|
@@ -0,0 +1,231 @@
|
|
|
+/*
|
|
|
+ * Principal component analysis
|
|
|
+ * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
|
|
+ *
|
|
|
+ * This library is free software; you can redistribute it and/or
|
|
|
+ * modify it under the terms of the GNU Lesser General Public
|
|
|
+ * License as published by the Free Software Foundation; either
|
|
|
+ * version 2 of the License, or (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This library is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
+ * Lesser General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU Lesser General Public
|
|
|
+ * License along with this library; if not, write to the Free Software
|
|
|
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+/**
|
|
|
+ * @file pca.c
|
|
|
+ * Principal component analysis
|
|
|
+ */
|
|
|
+
|
|
|
+#include <math.h>
|
|
|
+#include "avcodec.h"
|
|
|
+#include "pca.h"
|
|
|
+
|
|
|
+int ff_pca_init(PCA *pca, int n){
|
|
|
+ if(n<=0)
|
|
|
+ return -1;
|
|
|
+
|
|
|
+ pca->n= n;
|
|
|
+ pca->count=0;
|
|
|
+ pca->covariance= av_mallocz(sizeof(double)*n*n);
|
|
|
+ pca->mean= av_mallocz(sizeof(double)*n);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+void ff_pca_free(PCA *pca){
|
|
|
+ av_freep(&pca->covariance);
|
|
|
+ av_freep(&pca->mean);
|
|
|
+}
|
|
|
+
|
|
|
+void ff_pca_add(PCA *pca, double *v){
|
|
|
+ int i, j;
|
|
|
+ const int n= pca->n;
|
|
|
+
|
|
|
+ for(i=0; i<n; i++){
|
|
|
+ pca->mean[i] += v[i];
|
|
|
+ for(j=i; j<n; j++)
|
|
|
+ pca->covariance[j + i*n] += v[i]*v[j];
|
|
|
+ }
|
|
|
+ pca->count++;
|
|
|
+}
|
|
|
+
|
|
|
+int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
|
|
|
+ int i, j, k, pass;
|
|
|
+ const int n= pca->n;
|
|
|
+ double z[n];
|
|
|
+
|
|
|
+ memset(eigenvector, 0, sizeof(double)*n*n);
|
|
|
+
|
|
|
+ for(j=0; j<n; j++){
|
|
|
+ pca->mean[j] /= pca->count;
|
|
|
+ eigenvector[j + j*n] = 1.0;
|
|
|
+ for(i=0; i<=j; i++){
|
|
|
+ pca->covariance[j + i*n] /= pca->count;
|
|
|
+ pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
|
|
|
+ pca->covariance[i + j*n] = pca->covariance[j + i*n];
|
|
|
+ }
|
|
|
+ eigenvalue[j]= pca->covariance[j + j*n];
|
|
|
+ z[j]= 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ for(pass=0; pass < 50; pass++){
|
|
|
+ double sum=0;
|
|
|
+
|
|
|
+ for(i=0; i<n; i++)
|
|
|
+ for(j=i+1; j<n; j++)
|
|
|
+ sum += fabs(pca->covariance[j + i*n]);
|
|
|
+
|
|
|
+ if(sum == 0){
|
|
|
+ for(i=0; i<n; i++){
|
|
|
+ double maxvalue= -1;
|
|
|
+ for(j=i; j<n; j++){
|
|
|
+ if(eigenvalue[j] > maxvalue){
|
|
|
+ maxvalue= eigenvalue[j];
|
|
|
+ k= j;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ eigenvalue[k]= eigenvalue[i];
|
|
|
+ eigenvalue[i]= maxvalue;
|
|
|
+ for(j=0; j<n; j++){
|
|
|
+ double tmp= eigenvector[k + j*n];
|
|
|
+ eigenvector[k + j*n]= eigenvector[i + j*n];
|
|
|
+ eigenvector[i + j*n]= tmp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return pass;
|
|
|
+ }
|
|
|
+
|
|
|
+ for(i=0; i<n; i++){
|
|
|
+ for(j=i+1; j<n; j++){
|
|
|
+ double covar= pca->covariance[j + i*n];
|
|
|
+ double t,c,s,tau,theta, h;
|
|
|
+
|
|
|
+ if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
|
|
|
+ continue;
|
|
|
+ if(fabs(covar) == 0.0) //FIXME shouldnt be needed
|
|
|
+ continue;
|
|
|
+ if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
|
|
|
+ pca->covariance[j + i*n]=0.0;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
|
|
|
+ theta=0.5*h/covar;
|
|
|
+ t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
|
|
|
+ if(theta < 0.0) t = -t;
|
|
|
+
|
|
|
+ c=1.0/sqrt(1+t*t);
|
|
|
+ s=t*c;
|
|
|
+ tau=s/(1.0+c);
|
|
|
+ z[i] -= t*covar;
|
|
|
+ z[j] += t*covar;
|
|
|
+
|
|
|
+#define ROTATE(a,i,j,k,l)\
|
|
|
+ double g=a[j + i*n];\
|
|
|
+ double h=a[l + k*n];\
|
|
|
+ a[j + i*n]=g-s*(h+g*tau);\
|
|
|
+ a[l + k*n]=h+s*(g-h*tau);
|
|
|
+ for(k=0; k<n; k++) {
|
|
|
+ if(k!=i && k!=j){
|
|
|
+ ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
|
|
|
+ }
|
|
|
+ ROTATE(eigenvector,k,i,k,j)
|
|
|
+ }
|
|
|
+ pca->covariance[j + i*n]=0.0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for (i=0; i<n; i++) {
|
|
|
+ eigenvalue[i] += z[i];
|
|
|
+ z[i]=0.0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return -1;
|
|
|
+}
|
|
|
+
|
|
|
+#if 1
|
|
|
+
|
|
|
+#undef printf
|
|
|
+#include <stdio.h>
|
|
|
+#include <stdlib.h>
|
|
|
+
|
|
|
+int main(){
|
|
|
+ PCA pca;
|
|
|
+ int i, j, k;
|
|
|
+#define LEN 8
|
|
|
+ double eigenvector[LEN*LEN];
|
|
|
+ double eigenvalue[LEN];
|
|
|
+
|
|
|
+ ff_pca_init(&pca, LEN);
|
|
|
+
|
|
|
+ for(i=0; i<9000000; i++){
|
|
|
+ double v[2*LEN+100];
|
|
|
+ double sum=0;
|
|
|
+ int pos= random()%LEN;
|
|
|
+ int v2= (random()%101) - 50;
|
|
|
+ v[0]= (random()%101) - 50;
|
|
|
+ for(j=1; j<8; j++){
|
|
|
+ if(j<=pos) v[j]= v[0];
|
|
|
+ else v[j]= v2;
|
|
|
+ sum += v[j];
|
|
|
+ }
|
|
|
+/* for(j=0; j<LEN; j++){
|
|
|
+ v[j] -= v[pos];
|
|
|
+ }*/
|
|
|
+// sum += random()%10;
|
|
|
+/* for(j=0; j<LEN; j++){
|
|
|
+ v[j] -= sum/LEN;
|
|
|
+ }*/
|
|
|
+// lbt1(v+100,v+100,LEN);
|
|
|
+ ff_pca_add(&pca, v);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ ff_pca(&pca, eigenvector, eigenvalue);
|
|
|
+ for(i=0; i<LEN; i++){
|
|
|
+ pca.count= 1;
|
|
|
+ pca.mean[i]= 0;
|
|
|
+
|
|
|
+// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
|
|
|
+
|
|
|
+
|
|
|
+// pca.covariance[i + i*LEN]= pow(0.5, fabs
|
|
|
+ for(j=i; j<LEN; j++){
|
|
|
+ printf("%f ", pca.covariance[i + j*LEN]);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+#if 1
|
|
|
+ for(i=0; i<LEN; i++){
|
|
|
+ double v[LEN];
|
|
|
+ double error=0;
|
|
|
+ memset(v, 0, sizeof(v));
|
|
|
+ for(j=0; j<LEN; j++){
|
|
|
+ for(k=0; k<LEN; k++){
|
|
|
+ v[j] += pca.covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN];
|
|
|
+ }
|
|
|
+ v[j] /= eigenvalue[i];
|
|
|
+ error += fabs(v[j] - eigenvector[i + j*LEN]);
|
|
|
+ }
|
|
|
+ printf("%f ", error);
|
|
|
+ }
|
|
|
+ printf("\n");
|
|
|
+#endif
|
|
|
+ for(i=0; i<LEN; i++){
|
|
|
+ for(j=0; j<LEN; j++){
|
|
|
+ printf("%9.6f ", eigenvector[i + j*LEN]);
|
|
|
+ }
|
|
|
+ printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]);
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+#endif
|