/* * copyright (c) 2006 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * @ingroup lavu_mem * Memory handling functions */ #ifndef AVUTIL_MEM_H #define AVUTIL_MEM_H #include #include #include "attributes.h" #include "error.h" #include "avutil.h" /** * @addtogroup lavu_mem * Utilities for manipulating memory. * * FFmpeg has several applications of memory that are not required of a typical * program. For example, the computing-heavy components like video decoding and * encoding can be sped up significantly through the use of aligned memory. * * However, for each of FFmpeg's applications of memory, there might not be a * recognized or standardized API for that specific use. Memory alignment, for * instance, varies wildly depending on operating systems, architectures, and * compilers. Hence, this component of @ref libavutil is created to make * dealing with memory consistently possible on all platforms. * * @{ * * @defgroup lavu_mem_macros Alignment Macros * Helper macros for declaring aligned variables. * @{ */ /** * @def DECLARE_ALIGNED(n,t,v) * Declare a variable that is aligned in memory. * * @code{.c} * DECLARE_ALIGNED(16, uint16_t, aligned_int) = 42; * DECLARE_ALIGNED(32, uint8_t, aligned_array)[128]; * * // The default-alignment equivalent would be * uint16_t aligned_int = 42; * uint8_t aligned_array[128]; * @endcode * * @param n Minimum alignment in bytes * @param t Type of the variable (or array element) * @param v Name of the variable */ /** * @def DECLARE_ASM_CONST(n,t,v) * Declare a static constant aligned variable appropriate for use in inline * assembly code. * * @code{.c} * DECLARE_ASM_CONST(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008); * @endcode * * @param n Minimum alignment in bytes * @param t Type of the variable (or array element) * @param v Name of the variable */ #if defined(__INTEL_COMPILER) && __INTEL_COMPILER < 1110 || defined(__SUNPRO_C) #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v #define DECLARE_ASM_CONST(n,t,v) const t __attribute__ ((aligned (n))) v #elif defined(__TI_COMPILER_VERSION__) #define DECLARE_ALIGNED(n,t,v) \ AV_PRAGMA(DATA_ALIGN(v,n)) \ t __attribute__((aligned(n))) v #define DECLARE_ASM_CONST(n,t,v) \ AV_PRAGMA(DATA_ALIGN(v,n)) \ static const t __attribute__((aligned(n))) v #elif defined(__GNUC__) #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (n))) v #elif defined(_MSC_VER) #define DECLARE_ALIGNED(n,t,v) __declspec(align(n)) t v #define DECLARE_ASM_CONST(n,t,v) __declspec(align(n)) static const t v #else #define DECLARE_ALIGNED(n,t,v) t v #define DECLARE_ASM_CONST(n,t,v) static const t v #endif /** * @} */ /** * @defgroup lavu_mem_attrs Function Attributes * Function attributes applicable to memory handling functions. * * These function attributes can help compilers emit more useful warnings, or * generate better code. * @{ */ /** * @def av_malloc_attrib * Function attribute denoting a malloc-like function. * * @see Function attribute `malloc` in GCC's documentation */ #if AV_GCC_VERSION_AT_LEAST(3,1) #define av_malloc_attrib __attribute__((__malloc__)) #else #define av_malloc_attrib #endif /** * @def av_alloc_size(...) * Function attribute used on a function that allocates memory, whose size is * given by the specified parameter(s). * * @code{.c} * void *av_malloc(size_t size) av_alloc_size(1); * void *av_calloc(size_t nmemb, size_t size) av_alloc_size(1, 2); * @endcode * * @param ... One or two parameter indexes, separated by a comma * * @see Function attribute `alloc_size` in GCC's documentation */ #if AV_GCC_VERSION_AT_LEAST(4,3) #define av_alloc_size(...) __attribute__((alloc_size(__VA_ARGS__))) #else #define av_alloc_size(...) #endif /** * @} */ /** * @defgroup lavu_mem_funcs Heap Management * Functions responsible for allocating, freeing, and copying memory. * * All memory allocation functions have a built-in upper limit of `INT_MAX` * bytes. This may be changed with av_max_alloc(), although exercise extreme * caution when doing so. * * @{ */ /** * Allocate a memory block with alignment suitable for all memory accesses * (including vectors if available on the CPU). * * @param size Size in bytes for the memory block to be allocated * @return Pointer to the allocated block, or `NULL` if the block cannot * be allocated * @see av_mallocz() */ void *av_malloc(size_t size) av_malloc_attrib av_alloc_size(1); /** * Allocate a memory block with alignment suitable for all memory accesses * (including vectors if available on the CPU) and zero all the bytes of the * block. * * @param size Size in bytes for the memory block to be allocated * @return Pointer to the allocated block, or `NULL` if it cannot be allocated * @see av_malloc() */ void *av_mallocz(size_t size) av_malloc_attrib av_alloc_size(1); /** * Allocate a memory block for an array with av_malloc(). * * The allocated memory will have size `size * nmemb` bytes. * * @param nmemb Number of element * @param size Size of a single element * @return Pointer to the allocated block, or `NULL` if the block cannot * be allocated * @see av_malloc() */ av_alloc_size(1, 2) static inline void *av_malloc_array(size_t nmemb, size_t size) { if (!size || nmemb >= INT_MAX / size) return NULL; return av_malloc(nmemb * size); } /** * Allocate a memory block for an array with av_mallocz(). * * The allocated memory will have size `size * nmemb` bytes. * * @param nmemb Number of elements * @param size Size of the single element * @return Pointer to the allocated block, or `NULL` if the block cannot * be allocated * * @see av_mallocz() * @see av_malloc_array() */ av_alloc_size(1, 2) static inline void *av_mallocz_array(size_t nmemb, size_t size) { if (!size || nmemb >= INT_MAX / size) return NULL; return av_mallocz(nmemb * size); } /** * Non-inlined equivalent of av_mallocz_array(). * * Created for symmetry with the calloc() C function. */ void *av_calloc(size_t nmemb, size_t size) av_malloc_attrib; /** * Allocate, reallocate, or free a block of memory. * * If `ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is * zero, free the memory block pointed to by `ptr`. Otherwise, expand or * shrink that block of memory according to `size`. * * @param ptr Pointer to a memory block already allocated with * av_realloc() or `NULL` * @param size Size in bytes of the memory block to be allocated or * reallocated * * @return Pointer to a newly-reallocated block or `NULL` if the block * cannot be reallocated or the function is used to free the memory block * * @warning Unlike av_malloc(), the returned pointer is not guaranteed to be * correctly aligned. * @see av_fast_realloc() * @see av_reallocp() */ void *av_realloc(void *ptr, size_t size) av_alloc_size(2); /** * Allocate, reallocate, or free a block of memory through a pointer to a * pointer. * * If `*ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is * zero, free the memory block pointed to by `*ptr`. Otherwise, expand or * shrink that block of memory according to `size`. * * @param[in,out] ptr Pointer to a pointer to a memory block already allocated * with av_realloc(), or a pointer to `NULL`. The pointer * is updated on success, or freed on failure. * @param[in] size Size in bytes for the memory block to be allocated or * reallocated * * @return Zero on success, an AVERROR error code on failure * * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be * correctly aligned. */ av_warn_unused_result int av_reallocp(void *ptr, size_t size); /** * Allocate, reallocate, or free a block of memory. * * This function does the same thing as av_realloc(), except: * - It takes two size arguments and allocates `nelem * elsize` bytes, * after checking the result of the multiplication for integer overflow. * - It frees the input block in case of failure, thus avoiding the memory * leak with the classic * @code{.c} * buf = realloc(buf); * if (!buf) * return -1; * @endcode * pattern. */ void *av_realloc_f(void *ptr, size_t nelem, size_t elsize); /** * Allocate, reallocate, or free an array. * * If `ptr` is `NULL` and `nmemb` > 0, allocate a new block. If * `nmemb` is zero, free the memory block pointed to by `ptr`. * * @param ptr Pointer to a memory block already allocated with * av_realloc() or `NULL` * @param nmemb Number of elements in the array * @param size Size of the single element of the array * * @return Pointer to a newly-reallocated block or NULL if the block * cannot be reallocated or the function is used to free the memory block * * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be * correctly aligned. * @see av_reallocp_array() */ av_alloc_size(2, 3) void *av_realloc_array(void *ptr, size_t nmemb, size_t size); /** * Allocate, reallocate, or free an array through a pointer to a pointer. * * If `*ptr` is `NULL` and `nmemb` > 0, allocate a new block. If `nmemb` is * zero, free the memory block pointed to by `*ptr`. * * @param[in,out] ptr Pointer to a pointer to a memory block already * allocated with av_realloc(), or a pointer to `NULL`. * The pointer is updated on success, or freed on failure. * @param[in] nmemb Number of elements * @param[in] size Size of the single element * * @return Zero on success, an AVERROR error code on failure * * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be * correctly aligned. */ int av_reallocp_array(void *ptr, size_t nmemb, size_t size); /** * Reallocate the given buffer if it is not large enough, otherwise do nothing. * * If the given buffer is `NULL`, then a new uninitialized buffer is allocated. * * If the given buffer is not large enough, and reallocation fails, `NULL` is * returned and `*size` is set to 0, but the original buffer is not changed or * freed. * * A typical use pattern follows: * * @code{.c} * uint8_t *buf = ...; * uint8_t *new_buf = av_fast_realloc(buf, ¤t_size, size_needed); * if (!new_buf) { * // Allocation failed; clean up original buffer * av_freep(&buf); * return AVERROR(ENOMEM); * } * @endcode * * @param[in,out] ptr Already allocated buffer, or `NULL` * @param[in,out] size Pointer to current size of buffer `ptr`. `*size` is * changed to `min_size` in case of success or 0 in * case of failure * @param[in] min_size New size of buffer `ptr` * @return `ptr` if the buffer is large enough, a pointer to newly reallocated * buffer if the buffer was not large enough, or `NULL` in case of * error * @see av_realloc() * @see av_fast_malloc() */ void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size); /** * Allocate a buffer, reusing the given one if large enough. * * Contrary to av_fast_realloc(), the current buffer contents might not be * preserved and on error the old buffer is freed, thus no special handling to * avoid memleaks is necessary. * * `*ptr` is allowed to be `NULL`, in which case allocation always happens if * `size_needed` is greater than 0. * * @code{.c} * uint8_t *buf = ...; * av_fast_malloc(&buf, ¤t_size, size_needed); * if (!buf) { * // Allocation failed; buf already freed * return AVERROR(ENOMEM); * } * @endcode * * @param[in,out] ptr Pointer to pointer to an already allocated buffer. * `*ptr` will be overwritten with pointer to new * buffer on success or `NULL` on failure * @param[in,out] size Pointer to current size of buffer `*ptr`. `*size` is * changed to `min_size` in case of success or 0 in * case of failure * @param[in] min_size New size of buffer `*ptr` * @see av_realloc() * @see av_fast_mallocz() */ void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size); /** * Allocate and clear a buffer, reusing the given one if large enough. * * Like av_fast_malloc(), but all newly allocated space is initially cleared. * Reused buffer is not cleared. * * `*ptr` is allowed to be `NULL`, in which case allocation always happens if * `size_needed` is greater than 0. * * @param[in,out] ptr Pointer to pointer to an already allocated buffer. * `*ptr` will be overwritten with pointer to new * buffer on success or `NULL` on failure * @param[in,out] size Pointer to current size of buffer `*ptr`. `*size` is * changed to `min_size` in case of success or 0 in * case of failure * @param[in] min_size New size of buffer `*ptr` * @see av_fast_malloc() */ void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size); /** * Free a memory block which has been allocated with a function of av_malloc() * or av_realloc() family. * * @param ptr Pointer to the memory block which should be freed. * * @note `ptr = NULL` is explicitly allowed. * @note It is recommended that you use av_freep() instead, to prevent leaving * behind dangling pointers. * @see av_freep() */ void av_free(void *ptr); /** * Free a memory block which has been allocated with a function of av_malloc() * or av_realloc() family, and set the pointer pointing to it to `NULL`. * * @code{.c} * uint8_t *buf = av_malloc(16); * av_free(buf); * // buf now contains a dangling pointer to freed memory, and accidental * // dereference of buf will result in a use-after-free, which may be a * // security risk. * * uint8_t *buf = av_malloc(16); * av_freep(&buf); * // buf is now NULL, and accidental dereference will only result in a * // NULL-pointer dereference. * @endcode * * @param ptr Pointer to the pointer to the memory block which should be freed * @note `*ptr = NULL` is safe and leads to no action. * @see av_free() */ void av_freep(void *ptr); /** * Duplicate a string. * * @param s String to be duplicated * @return Pointer to a newly-allocated string containing a * copy of `s` or `NULL` if the string cannot be allocated * @see av_strndup() */ char *av_strdup(const char *s) av_malloc_attrib; /** * Duplicate a substring of a string. * * @param s String to be duplicated * @param len Maximum length of the resulting string (not counting the * terminating byte) * @return Pointer to a newly-allocated string containing a * substring of `s` or `NULL` if the string cannot be allocated */ char *av_strndup(const char *s, size_t len) av_malloc_attrib; /** * Duplicate a buffer with av_malloc(). * * @param p Buffer to be duplicated * @param size Size in bytes of the buffer copied * @return Pointer to a newly allocated buffer containing a * copy of `p` or `NULL` if the buffer cannot be allocated */ void *av_memdup(const void *p, size_t size); /** * Overlapping memcpy() implementation. * * @param dst Destination buffer * @param back Number of bytes back to start copying (i.e. the initial size of * the overlapping window); must be > 0 * @param cnt Number of bytes to copy; must be >= 0 * * @note `cnt > back` is valid, this will copy the bytes we just copied, * thus creating a repeating pattern with a period length of `back`. */ void av_memcpy_backptr(uint8_t *dst, int back, int cnt); /** * @} */ /** * @defgroup lavu_mem_dynarray Dynamic Array * * Utilities to make an array grow when needed. * * Sometimes, the programmer would want to have an array that can grow when * needed. The libavutil dynamic array utilities fill that need. * * libavutil supports two systems of appending elements onto a dynamically * allocated array, the first one storing the pointer to the value in the * array, and the second storing the value directly. In both systems, the * caller is responsible for maintaining a variable containing the length of * the array, as well as freeing of the array after use. * * The first system stores pointers to values in a block of dynamically * allocated memory. Since only pointers are stored, the function does not need * to know the size of the type. Both av_dynarray_add() and * av_dynarray_add_nofree() implement this system. * * @code * type **array = NULL; //< an array of pointers to values * int nb = 0; //< a variable to keep track of the length of the array * * type to_be_added = ...; * type to_be_added2 = ...; * * av_dynarray_add(&array, &nb, &to_be_added); * if (nb == 0) * return AVERROR(ENOMEM); * * av_dynarray_add(&array, &nb, &to_be_added2); * if (nb == 0) * return AVERROR(ENOMEM); * * // Now: * // nb == 2 * // &to_be_added == array[0] * // &to_be_added2 == array[1] * * av_freep(&array); * @endcode * * The second system stores the value directly in a block of memory. As a * result, the function has to know the size of the type. av_dynarray2_add() * implements this mechanism. * * @code * type *array = NULL; //< an array of values * int nb = 0; //< a variable to keep track of the length of the array * * type to_be_added = ...; * type to_be_added2 = ...; * * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), NULL); * if (!addr) * return AVERROR(ENOMEM); * memcpy(addr, &to_be_added, sizeof(to_be_added)); * * // Shortcut of the above. * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), * (const void *)&to_be_added2); * if (!addr) * return AVERROR(ENOMEM); * * // Now: * // nb == 2 * // to_be_added == array[0] * // to_be_added2 == array[1] * * av_freep(&array); * @endcode * * @{ */ /** * Add the pointer to an element to a dynamic array. * * The array to grow is supposed to be an array of pointers to * structures, and the element to add must be a pointer to an already * allocated structure. * * The array is reallocated when its size reaches powers of 2. * Therefore, the amortized cost of adding an element is constant. * * In case of success, the pointer to the array is updated in order to * point to the new grown array, and the number pointed to by `nb_ptr` * is incremented. * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and * `*nb_ptr` is set to 0. * * @param[in,out] tab_ptr Pointer to the array to grow * @param[in,out] nb_ptr Pointer to the number of elements in the array * @param[in] elem Element to add * @see av_dynarray_add_nofree(), av_dynarray2_add() */ void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem); /** * Add an element to a dynamic array. * * Function has the same functionality as av_dynarray_add(), * but it doesn't free memory on fails. It returns error code * instead and leave current buffer untouched. * * @return >=0 on success, negative otherwise * @see av_dynarray_add(), av_dynarray2_add() */ av_warn_unused_result int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem); /** * Add an element of size `elem_size` to a dynamic array. * * The array is reallocated when its number of elements reaches powers of 2. * Therefore, the amortized cost of adding an element is constant. * * In case of success, the pointer to the array is updated in order to * point to the new grown array, and the number pointed to by `nb_ptr` * is incremented. * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and * `*nb_ptr` is set to 0. * * @param[in,out] tab_ptr Pointer to the array to grow * @param[in,out] nb_ptr Pointer to the number of elements in the array * @param[in] elem_size Size in bytes of an element in the array * @param[in] elem_data Pointer to the data of the element to add. If * `NULL`, the space of the newly added element is * allocated but left uninitialized. * * @return Pointer to the data of the element to copy in the newly allocated * space * @see av_dynarray_add(), av_dynarray_add_nofree() */ void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, const uint8_t *elem_data); /** * @} */ /** * @defgroup lavu_mem_misc Miscellaneous Functions * * Other functions related to memory allocation. * * @{ */ /** * Multiply two `size_t` values checking for overflow. * * @param[in] a,b Operands of multiplication * @param[out] r Pointer to the result of the operation * @return 0 on success, AVERROR(EINVAL) on overflow */ static inline int av_size_mult(size_t a, size_t b, size_t *r) { size_t t = a * b; /* Hack inspired from glibc: don't try the division if nelem and elsize * are both less than sqrt(SIZE_MAX). */ if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b) return AVERROR(EINVAL); *r = t; return 0; } /** * Set the maximum size that may be allocated in one block. * * The value specified with this function is effective for all libavutil's @ref * lavu_mem_funcs "heap management functions." * * By default, the max value is defined as `INT_MAX`. * * @param max Value to be set as the new maximum size * * @warning Exercise extreme caution when using this function. Don't touch * this if you do not understand the full consequence of doing so. */ void av_max_alloc(size_t max); /** * @} * @} */ #endif /* AVUTIL_MEM_H */