|
@@ -37,11 +37,38 @@
|
|
|
#define FLAC_CHMODE_RIGHT_SIDE 9
|
|
|
#define FLAC_CHMODE_MID_SIDE 10
|
|
|
|
|
|
+#define ORDER_METHOD_EST 0
|
|
|
+#define ORDER_METHOD_2LEVEL 1
|
|
|
+#define ORDER_METHOD_4LEVEL 2
|
|
|
+#define ORDER_METHOD_8LEVEL 3
|
|
|
+#define ORDER_METHOD_SEARCH 4
|
|
|
+
|
|
|
#define FLAC_STREAMINFO_SIZE 34
|
|
|
|
|
|
+#define MIN_LPC_ORDER 1
|
|
|
+#define MAX_LPC_ORDER 32
|
|
|
+#define MAX_FIXED_ORDER 4
|
|
|
+#define MAX_PARTITION_ORDER 8
|
|
|
+#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
|
|
|
+#define MAX_LPC_PRECISION 15
|
|
|
+#define MAX_LPC_SHIFT 15
|
|
|
+#define MAX_RICE_PARAM 14
|
|
|
+
|
|
|
+typedef struct CompressionOptions {
|
|
|
+ int compression_level;
|
|
|
+ int block_time_ms;
|
|
|
+ int use_lpc;
|
|
|
+ int lpc_coeff_precision;
|
|
|
+ int min_prediction_order;
|
|
|
+ int max_prediction_order;
|
|
|
+ int prediction_order_method;
|
|
|
+ int min_partition_order;
|
|
|
+ int max_partition_order;
|
|
|
+} CompressionOptions;
|
|
|
+
|
|
|
typedef struct RiceContext {
|
|
|
int porder;
|
|
|
- int params[256];
|
|
|
+ int params[MAX_PARTITIONS];
|
|
|
} RiceContext;
|
|
|
|
|
|
typedef struct FlacSubframe {
|
|
@@ -49,6 +76,8 @@ typedef struct FlacSubframe {
|
|
|
int type_code;
|
|
|
int obits;
|
|
|
int order;
|
|
|
+ int32_t coefs[MAX_LPC_ORDER];
|
|
|
+ int shift;
|
|
|
RiceContext rc;
|
|
|
int32_t samples[FLAC_MAX_BLOCKSIZE];
|
|
|
int32_t residual[FLAC_MAX_BLOCKSIZE];
|
|
@@ -72,6 +101,7 @@ typedef struct FlacEncodeContext {
|
|
|
int max_framesize;
|
|
|
uint32_t frame_count;
|
|
|
FlacFrame frame;
|
|
|
+ CompressionOptions options;
|
|
|
AVCodecContext *avctx;
|
|
|
} FlacEncodeContext;
|
|
|
|
|
@@ -112,13 +142,11 @@ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
|
|
|
/* MD5 signature = 0 */
|
|
|
}
|
|
|
|
|
|
-#define BLOCK_TIME_MS 27
|
|
|
-
|
|
|
/**
|
|
|
* Sets blocksize based on samplerate
|
|
|
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
|
|
|
*/
|
|
|
-static int select_blocksize(int samplerate)
|
|
|
+static int select_blocksize(int samplerate, int block_time_ms)
|
|
|
{
|
|
|
int i;
|
|
|
int target;
|
|
@@ -126,7 +154,7 @@ static int select_blocksize(int samplerate)
|
|
|
|
|
|
assert(samplerate > 0);
|
|
|
blocksize = flac_blocksizes[1];
|
|
|
- target = (samplerate * BLOCK_TIME_MS) / 1000;
|
|
|
+ target = (samplerate * block_time_ms) / 1000;
|
|
|
for(i=0; i<16; i++) {
|
|
|
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
|
|
|
blocksize = flac_blocksizes[i];
|
|
@@ -183,8 +211,198 @@ static int flac_encode_init(AVCodecContext *avctx)
|
|
|
s->samplerate = freq;
|
|
|
}
|
|
|
|
|
|
- s->blocksize = select_blocksize(s->samplerate);
|
|
|
- avctx->frame_size = s->blocksize;
|
|
|
+ /* set compression option defaults based on avctx->compression_level */
|
|
|
+ if(avctx->compression_level < 0) {
|
|
|
+ s->options.compression_level = 5;
|
|
|
+ } else {
|
|
|
+ s->options.compression_level = avctx->compression_level;
|
|
|
+ }
|
|
|
+ av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
|
|
|
+
|
|
|
+ if(s->options.compression_level == 0) {
|
|
|
+ s->options.block_time_ms = 27;
|
|
|
+ s->options.use_lpc = 0;
|
|
|
+ s->options.min_prediction_order = 2;
|
|
|
+ s->options.max_prediction_order = 3;
|
|
|
+ s->options.prediction_order_method = ORDER_METHOD_EST;
|
|
|
+ s->options.min_partition_order = 2;
|
|
|
+ s->options.max_partition_order = 2;
|
|
|
+ } else if(s->options.compression_level == 1) {
|
|
|
+ s->options.block_time_ms = 27;
|
|
|
+ s->options.use_lpc = 0;
|
|
|
+ s->options.min_prediction_order = 0;
|
|
|
+ s->options.max_prediction_order = 4;
|
|
|
+ s->options.prediction_order_method = ORDER_METHOD_EST;
|
|
|
+ s->options.min_partition_order = 2;
|
|
|
+ s->options.max_partition_order = 2;
|
|
|
+ } else if(s->options.compression_level == 2) {
|
|
|
+ s->options.block_time_ms = 27;
|
|
|
+ s->options.use_lpc = 0;
|
|
|
+ s->options.min_prediction_order = 0;
|
|
|
+ s->options.max_prediction_order = 4;
|
|
|
+ s->options.prediction_order_method = ORDER_METHOD_EST;
|
|
|
+ s->options.min_partition_order = 0;
|
|
|
+ s->options.max_partition_order = 3;
|
|
|
+ } else if(s->options.compression_level == 3) {
|
|
|
+ s->options.block_time_ms = 105;
|
|
|
+ s->options.use_lpc = 1;
|
|
|
+ s->options.min_prediction_order = 1;
|
|
|
+ s->options.max_prediction_order = 6;
|
|
|
+ s->options.prediction_order_method = ORDER_METHOD_EST;
|
|
|
+ s->options.min_partition_order = 0;
|
|
|
+ s->options.max_partition_order = 3;
|
|
|
+ } else if(s->options.compression_level == 4) {
|
|
|
+ s->options.block_time_ms = 105;
|
|
|
+ s->options.use_lpc = 1;
|
|
|
+ s->options.min_prediction_order = 1;
|
|
|
+ s->options.max_prediction_order = 8;
|
|
|
+ s->options.prediction_order_method = ORDER_METHOD_EST;
|
|
|
+ s->options.min_partition_order = 0;
|
|
|
+ s->options.max_partition_order = 3;
|
|
|
+ } else if(s->options.compression_level == 5) {
|
|
|
+ s->options.block_time_ms = 105;
|
|
|
+ s->options.use_lpc = 1;
|
|
|
+ s->options.min_prediction_order = 1;
|
|
|
+ s->options.max_prediction_order = 8;
|
|
|
+ s->options.prediction_order_method = ORDER_METHOD_EST;
|
|
|
+ s->options.min_partition_order = 0;
|
|
|
+ s->options.max_partition_order = 8;
|
|
|
+ } else {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
|
|
|
+ s->options.compression_level);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set compression option overrides from AVCodecContext */
|
|
|
+ if(avctx->use_lpc >= 0) {
|
|
|
+ s->options.use_lpc = !!avctx->use_lpc;
|
|
|
+ }
|
|
|
+ av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n",
|
|
|
+ s->options.use_lpc? "yes" : "no");
|
|
|
+
|
|
|
+ if(avctx->min_prediction_order >= 0) {
|
|
|
+ if(s->options.use_lpc) {
|
|
|
+ if(avctx->min_prediction_order < MIN_LPC_ORDER ||
|
|
|
+ avctx->min_prediction_order > MAX_LPC_ORDER) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
|
|
+ avctx->min_prediction_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
|
|
|
+ avctx->min_prediction_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ s->options.min_prediction_order = avctx->min_prediction_order;
|
|
|
+ }
|
|
|
+ if(avctx->max_prediction_order >= 0) {
|
|
|
+ if(s->options.use_lpc) {
|
|
|
+ if(avctx->max_prediction_order < MIN_LPC_ORDER ||
|
|
|
+ avctx->max_prediction_order > MAX_LPC_ORDER) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
|
|
+ avctx->max_prediction_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
|
|
|
+ avctx->max_prediction_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ s->options.max_prediction_order = avctx->max_prediction_order;
|
|
|
+ }
|
|
|
+ if(s->options.max_prediction_order < s->options.min_prediction_order) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
|
|
|
+ s->options.min_prediction_order, s->options.max_prediction_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
|
|
|
+ s->options.min_prediction_order, s->options.max_prediction_order);
|
|
|
+
|
|
|
+ if(avctx->prediction_order_method >= 0) {
|
|
|
+ if(avctx->prediction_order_method > ORDER_METHOD_SEARCH) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
|
|
|
+ avctx->prediction_order_method);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ s->options.prediction_order_method = avctx->prediction_order_method;
|
|
|
+ }
|
|
|
+ switch(avctx->prediction_order_method) {
|
|
|
+ case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
|
+ "estimate"); break;
|
|
|
+ case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
|
+ "2-level"); break;
|
|
|
+ case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
|
+ "4-level"); break;
|
|
|
+ case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
|
+ "8-level"); break;
|
|
|
+ case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
|
|
|
+ "full search"); break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(avctx->min_partition_order >= 0) {
|
|
|
+ if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
|
|
|
+ avctx->min_partition_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ s->options.min_partition_order = avctx->min_partition_order;
|
|
|
+ }
|
|
|
+ if(avctx->max_partition_order >= 0) {
|
|
|
+ if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
|
|
|
+ avctx->max_partition_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ s->options.max_partition_order = avctx->max_partition_order;
|
|
|
+ }
|
|
|
+ if(s->options.max_partition_order < s->options.min_partition_order) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
|
|
|
+ s->options.min_partition_order, s->options.max_partition_order);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
|
|
|
+ s->options.min_partition_order, s->options.max_partition_order);
|
|
|
+
|
|
|
+ if(avctx->frame_size > 0) {
|
|
|
+ if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
|
|
|
+ avctx->frame_size > FLAC_MIN_BLOCKSIZE) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
|
|
|
+ avctx->frame_size);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ s->blocksize = avctx->frame_size;
|
|
|
+ } else {
|
|
|
+ s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms);
|
|
|
+ avctx->frame_size = s->blocksize;
|
|
|
+ }
|
|
|
+ av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize);
|
|
|
+
|
|
|
+ /* set LPC precision */
|
|
|
+ if(avctx->lpc_coeff_precision > 0) {
|
|
|
+ if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
|
|
|
+ av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
|
|
|
+ avctx->lpc_coeff_precision);
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
|
|
|
+ } else {
|
|
|
+ /* select LPC precision based on block size */
|
|
|
+ if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7;
|
|
|
+ else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8;
|
|
|
+ else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9;
|
|
|
+ else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10;
|
|
|
+ else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11;
|
|
|
+ else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12;
|
|
|
+ else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13;
|
|
|
+ else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14;
|
|
|
+ else s->options.lpc_coeff_precision = 15;
|
|
|
+ }
|
|
|
+ av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
|
|
|
+ s->options.lpc_coeff_precision);
|
|
|
|
|
|
/* set maximum encoded frame size in verbatim mode */
|
|
|
if(s->channels == 2) {
|
|
@@ -259,14 +477,13 @@ static void copy_samples(FlacEncodeContext *s, int16_t *samples)
|
|
|
static int find_optimal_param(uint32_t sum, int n)
|
|
|
{
|
|
|
int k, k_opt;
|
|
|
- uint32_t nbits, nbits_opt;
|
|
|
+ uint32_t nbits[MAX_RICE_PARAM+1];
|
|
|
|
|
|
k_opt = 0;
|
|
|
- nbits_opt = rice_encode_count(sum, n, 0);
|
|
|
- for(k=1; k<=14; k++) {
|
|
|
- nbits = rice_encode_count(sum, n, k);
|
|
|
- if(nbits < nbits_opt) {
|
|
|
- nbits_opt = nbits;
|
|
|
+ nbits[0] = UINT32_MAX;
|
|
|
+ for(k=0; k<=MAX_RICE_PARAM; k++) {
|
|
|
+ nbits[k] = rice_encode_count(sum, n, k);
|
|
|
+ if(nbits[k] < nbits[k_opt]) {
|
|
|
k_opt = k;
|
|
|
}
|
|
|
}
|
|
@@ -297,8 +514,8 @@ static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
|
|
|
return all_bits;
|
|
|
}
|
|
|
|
|
|
-static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
|
|
|
- uint32_t sums[][256])
|
|
|
+static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
|
|
|
+ uint32_t sums[][MAX_PARTITIONS])
|
|
|
{
|
|
|
int i, j;
|
|
|
int parts;
|
|
@@ -316,7 +533,7 @@ static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
|
|
|
res_end+= n >> pmax;
|
|
|
}
|
|
|
/* sums for lower levels */
|
|
|
- for(i=pmax-1; i>=0; i--) {
|
|
|
+ for(i=pmax-1; i>=pmin; i--) {
|
|
|
parts = (1 << i);
|
|
|
for(j=0; j<parts; j++) {
|
|
|
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
|
|
@@ -324,59 +541,262 @@ static void calc_sums(int pmax, uint32_t *data, int n, int pred_order,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static uint32_t calc_rice_params(RiceContext *rc, int pmax, int32_t *data,
|
|
|
- int n, int pred_order)
|
|
|
+static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
|
|
|
+ int32_t *data, int n, int pred_order)
|
|
|
{
|
|
|
int i;
|
|
|
- uint32_t bits, opt_bits;
|
|
|
+ uint32_t bits[MAX_PARTITION_ORDER+1];
|
|
|
int opt_porder;
|
|
|
- RiceContext opt_rc;
|
|
|
+ RiceContext tmp_rc;
|
|
|
uint32_t *udata;
|
|
|
- uint32_t sums[9][256];
|
|
|
+ uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
|
|
|
|
|
|
- assert(pmax >= 0 && pmax <= 8);
|
|
|
+ assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
|
|
|
+ assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
|
|
|
+ assert(pmin <= pmax);
|
|
|
|
|
|
udata = av_malloc(n * sizeof(uint32_t));
|
|
|
for(i=0; i<n; i++) {
|
|
|
udata[i] = (2*data[i]) ^ (data[i]>>31);
|
|
|
}
|
|
|
|
|
|
- calc_sums(pmax, udata, n, pred_order, sums);
|
|
|
+ calc_sums(pmin, pmax, udata, n, pred_order, sums);
|
|
|
|
|
|
- opt_porder = 0;
|
|
|
- opt_bits = UINT32_MAX;
|
|
|
- for(i=0; i<=pmax; i++) {
|
|
|
- bits = calc_optimal_rice_params(rc, i, sums[i], n, pred_order);
|
|
|
- if(bits < opt_bits) {
|
|
|
- opt_bits = bits;
|
|
|
+ opt_porder = pmin;
|
|
|
+ bits[pmin] = UINT32_MAX;
|
|
|
+ for(i=pmin; i<=pmax; i++) {
|
|
|
+ bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
|
|
|
+ if(bits[i] <= bits[opt_porder]) {
|
|
|
opt_porder = i;
|
|
|
- memcpy(&opt_rc, rc, sizeof(RiceContext));
|
|
|
+ memcpy(rc, &tmp_rc, sizeof(RiceContext));
|
|
|
}
|
|
|
}
|
|
|
- if(opt_porder != pmax) {
|
|
|
- memcpy(rc, &opt_rc, sizeof(RiceContext));
|
|
|
- }
|
|
|
|
|
|
av_freep(&udata);
|
|
|
- return opt_bits;
|
|
|
+ return bits[opt_porder];
|
|
|
}
|
|
|
|
|
|
-static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmax, int32_t *data,
|
|
|
- int n, int pred_order, int bps)
|
|
|
+static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
|
|
|
+ int32_t *data, int n, int pred_order,
|
|
|
+ int bps)
|
|
|
{
|
|
|
uint32_t bits;
|
|
|
bits = pred_order*bps + 6;
|
|
|
- bits += calc_rice_params(rc, pmax, data, n, pred_order);
|
|
|
+ bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
|
|
|
+ return bits;
|
|
|
+}
|
|
|
+
|
|
|
+static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
|
|
|
+ int32_t *data, int n, int pred_order,
|
|
|
+ int bps, int precision)
|
|
|
+{
|
|
|
+ uint32_t bits;
|
|
|
+ bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
|
|
|
+ bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
|
|
|
return bits;
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * Apply Welch window function to audio block
|
|
|
+ */
|
|
|
+static void apply_welch_window(const int32_t *data, int len, double *w_data)
|
|
|
+{
|
|
|
+ int i, n2;
|
|
|
+ double w;
|
|
|
+ double c;
|
|
|
+
|
|
|
+ n2 = (len >> 1);
|
|
|
+ c = 2.0 / (len - 1.0);
|
|
|
+ for(i=0; i<n2; i++) {
|
|
|
+ w = c - i - 1.0;
|
|
|
+ w = 1.0 - (w * w);
|
|
|
+ w_data[i] = data[i] * w;
|
|
|
+ w_data[len-1-i] = data[len-1-i] * w;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Calculates autocorrelation data from audio samples
|
|
|
+ * A Welch window function is applied before calculation.
|
|
|
+ */
|
|
|
+static void compute_autocorr(const int32_t *data, int len, int lag,
|
|
|
+ double *autoc)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ double *data1;
|
|
|
+ int lag_ptr, ptr;
|
|
|
+
|
|
|
+ data1 = av_malloc(len * sizeof(double));
|
|
|
+ apply_welch_window(data, len, data1);
|
|
|
+
|
|
|
+ for(i=0; i<lag; i++) autoc[i] = 1.0;
|
|
|
+
|
|
|
+ ptr = 0;
|
|
|
+ while(ptr <= lag) {
|
|
|
+ lag_ptr = 0;
|
|
|
+ while(lag_ptr <= ptr) {
|
|
|
+ autoc[ptr-lag_ptr] += data1[ptr] * data1[lag_ptr];
|
|
|
+ lag_ptr++;
|
|
|
+ }
|
|
|
+ ptr++;
|
|
|
+ }
|
|
|
+ while(ptr < len) {
|
|
|
+ lag_ptr = ptr - lag;
|
|
|
+ while(lag_ptr <= ptr) {
|
|
|
+ autoc[ptr-lag_ptr] += data1[ptr] * data1[lag_ptr];
|
|
|
+ lag_ptr++;
|
|
|
+ }
|
|
|
+ ptr++;
|
|
|
+ }
|
|
|
+
|
|
|
+ av_freep(&data1);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Levinson-Durbin recursion.
|
|
|
+ * Produces LPC coefficients from autocorrelation data.
|
|
|
+ */
|
|
|
+static void compute_lpc_coefs(const double *autoc, int max_order,
|
|
|
+ double lpc[][MAX_LPC_ORDER], double *ref)
|
|
|
+{
|
|
|
+ int i, j, i2;
|
|
|
+ double r, err, tmp;
|
|
|
+ double lpc_tmp[MAX_LPC_ORDER];
|
|
|
+
|
|
|
+ for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
|
|
|
+ err = autoc[0];
|
|
|
+
|
|
|
+ for(i=0; i<max_order; i++) {
|
|
|
+ r = -autoc[i+1];
|
|
|
+ for(j=0; j<i; j++) {
|
|
|
+ r -= lpc_tmp[j] * autoc[i-j];
|
|
|
+ }
|
|
|
+ r /= err;
|
|
|
+ ref[i] = fabs(r);
|
|
|
+
|
|
|
+ err *= 1.0 - (r * r);
|
|
|
+
|
|
|
+ i2 = (i >> 1);
|
|
|
+ lpc_tmp[i] = r;
|
|
|
+ for(j=0; j<i2; j++) {
|
|
|
+ tmp = lpc_tmp[j];
|
|
|
+ lpc_tmp[j] += r * lpc_tmp[i-1-j];
|
|
|
+ lpc_tmp[i-1-j] += r * tmp;
|
|
|
+ }
|
|
|
+ if(i & 1) {
|
|
|
+ lpc_tmp[j] += lpc_tmp[j] * r;
|
|
|
+ }
|
|
|
+
|
|
|
+ for(j=0; j<=i; j++) {
|
|
|
+ lpc[i][j] = -lpc_tmp[j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Quantize LPC coefficients
|
|
|
+ */
|
|
|
+static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
|
|
|
+ int32_t *lpc_out, int *shift)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ double d, cmax;
|
|
|
+ int32_t qmax;
|
|
|
+ int sh;
|
|
|
+
|
|
|
+ /* define maximum levels */
|
|
|
+ qmax = (1 << (precision - 1)) - 1;
|
|
|
+
|
|
|
+ /* find maximum coefficient value */
|
|
|
+ cmax = 0.0;
|
|
|
+ for(i=0; i<order; i++) {
|
|
|
+ d = lpc_in[i];
|
|
|
+ if(d < 0) d = -d;
|
|
|
+ if(d > cmax)
|
|
|
+ cmax = d;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* if maximum value quantizes to zero, return all zeros */
|
|
|
+ if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) {
|
|
|
+ *shift = 0;
|
|
|
+ for(i=0; i<order; i++) {
|
|
|
+ lpc_out[i] = 0;
|
|
|
+ }
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* calculate level shift which scales max coeff to available bits */
|
|
|
+ sh = MAX_LPC_SHIFT;
|
|
|
+ while((cmax * (1 << sh) > qmax) && (sh > 0)) {
|
|
|
+ sh--;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* since negative shift values are unsupported in decoder, scale down
|
|
|
+ coefficients instead */
|
|
|
+ if(sh == 0 && cmax > qmax) {
|
|
|
+ double scale = ((double)qmax) / cmax;
|
|
|
+ for(i=0; i<order; i++) {
|
|
|
+ lpc_in[i] *= scale;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* output quantized coefficients and level shift */
|
|
|
+ for(i=0; i<order; i++) {
|
|
|
+ lpc_out[i] = (int32_t)(lpc_in[i] * (1 << sh));
|
|
|
+ }
|
|
|
+ *shift = sh;
|
|
|
+}
|
|
|
+
|
|
|
+static int estimate_best_order(double *ref, int max_order)
|
|
|
+{
|
|
|
+ int i, est;
|
|
|
+
|
|
|
+ est = 1;
|
|
|
+ for(i=max_order-1; i>=0; i--) {
|
|
|
+ if(ref[i] > 0.10) {
|
|
|
+ est = i+1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return est;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Calculate LPC coefficients for multiple orders
|
|
|
+ */
|
|
|
+static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order,
|
|
|
+ int precision, int32_t coefs[][MAX_LPC_ORDER],
|
|
|
+ int *shift)
|
|
|
+{
|
|
|
+ double autoc[MAX_LPC_ORDER+1];
|
|
|
+ double ref[MAX_LPC_ORDER];
|
|
|
+ double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
|
|
|
+ int i;
|
|
|
+ int opt_order;
|
|
|
+
|
|
|
+ assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
|
|
|
+
|
|
|
+ compute_autocorr(samples, blocksize, max_order+1, autoc);
|
|
|
+
|
|
|
+ compute_lpc_coefs(autoc, max_order, lpc, ref);
|
|
|
+
|
|
|
+ opt_order = estimate_best_order(ref, max_order);
|
|
|
+
|
|
|
+ i = opt_order-1;
|
|
|
+ quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]);
|
|
|
+
|
|
|
+ return opt_order;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
|
|
|
{
|
|
|
assert(n > 0);
|
|
|
memcpy(res, smp, n * sizeof(int32_t));
|
|
|
}
|
|
|
|
|
|
-static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
|
|
|
+static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
|
|
|
+ int order)
|
|
|
{
|
|
|
int i;
|
|
|
|
|
@@ -402,6 +822,24 @@ static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
|
|
|
+ int order, const int32_t *coefs, int shift)
|
|
|
+{
|
|
|
+ int i, j;
|
|
|
+ int32_t pred;
|
|
|
+
|
|
|
+ for(i=0; i<order; i++) {
|
|
|
+ res[i] = smp[i];
|
|
|
+ }
|
|
|
+ for(i=order; i<n; i++) {
|
|
|
+ pred = 0;
|
|
|
+ for(j=0; j<order; j++) {
|
|
|
+ pred += coefs[j] * smp[i-j-1];
|
|
|
+ }
|
|
|
+ res[i] = smp[i] - (pred >> shift);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
static int get_max_p_order(int max_porder, int n, int order)
|
|
|
{
|
|
|
int porder, max_parts;
|
|
@@ -419,10 +857,13 @@ static int get_max_p_order(int max_porder, int n, int order)
|
|
|
|
|
|
static int encode_residual(FlacEncodeContext *ctx, int ch)
|
|
|
{
|
|
|
- int i, opt_order, porder, max_porder, n;
|
|
|
+ int i, n;
|
|
|
+ int min_order, max_order, opt_order, precision;
|
|
|
+ int porder, min_porder, max_porder;
|
|
|
FlacFrame *frame;
|
|
|
FlacSubframe *sub;
|
|
|
- uint32_t bits[5];
|
|
|
+ int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
|
|
|
+ int shift[MAX_LPC_ORDER];
|
|
|
int32_t *res, *smp;
|
|
|
|
|
|
frame = &ctx->frame;
|
|
@@ -448,28 +889,51 @@ static int encode_residual(FlacEncodeContext *ctx, int ch)
|
|
|
return sub->obits * n;
|
|
|
}
|
|
|
|
|
|
- max_porder = 3;
|
|
|
+ min_order = ctx->options.min_prediction_order;
|
|
|
+ max_order = ctx->options.max_prediction_order;
|
|
|
+ min_porder = ctx->options.min_partition_order;
|
|
|
+ max_porder = ctx->options.max_partition_order;
|
|
|
+ precision = ctx->options.lpc_coeff_precision;
|
|
|
|
|
|
/* FIXED */
|
|
|
- opt_order = 0;
|
|
|
- bits[0] = UINT32_MAX;
|
|
|
- for(i=0; i<=4; i++) {
|
|
|
- encode_residual_fixed(res, smp, n, i);
|
|
|
- porder = get_max_p_order(max_porder, n, i);
|
|
|
- bits[i] = calc_rice_params_fixed(&sub->rc, porder, res, n, i, sub->obits);
|
|
|
- if(bits[i] < bits[opt_order]) {
|
|
|
- opt_order = i;
|
|
|
+ if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
|
|
|
+ uint32_t bits[MAX_FIXED_ORDER+1];
|
|
|
+ if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
|
|
|
+ opt_order = 0;
|
|
|
+ bits[0] = UINT32_MAX;
|
|
|
+ for(i=min_order; i<=max_order; i++) {
|
|
|
+ encode_residual_fixed(res, smp, n, i);
|
|
|
+ porder = get_max_p_order(max_porder, n, i);
|
|
|
+ bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, porder, res,
|
|
|
+ n, i, sub->obits);
|
|
|
+ if(bits[i] < bits[opt_order]) {
|
|
|
+ opt_order = i;
|
|
|
+ }
|
|
|
}
|
|
|
+ sub->order = opt_order;
|
|
|
+ sub->type = FLAC_SUBFRAME_FIXED;
|
|
|
+ sub->type_code = sub->type | sub->order;
|
|
|
+ if(sub->order != max_order) {
|
|
|
+ encode_residual_fixed(res, smp, n, sub->order);
|
|
|
+ porder = get_max_p_order(max_porder, n, sub->order);
|
|
|
+ return calc_rice_params_fixed(&sub->rc, min_porder, porder, res, n,
|
|
|
+ sub->order, sub->obits);
|
|
|
+ }
|
|
|
+ return bits[sub->order];
|
|
|
}
|
|
|
- sub->order = opt_order;
|
|
|
- sub->type = FLAC_SUBFRAME_FIXED;
|
|
|
- sub->type_code = sub->type | sub->order;
|
|
|
- if(sub->order != 4) {
|
|
|
- encode_residual_fixed(res, smp, n, sub->order);
|
|
|
- porder = get_max_p_order(max_porder, n, sub->order);
|
|
|
- calc_rice_params_fixed(&sub->rc, porder, res, n, sub->order, sub->obits);
|
|
|
+
|
|
|
+ /* LPC */
|
|
|
+ sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift);
|
|
|
+ sub->type = FLAC_SUBFRAME_LPC;
|
|
|
+ sub->type_code = sub->type | (sub->order-1);
|
|
|
+ sub->shift = shift[sub->order-1];
|
|
|
+ for(i=0; i<sub->order; i++) {
|
|
|
+ sub->coefs[i] = coefs[sub->order-1][i];
|
|
|
}
|
|
|
- return bits[sub->order];
|
|
|
+ porder = get_max_p_order(max_porder, n, sub->order);
|
|
|
+ encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
|
|
|
+ return calc_rice_params_lpc(&sub->rc, 0, porder, res, n, sub->order,
|
|
|
+ sub->obits, precision);
|
|
|
}
|
|
|
|
|
|
static int encode_residual_v(FlacEncodeContext *ctx, int ch)
|
|
@@ -509,7 +973,7 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
|
|
|
uint64_t score[4];
|
|
|
int k;
|
|
|
|
|
|
- /* calculate sum of squares for each channel */
|
|
|
+ /* calculate sum of 2nd order residual for each channel */
|
|
|
sum[0] = sum[1] = sum[2] = sum[3] = 0;
|
|
|
for(i=2; i<n; i++) {
|
|
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
|
|
@@ -519,6 +983,7 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
|
|
|
sum[0] += ABS(lt);
|
|
|
sum[1] += ABS(rt);
|
|
|
}
|
|
|
+ /* estimate bit counts */
|
|
|
for(i=0; i<4; i++) {
|
|
|
k = find_optimal_param(2*sum[i], n);
|
|
|
sum[i] = rice_encode_count(2*sum[i], n, k);
|
|
@@ -731,6 +1196,32 @@ static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
|
|
|
output_residual(ctx, ch);
|
|
|
}
|
|
|
|
|
|
+static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
|
|
|
+{
|
|
|
+ int i, cbits;
|
|
|
+ FlacFrame *frame;
|
|
|
+ FlacSubframe *sub;
|
|
|
+
|
|
|
+ frame = &ctx->frame;
|
|
|
+ sub = &frame->subframes[ch];
|
|
|
+
|
|
|
+ /* warm-up samples */
|
|
|
+ for(i=0; i<sub->order; i++) {
|
|
|
+ put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* LPC coefficients */
|
|
|
+ cbits = ctx->options.lpc_coeff_precision;
|
|
|
+ put_bits(&ctx->pb, 4, cbits-1);
|
|
|
+ put_sbits(&ctx->pb, 5, sub->shift);
|
|
|
+ for(i=0; i<sub->order; i++) {
|
|
|
+ put_sbits(&ctx->pb, cbits, sub->coefs[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* residual */
|
|
|
+ output_residual(ctx, ch);
|
|
|
+}
|
|
|
+
|
|
|
static void output_subframes(FlacEncodeContext *s)
|
|
|
{
|
|
|
FlacFrame *frame;
|
|
@@ -754,6 +1245,8 @@ static void output_subframes(FlacEncodeContext *s)
|
|
|
output_subframe_verbatim(s, ch);
|
|
|
} else if(sub->type == FLAC_SUBFRAME_FIXED) {
|
|
|
output_subframe_fixed(s, ch);
|
|
|
+ } else if(sub->type == FLAC_SUBFRAME_LPC) {
|
|
|
+ output_subframe_lpc(s, ch);
|
|
|
}
|
|
|
}
|
|
|
}
|