b = (j*j - 2.0f * j * peak + peak) / fmaxf(1e-6f, peak - 1.0f); scale = (b*b + 2.0f * b*j + j*j) / (b - a); return scale * (x + a) / (x + b) * target; } /** * Something like fmixf(base, c, x) but follows an exponential curve, note * that this can be used to extend 'c' outwards for x > 1 */ static inline ICh mix_exp(ICh c, float x, float gamma, float base) { return (ICh) { .I = base + (c.I - base) * powf(x, gamma), .C = c.C * x, .h = c.h, }; } /** * Drop gamma for colors approaching black and achromatic to avoid numerical * instabilities, and excessive brightness boosting of grain, while also * strongly boosting gamma for values exceeding the target peak */ static inline float scale_gamma(float gamma, ICh ich, Gamut gamut) { const float Imin = gamut.Imin; const float Irel = fmaxf((ich.I - Imin) / (gamut.peak.I - Imin), 0.0f); return gamma * powf(Irel, 3) * fminf(ich.C / gamut.peak.C, 1.0f); } /* Clip a color along the exponential curve given by `gamma` */ static inline IPT clip_gamma(IPT ipt, float gamma, Gamut gamut) { float lo = 0.0f, hi = 1.0f, x = 0.5f; const float maxDI = fmaxf(ipt.I * maxDelta, 1e-7f); ICh ich; if (ipt.I <= gamut.Imin) return (IPT) { .I = gamut.Imin }; if (ingamut(ipt, gamut)) return ipt; ich = ipt2ich(ipt); if (!gamma) return ich2ipt(desat_bounded(ich.I, ich.h, 0.0f, ich.C, gamut)); gamma = scale_gamma(gamma, ich, gamut); do { ICh test = mix_exp(ich, x, gamma, gamut.peak.I); if (ingamut(ich2ipt(test), gamut)) { lo = x; } else { hi = x; } x = (lo + hi) / 2.0f; } while (hi - lo > maxDI); return ich2ipt(mix_exp(ich, x, gamma, gamut.peak.I)); } typedef struct CmsCtx CmsCtx; struct CmsCtx { /* Tone mapping parameters */ float Qa, Qb, Qc, Pa, Pb, src_knee, dst_knee; /* perceptual */ float I_scale, I_offset; /* linear methods */ /* Colorspace parameters */ Gamut src; Gamut tmp; /* after tone mapping */ Gamut dst; SwsMatrix3x3 adaptation; /* for absolute intent */ /* Invocation parameters */ SwsColorMap map; float (*tone_map)(const CmsCtx *ctx, float I); IPT (*adapt_colors)(const CmsCtx *ctx, IPT ipt); v3u16_t *input; v3u16_t *output; /* Threading parameters */ int slice_size; int size_input; int size_output_I; int size_output_PT; }; /** * Helper function to pick a knee point based on the * HDR10+ brightness * metadata and scene brightness average matching. * * Inspired by SMPTE ST2094-10, with some modifications */ static void st2094_pick_knee(float src_max, float src_min, float src_avg, float dst_max, float dst_min, float *out_src_knee, float *out_dst_knee) { const float min_knee = PERCEPTUAL_KNEE_MIN; const float max_knee = PERCEPTUAL_KNEE_MAX; const float def_knee = PERCEPTUAL_KNEE_DEF; const float src_knee_min = fmixf(src_min, src_max, min_knee); const float src_knee_max = fmixf(src_min, src_max, max_knee); const float dst_knee_min = fmixf(dst_min, dst_max, min_knee); const float dst_knee_max = fmixf(dst_min, dst_max, max_knee); float src_knee, target, adapted, tuning, adaptation, dst_knee; /* Choose source knee based on dynamic source scene brightness */ src_knee = src_avg ? src_avg : fmixf(src_min, src_max, def_knee); src_knee = av_clipf(src_knee, src_knee_min, src_knee_max); /* Choose target adaptation point based on linearly re-scaling source knee */ target = (src_knee - src_min) / (src_max - src_min); adapted = fmixf(dst_min, dst_max, target); /** * Choose the destnation knee by picking the perceptual adaptation point * between the source knee and the desired target. This moves the knee * point, on the vertical axis, closer to the 1:1 (neutral) line. * * Adjust the adaptation strength towards 1 based on how close the knee * point is to its extreme values (min/max knee) */ tuning = smoothstepf(max_knee, def_knee, target) * smoothstepf(min_knee, def_knee, target); adaptation = fmixf(1.0f, PERCEPTUAL_ADAPTATION, tuning); dst_knee = fmixf(src_knee, adapted, adaptation); dst_knee = av_clipf(dst_knee, dst_knee_min, dst_knee_max); *out_src_knee = src_knee; *out_dst_knee = dst_knee; } static void tone_map_setup(CmsCtx *ctx, bool dynamic) { const float dst_min = ctx->dst.Imin; const float dst_max = ctx->dst.Imax; const float src_min = ctx->src.Imin; const float src_max = dynamic ? ctx->src.Imax_frame : ctx->src.Imax; const float src_avg = dynamic ? ctx->src.Iavg_frame : 0.0f; float slope, ratio, in_min, in_max, out_min, out_max, t; switch (ctx->map.intent) { case SWS_INTENT_PERCEPTUAL: st2094_pick_knee(src_max, src_min, src_avg, dst_max, dst_min, &ctx->src_knee, &ctx->dst_knee); /* Solve for linear knee (Pa = 0) */ slope = (ctx->dst_knee - dst_min) / (ctx->src_knee - src_min); /** * Tune the slope at the knee point slightly: raise it to a user-provided * gamma exponent, multiplied by an extra tuning coefficient designed to * make the slope closer to 1.0 when the difference in peaks is low, and * closer to linear when the difference between peaks is high. */ ratio = src_max / dst_max - 1.0f; ratio = av_clipf(SLOPE_TUNING * ratio, SLOPE_OFFSET, 1.0f + SLOPE_OFFSET); slope = powf(slope, (1.0f - PERCEPTUAL_CONTRAST) * ratio); /* Normalize everything the pivot to make the math easier */ in_min = src_min - ctx->src_knee; in_max = src_max - ctx->src_knee; out_min = dst_min - ctx->dst_knee; out_max = dst_max - ctx->dst_knee; /** * Solve P of order 2 for: * P(in_min) = out_min * P'(0.0) = slope * P(0.0) = 0.0 */ ctx->Pa = (out_min - slope * in_min) / (in_min * in_min); ctx->Pb = slope; /** * Solve Q of order 3 for: * Q(in_max) = out_max * Q''(in_max) = 0.0 * Q(0.0) = 0.0 * Q'(0.0) = slope */ t = 2 * in_max * in_max; ctx->Qa = (slope * in_max - out_max) / (in_max * t); ctx->Qb = -3 * (slope * in_max - out_max) / t; ctx->Qc = slope; break; case SWS_INTENT_SATURATION: /* Linear stretch */ ctx->I_scale = (dst_max - dst_min) / (src_max - src_min); ctx->I_offset = dst_min - src_min * ctx->I_scale; break; case SWS_INTENT_RELATIVE_COLORIMETRIC: /* Pure black point adaptation */ ctx->I_scale = src_max / (src_max - src_min) / (dst_max / (dst_max - dst_min)); ctx->I_offset = dst_min - src_min * ctx->I_scale; break; case SWS_INTENT_ABSOLUTE_COLORIMETRIC: /* Hard clip */ ctx->I_scale = 1.0f; ctx->I_offset = 0.0f; break; } } static av_always_inline IPT tone_map_apply(const CmsCtx *ctx, IPT ipt) { float I = ipt.I, desat; if (ctx->map.intent == SWS_INTENT_PERCEPTUAL) { const float Pa = ctx->Pa, Pb = ctx->Pb; const float Qa = ctx->Qa, Qb = ctx->Qb, Qc = ctx->Qc; I -= ctx->src_knee; I = I > 0 ? ((Qa * I + Qb) * I + Qc) * I : (Pa * I + Pb) * I; I += ctx->dst_knee; } else { I = ctx->I_scale * I + ctx->I_offset; } /** * Avoids raising saturation excessively when raising brightness, and * also desaturates when reducing brightness greatly to account for the * reduction in gamut volume. */ desat = fminf(ipt.I / I, hull(I) / hull(ipt.I)); return (IPT) { .I = I, .P = ipt.P * desat, .T = ipt.T * desat, }; } static IPT perceptual(const CmsCtx *ctx, IPT ipt) { ICh ich = ipt2ich(ipt); IPT mapped = rgb2ipt(ipt2rgb(ipt, ctx->tmp.lms2content), ctx->dst.content2lms); RGB rgb; float maxRGB; /* Protect in gamut region */ const float maxC = fmaxf(ctx->tmp.peak.C, ctx->dst.peak.C); float k = smoothstepf(PERCEPTUAL_DEADZONE, 1.0f, ich.C / maxC); k *= PERCEPTUAL_STRENGTH; ipt.I = fmixf(ipt.I, mapped.I, k); ipt.P = fmixf(ipt.P, mapped.P, k); ipt.T = fmixf(ipt.T, mapped.T, k); rgb = ipt2rgb(ipt, ctx->dst.lms2content); maxRGB = fmaxf(rgb.R, fmaxf(rgb.G, rgb.B)); rgb.R = fmaxf(softclip(rgb.R, maxRGB, ctx->dst.Lw), ctx->dst.Lb); rgb.G = fmaxf(softclip(rgb.G, maxRGB, ctx->dst.Lw), ctx->dst.Lb); rgb.B = fmaxf(softclip(rgb.B, maxRGB, ctx->dst.Lw), ctx->dst.Lb); return rgb2ipt(rgb, ctx->dst.content2lms); } static IPT relative(const CmsCtx *ctx, IPT ipt) { return clip_gamma(ipt, COLORIMETRIC_GAMMA, ctx->dst); } static IPT absolute(const CmsCtx *ctx, IPT ipt) { RGB rgb = ipt2rgb(ipt, ctx->dst.lms2encoding); float c[3] = { rgb.R, rgb.G, rgb.B }; ff_sws_matrix3x3_apply(&ctx->adaptation, c); ipt = rgb2ipt((RGB) { c[0], c[1], c[2] }, ctx->dst.encoding2lms); return clip_gamma(ipt, COLORIMETRIC_GAMMA, ctx->dst); } static IPT saturation(const CmsCtx * ctx, IPT ipt) { RGB rgb = ipt2rgb(ipt, ctx->tmp.lms2content); return rgb2ipt(rgb, ctx->dst.content2lms); } static av_always_inline av_const uint16_t av_round16f(float x) { return av_clip_uint16(x * (UINT16_MAX - 1) + 0.5f); } /* Call this whenever the hue changes inside the loop body */ static av_always_inline void update_hue_peaks(CmsCtx *ctx, float P, float T) { const float hue = atan2f(T, P); switch (ctx->map.intent) { case SWS_INTENT_PERCEPTUAL: ctx->tmp.peak = saturate(hue, ctx->tmp); /* fall through */ case SWS_INTENT_RELATIVE_COLORIMETRIC: case SWS_INTENT_ABSOLUTE_COLORIMETRIC: ctx->dst.peak = saturate(hue, ctx->dst); return; default: return; } } static void generate_slice(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads) { CmsCtx ctx = *(const CmsCtx *) priv; const int slice_start = jobnr * ctx.slice_size; const int slice_stride = ctx.size_input * ctx.size_input; const int slice_end = FFMIN((jobnr + 1) * ctx.slice_size, ctx.size_input); v3u16_t *input = &ctx.input[slice_start * slice_stride]; const int output_slice_h = (ctx.size_output_PT + nb_jobs - 1) / nb_jobs; const int output_start = jobnr * output_slice_h; const int output_stride = ctx.size_output_PT * ctx.size_output_I; const int output_end = FFMIN((jobnr + 1) * output_slice_h, ctx.size_output_PT); v3u16_t *output = ctx.output ? &ctx.output[output_start * output_stride] : NULL; const float I_scale = 1.0f / (ctx.src.Imax - ctx.src.Imin); const float I_offset = -ctx.src.Imin * I_scale; const float PT_offset = (float) (1 << 15) / (UINT16_MAX - 1); const float input_scale = 1.0f / (ctx.size_input - 1); const float output_scale_PT = 1.0f / (ctx.size_output_PT - 1); const float output_scale_I = (ctx.tmp.Imax - ctx.tmp.Imin) / (ctx.size_output_I - 1); for (int Bx = slice_start; Bx < slice_end; Bx++) { const float B = input_scale * Bx; for (int Gx = 0; Gx < ctx.size_input; Gx++) { const float G = input_scale * Gx; for (int Rx = 0; Rx < ctx.size_input; Rx++) { double c[3] = { input_scale * Rx, G, B }; RGB rgb; IPT ipt; ctx.src.eotf(ctx.src.Lw, ctx.src.Lb, c); rgb = (RGB) { c[0], c[1], c[2] }; ipt = rgb2ipt(rgb, ctx.src.encoding2lms); if (output) { /* Save intermediate value to 3DLUT */ *input++ = (v3u16_t) { av_round16f(I_scale * ipt.I + I_offset), av_round16f(ipt.P + PT_offset), av_round16f(ipt.T + PT_offset), }; } else { update_hue_peaks(&ctx, ipt.P, ipt.T); ipt = tone_map_apply(&ctx, ipt); ipt = ctx.adapt_colors(&ctx, ipt); rgb = ipt2rgb(ipt, ctx.dst.lms2encoding); c[0] = rgb.R; c[1] = rgb.G; c[2] = rgb.B; ctx.dst.eotf_inv(ctx.dst.Lw, ctx.dst.Lb, c); *input++ = (v3u16_t) { av_round16f(c[0]), av_round16f(c[1]), av_round16f(c[2]), }; } } } } if (!output) return; /* Generate split gamut mapping LUT */ for (int Tx = output_start; Tx < output_end; Tx++) { const float T = output_scale_PT * Tx - PT_offset; for (int Px = 0; Px < ctx.size_output_PT; Px++) { const float P = output_scale_PT * Px - PT_offset; update_hue_peaks(&ctx, P, T); for (int Ix = 0; Ix < ctx.size_output_I; Ix++) { const float I = output_scale_I * Ix + ctx.tmp.Imin; IPT ipt = ctx.adapt_colors(&ctx, (IPT) { I, P, T }); RGB rgb = ipt2rgb(ipt, ctx.dst.lms2encoding); double c[3] = { rgb.R, rgb.G, rgb.B }; ctx.dst.eotf_inv(ctx.dst.Lw, ctx.dst.Lb, c); *output++ = (v3u16_t) { av_round16f(c[0]), av_round16f(c[1]), av_round16f(c[2]), }; } } } } int ff_sws_color_map_generate_static(v3u16_t *lut, int size, const SwsColorMap *map) { return ff_sws_color_map_generate_dynamic(lut, NULL, size, 1, 1, map); } int ff_sws_color_map_generate_dynamic(v3u16_t *input, v3u16_t *output, int size_input, int size_I, int size_PT, const SwsColorMap *map) { AVSliceThread *slicethread; int ret, num_slices; CmsCtx ctx = { .map = *map, .input = input, .output = output, .size_input = size_input, .size_output_I = size_I, .size_output_PT = size_PT, .src = gamut_from_colorspace(map->src), .dst = gamut_from_colorspace(map->dst), }; switch (ctx.map.intent) { case SWS_INTENT_PERCEPTUAL: ctx.adapt_colors = perceptual; break; case SWS_INTENT_RELATIVE_COLORIMETRIC: ctx.adapt_colors = relative; break; case SWS_INTENT_SATURATION: ctx.adapt_colors = saturation; break; case SWS_INTENT_ABSOLUTE_COLORIMETRIC: ctx.adapt_colors = absolute; break; default: return AVERROR(EINVAL); } if (!output) { /* Tone mapping is handled in a separate step when using dynamic TM */ tone_map_setup(&ctx, false); } /* Intermediate color space after tone mapping */ ctx.tmp = ctx.src; ctx.tmp.Lb = ctx.dst.Lb; ctx.tmp.Lw = ctx.dst.Lw; ctx.tmp.Imin = ctx.dst.Imin; ctx.tmp.Imax = ctx.dst.Imax; if (ctx.map.intent == SWS_INTENT_ABSOLUTE_COLORIMETRIC) { /** * The IPT transform already implies an explicit white point adaptation * from src to dst, so to get absolute colorimetric semantics we have * to explicitly undo this adaptation with a * corresponding inverse. */ ctx.adaptation = ff_sws_get_adaptation(&ctx.map.dst.gamut, ctx.dst.wp, ctx.src.wp); } ret = avpriv_slicethread_create(&slicethread, &ctx, generate_slice, NULL, 0); if (ret < 0) return ret; ctx.slice_size = (ctx.size_input + ret - 1) / ret; num_slices = (ctx.size_input + ctx.slice_size - 1) / ctx.slice_size; avpriv_slicethread_execute(slicethread, num_slices, 0); avpriv_slicethread_free(&slicethread); return 0; } void ff_sws_tone_map_generate(v2u16_t *lut, int size, const SwsColorMap *map) { CmsCtx ctx = { .map = *map, .src = gamut_from_colorspace(map->src), .dst = gamut_from_colorspace(map->dst), }; const float src_scale = (ctx.src.Imax - ctx.src.Imin) / (size - 1); const float src_offset = ctx.src.Imin; const float dst_scale = 1.0f / (ctx.dst.Imax - ctx.dst.Imin); const float dst_offset = -ctx.dst.Imin * dst_scale; tone_map_setup(&ctx, true); for (int i = 0; i < size; i++) { const float I = src_scale * i + src_offset; IPT ipt = tone_map_apply(&ctx, (IPT) { I, 1.0f }); lut[i] = (v2u16_t) { av_round16f(dst_scale * ipt.I + dst_offset), av_clip_uint16(ipt.P * (1 << 15) + 0.5f), }; } }