|
@@ -19,10 +19,27 @@
|
|
|
*/
|
|
|
|
|
|
#include "libavutil/avassert.h"
|
|
|
+#include "libavutil/thread.h"
|
|
|
+#include "libavutil/cpu.h"
|
|
|
#include "dnn_backend_native_layer_conv2d.h"
|
|
|
|
|
|
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
|
|
|
|
|
|
+//struct to pass parameters
|
|
|
+typedef struct thread_common_param{
|
|
|
+ DnnOperand *operands;
|
|
|
+ const int32_t *input_operand_indexes;
|
|
|
+ int32_t output_operand_index;
|
|
|
+ const void *parameters;
|
|
|
+ NativeContext *ctx;
|
|
|
+ int thread_num;
|
|
|
+} thread_common_param;
|
|
|
+
|
|
|
+typedef struct thread_param{
|
|
|
+ thread_common_param *thread_common_param;
|
|
|
+ int thread_index;
|
|
|
+} thread_param;
|
|
|
+
|
|
|
int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
|
|
|
{
|
|
|
ConvolutionalParams *conv_params;
|
|
@@ -88,17 +105,20 @@ int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int fil
|
|
|
return dnn_size;
|
|
|
}
|
|
|
|
|
|
-int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
|
|
|
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
|
|
|
+static void * dnn_execute_layer_conv2d_thread(void *threadarg)
|
|
|
{
|
|
|
+ //pass parameters
|
|
|
+ thread_param *thread_param = (struct thread_param *)threadarg;
|
|
|
+ thread_common_param *thread_common_param = thread_param->thread_common_param;
|
|
|
+ DnnOperand *operands = thread_common_param->operands;
|
|
|
float *output;
|
|
|
- int32_t input_operand_index = input_operand_indexes[0];
|
|
|
+ int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
|
|
|
int number = operands[input_operand_index].dims[0];
|
|
|
int height = operands[input_operand_index].dims[1];
|
|
|
int width = operands[input_operand_index].dims[2];
|
|
|
int channel = operands[input_operand_index].dims[3];
|
|
|
const float *input = operands[input_operand_index].data;
|
|
|
- const ConvolutionalParams *conv_params = (const ConvolutionalParams *)parameters;
|
|
|
+ const ConvolutionalParams *conv_params = (const ConvolutionalParams *)(thread_common_param->parameters);
|
|
|
|
|
|
int radius = conv_params->kernel_size >> 1;
|
|
|
int src_linesize = width * conv_params->input_num;
|
|
@@ -106,7 +126,11 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
|
|
|
int filter_size = conv_params->kernel_size * filter_linesize;
|
|
|
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
|
|
|
|
|
|
- DnnOperand *output_operand = &operands[output_operand_index];
|
|
|
+ int thread_stride = (height - pad_size * 2) / thread_common_param->thread_num;
|
|
|
+ int thread_start = thread_stride * thread_param->thread_index + pad_size;
|
|
|
+ int thread_end = (thread_param->thread_index == thread_common_param->thread_num - 1) ? (height - pad_size) : (thread_start + thread_stride);
|
|
|
+
|
|
|
+ DnnOperand *output_operand = &operands[thread_common_param->output_operand_index];
|
|
|
output_operand->dims[0] = number;
|
|
|
output_operand->dims[1] = height - pad_size * 2;
|
|
|
output_operand->dims[2] = width - pad_size * 2;
|
|
@@ -114,19 +138,21 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
|
|
|
output_operand->data_type = operands[input_operand_index].data_type;
|
|
|
output_operand->length = calculate_operand_data_length(output_operand);
|
|
|
if (output_operand->length <= 0) {
|
|
|
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
|
|
|
- return DNN_ERROR;
|
|
|
+ av_log(thread_common_param->ctx, AV_LOG_ERROR, "The output data length overflow\n");
|
|
|
+ return (void *)DNN_ERROR;
|
|
|
}
|
|
|
output_operand->data = av_realloc(output_operand->data, output_operand->length);
|
|
|
if (!output_operand->data) {
|
|
|
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
|
|
|
- return DNN_ERROR;
|
|
|
+ av_log(thread_common_param->ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
|
|
|
+ return (void *)DNN_ERROR;
|
|
|
}
|
|
|
+
|
|
|
output = output_operand->data;
|
|
|
+ output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_start - pad_size);
|
|
|
|
|
|
av_assert0(channel == conv_params->input_num);
|
|
|
|
|
|
- for (int y = pad_size; y < height - pad_size; ++y) {
|
|
|
+ for (int y = thread_start; y < thread_end; ++y) {
|
|
|
for (int x = pad_size; x < width - pad_size; ++x) {
|
|
|
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
|
|
|
if (conv_params->has_bias)
|
|
@@ -174,5 +200,64 @@ int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_
|
|
|
output += conv_params->output_num;
|
|
|
}
|
|
|
}
|
|
|
- return 0;
|
|
|
+ return (void *)DNN_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
|
|
|
+ int32_t output_operand_index, const void *parameters, NativeContext *ctx)
|
|
|
+{
|
|
|
+ int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
|
|
|
+ ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
|
|
|
+#if HAVE_PTHREAD_CANCEL
|
|
|
+ pthread_t *thread_id = av_malloc(thread_num * sizeof(pthread_t));
|
|
|
+#endif
|
|
|
+ thread_param **thread_param = av_malloc(thread_num * sizeof(*thread_param));
|
|
|
+ void *res;
|
|
|
+ int error_flag = DNN_SUCCESS;
|
|
|
+
|
|
|
+ //struct used to pass parameters
|
|
|
+ thread_common_param thread_common_param;
|
|
|
+ thread_common_param.operands = operands;
|
|
|
+ thread_common_param.input_operand_indexes = input_operand_indexes;
|
|
|
+ thread_common_param.output_operand_index = output_operand_index;
|
|
|
+ thread_common_param.parameters = parameters;
|
|
|
+ thread_common_param.ctx = ctx;
|
|
|
+#if HAVE_PTHREAD_CANCEL
|
|
|
+ thread_common_param.thread_num = thread_num;
|
|
|
+
|
|
|
+ //create threads
|
|
|
+ for (int i = 0; i < thread_num; i++){
|
|
|
+ thread_param[i] = av_malloc(sizeof(thread_param));
|
|
|
+ thread_param[i]->thread_common_param = &thread_common_param;
|
|
|
+ thread_param[i]->thread_index = i;
|
|
|
+ pthread_create(&thread_id[i], NULL, dnn_execute_layer_conv2d_thread, (void *)thread_param[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ //join threads, res gets function return
|
|
|
+ for (int i = 0; i < thread_num; i++){
|
|
|
+ pthread_join(thread_id[i], &res);
|
|
|
+ if ((int)res != DNN_SUCCESS)
|
|
|
+ error_flag = (int)res;
|
|
|
+ }
|
|
|
+
|
|
|
+ //release memory
|
|
|
+ av_free(thread_id);
|
|
|
+
|
|
|
+ for (int i = 0; i < thread_num; i++){
|
|
|
+ av_free(thread_param[i]);
|
|
|
+ }
|
|
|
+#else
|
|
|
+ thread_common_param.thread_num = 1;
|
|
|
+ thread_param[0] = av_malloc(sizeof(thread_param));
|
|
|
+ thread_param[0]->thread_common_param = &thread_common_param;
|
|
|
+ thread_param[0]->thread_index = 0;
|
|
|
+ res = dnn_execute_layer_conv2d_thread((void *)thread_param[0]);
|
|
|
+ if ((int)res != DNN_SUCCESS)
|
|
|
+ error_flag = (int)res;
|
|
|
+ av_free(thread_param[0]);
|
|
|
+#endif
|
|
|
+
|
|
|
+ av_free(thread_param);
|
|
|
+ return error_flag;
|
|
|
}
|